Высоковольтный импульсный трансформатор без сердечника



Высоковольтный импульсный трансформатор без сердечника
Высоковольтный импульсный трансформатор без сердечника
Высоковольтный импульсный трансформатор без сердечника
Высоковольтный импульсный трансформатор без сердечника
Высоковольтный импульсный трансформатор без сердечника

 


Владельцы патента RU 2482562:

В & С ВОРЛД КО. ЛТД (CY)

Изобретение относится к электротехнике, к высоковольтным импульсным источникам питания высокого напряжения и может быть использовано в импульсной технике, например в системах зажигания, электрошоковых устройствах, системах питания газоразрядных ламп, ионизаторах воздуха, газовых лазеров и т.д. Технический результат состоит в снижении габаритов и массы изделия, упрощении производства, повышении эффективности. Высоковольтный импульсный трансформатор содержит безкаркасную или каркасную вторичную обмотку, помещенную во внешнюю трубчатую электроизоляционную оболочку или имеющую зазор относительно намотанной поверх первичной обмотки. Вся конструкция залита электроизоляционным компаундом или электроизоляционной жидкостью. 9 з.п. ф-лы, 5 ил.

 

Изобретение относится к технике высоких напряжений, в частности к высоковольтным импульсным источникам питания высокого напряжения, например в системах зажигания, системах питания газоразрядных ламп, ионизаторах воздуха, газовых лазерах, электрошоковых устройствах.

Широко известна конструкция высоковольтного импульсного трансформатора, содержащая первичную и вторичную обмотки, магнитный сердечник стержневой или замкнутой конструкции, межслойную изоляцию либо секционированный каркас с взаимоизолированными секциями.

Примером традиционной конструкции высоковольтного импульсного трансформатора может служить трансформатор по патенту США №1499931, содержащий незамкнутый стержневой сердечник, первичную и вторичную обмотки, герметичный корпус. Известны и другие конструкции с незначительными отличиями, однако по сути устройство до сегодняшнего дня остается неизменным.

Типовая схема включения высоковольтного импульсного трансформатора, как низкой, так и высокой частоты, содержит источник питания, например батарею или повышающий преобразователь напряжения (инвертер) и формирователь импульсов, подключенный к первичной обмотке трансформатора, в качестве которого может быть использован механический коммутатор, управляемый полупроводниковый ключ, релаксационный генератор на газоразрядных приборах или иная схема. Трансформатор передает мощность источника питания в виде импульсов высокого напряжения в нагрузку. Подобная схема получения высокого напряжения используется, например, в электрошоковых устройствах.

Недостатком подобной конструкции являются значительные габариты - как правило, в портативных устройствах, таких как, например, электрошоковые устройства, высоковольтный импульсный трансформатор является наиболее объемным элементом и может занимать до 1/3 объема всего устройства. Значительно снизить габариты при сохранении основной характеристики «напряжение холостого хода» (а в аспектах применения в электрошоковых устройствах важнейшей характеристикой является «пробивное расстояние по воздуху») по такой конструкции высоковольтного импульсного трансформатора не представляется возможным.

Другим недостатком являются значительные потери энергии на омическом и индуктивном сопротивлении обмоток, что сказывается на КПД устройства в целом. Высокая индуктивность, в частности, препятствует получению коротких мощных импульсов, необходимых в некоторых областях применения.

Кроме того, изготовление высоковольтных трансформаторов по традиционной конструкции требует значительных экономических затрат, связанных с большим расходом обмоточных и изоляционных материалов, а также сложностью технологического процесса.

Известны высокочастотные трансформаторы без сердечников, например трансформаторы Тесла (патент США №568176).

Трансформаторы Тесла имеют первичную обмотку из очень малого количества витков толстого провода, изогнутого и намотанного в виде растянутой спирали, и вторичную обмотку в виде каркаса - цилиндра из электроизоляционного материала, на котором виток к витку в один слой уложено большое количество витков провода малого диаметра. Между первичной и вторичной обмоткой имеется воздушный зазор (разница диаметров между первичной и вторичной обмотками в трансформаторах Тесла достигает 3-5 раз), достигающий величины нескольких сантиметров даже в малых трансформаторах Тесла и служащий изоляцией между обмотками.

Другой вариант исполнения трансформатора Тесла имеет первичную обмотку, уложенную близко виток к витку, но расположенную только в центре очень длинного по отношению к длине первичной обмотки каркаса-цилиндра с вторичной обмоткой.

Типовая схема включения трансформатора описана выше.

И в том, и другом варианте исполнения трансформатора Тесла индуктивная связь между катушками слабая (не более 0,1), что является следствием необходимости иметь между первичной и вторичной обмоткой электроизоляцию с большой электрической прочностью для исключения возможности пробоя высокого напряжения, снимаемого со вторичной обмотки на первичную обмотку, разного рода утечек, например коронных.

Таким образом, недостатком трансформаторов Тесла являются сверхбольшие габариты, не допускающие использование трансформаторов в современных портативных устройствах, таких как, например, электрошоковое оружие.

Другим недостатком трансформаторов Тесла является индуктивная слабосвязанность (низкая взаимоиндукция) из-за отсутствия сердечника, слабой магнитной проницаемости воздуха, очень больших расстояний между обмотками и их неоптимального для максимальной индуктивной связи пространственного расположения.

Слабая связь ведет к уменьшению напряжения холостого хода или «пробивного расстояния по воздуху» трансформатора типа Тесла, хотя известно, что увеличение коэффициента связи всего в два раза уже дает повышение выходного напряжения на 25%.

Изобретение направлено на решение задачи миниатюризации высоковольтного импульсного трансформатора при сохранении высокого напряжения холостого хода, большого коэффициента трансформации и повышении эффективности за счет снижения активных потерь.

Поставленная задача решается тем, что высоковольтный импульсный трансформатор без сердечника содержит по меньшей мере одну первичную и по меньшей мере одну вторичную обмотки, при этом упомянутую по меньшей мере одну вторичную высоковольтную обмотку наматывают бескаркасно или с каркасом при минимальном начальном диаметре намотки, поверх упомянутой вторичной обмотки с минимальным зазором наматывают по меньшей мере одну первичную низковольтную обмотку, при этом всю конструкцию заливают жидким электроизоляционным материалом.

В частности, упомянутый каркас имеет пространственную звездообразную форму или упомянутый каркас выполнят секционным.

В частности, упомянутый секционный каркас выполняют с продольными разрезами в стенках секций для перехода провода при намотке, где упомянутые продольные разрезы в стенках секций для перехода провода при намотке содержат угловое смещение относительно друг друга.

В частности, упомянутый зазор между упомянутыми обмотками представляет собой трубчатую разделительную электроизоляционную обечайку.

В частности, трансформатор выполняют по меньшей мере с двумя раздельными вторичными обмотками, где трубчатая разделительная электроизоляционная обечайка содержит в своей цилиндрической или иной образующей по меньшей мере одно отверстие для вывода концов по меньшей мере двух раздельных вторичных обмоток или вывода внутренних соединений по меньшей мере двух раздельных вторичных обмоток.

В частности, упомянутый жидкий электроизоляционный материал представляет собой неэластичный или эластичный отверждаемый компаунд, трансформаторное масло или иной жидкий изолятор.

В частности, дополнительно содержит электроизоляционый герметичный корпус.

В частности, упомянутую заливку жидким электроизоляционным материалом осуществляют при вакуумировании.

В частности, выводы вторичной обмотки содержат дополнительную трубчатую эластичную изоляцию.

Краткое описание чертежей

Фиг.1 представляет собой вид звездообразного каркаса трансформатора со вторичной обмоткой.

Фиг.2 представляет собой вид секционного каркаса трансформатора со вторичной обмоткой, продольными разрезами в стенках секций и с осевым отверстием в силовом осевом стержне.

Фиг.3 представляет собой вид трансформатора с первичной обмоткой, вторичной обмоткой, трубчатой разделительной электроизоляционной обечайкой.

Фиг.4 представляет собой вид трансформатора с двумя раздельными первичными и двумя раздельными вторичными обмотками.

Фиг.5 представляет собой вид трансформатора согласно настоящему изобретению.

Осуществление изобретения

На Фиг.1 показан пространственный звездообразный каркас 1 из электроизоляционного материала (например, литой из пластических масс) трансформатора, на котором выполнена вторичная обмотка 2. Упомянутую вторичную обмотку 2 выполняют из тонкой обмоточной проволоки с лаковой или иной изоляцией. Проволока уложена в подобие секций упомянутого звездообразного каркаса 1, образующихся расстояниями между соседними лучами звездообразного каркаса 1. При этом проволоку укладывают как виток к витку, так и в навал.

На Фиг.2 показан секционный каркас 3 трансформатора из электроизоляционного материала, на котором выполнена вторичная обмотка 2. Упомянутую вторичную обмотку 2 выполняют из тонкой обмоточной проволоки с изоляцией.

Проволока может быть уложена в секции упомянутого секционного каркаса 3, как виток к витку, так и в навал. Преимущественно, чтобы укладка была осуществлена виток к витку. Для перехода провода при намотке из секции в секцию в стенках секционного каркаса 3 выполняют продольные разрезы 4. Также возможно, чтобы упомянутые продольные разрезы 4 в стенках секций для перехода провода при намотке содержали угловое смещение относительно друг друга. Секционный каркас 3 трансформатора содержит силовой осевой стержень (не показан) для скрепления упомянутых секций между собой, при этом в упомянутом силовом осевом стержне может быть выполнено сквозное осевое отверстие 5 для возможности отвода обоих выводов вторичной обмотки на одну из сторон трансформатора. Выводы вторичной обмотки 2 изолируют дополнительной трубчатой изоляцией 6 (трубчатую разделительную электроизоляционную обечайку) из эластичного материала с высокой электрической прочностью.

На Фиг.3 показан трансформатор, состоящий из секционного каркаса 3 со вторичной обмоткой 2, помещенного в трубчатую разделительную электроизоляционную обечайку 7. Трубчатую разделительную электроизоляционную обечайку 7 выполняют из материала с большой электрической прочностью при достаточном сродстве к адгезионной способности применяемого для заливки компаунда, например полиэтилена, полипропилена, полиэтилентерефталата и т.п. Поверх обечайки 7 наматывают первичную обмотку 8, которая состоит из малого количества витков толстой проволоки с лаковой или иной изоляцией. Один из выводов вторичной обмотки 2 может быть пропущен через осевое отверстие 5 для выхода высоковольтного вывода на другую сторону трансформатора. То есть упомянутая обечайка 7 содержит в своей цилиндрической или иной образующей по меньшей мере одно отверстие 5 для вывода концов по меньшей мере двух раздельных вторичных обмоток 2 или вывода внутренних соединений по меньшей мере двух раздельных вторичных обмоток 2.

Собранная конструкция трансформатора после сборки заливается электроизоляционным материалом (компаундом) 9 под вакуумом, причем компаунд заполняет и свободные пространства секций каркаса трансформатора со вторичной обмоткой 2. Упомянутый жидкий электроизоляционный материал 9 представляет собой неэластичный или эластичный отверждаемый компаунд, трансформаторное масло или иной жидкий изолятор, а упомянутую заливку жидким электроизоляционным материалом 9 осуществляют при вакуумировании. При заливке упомянутым материалом 9 трансформатор должен дополнительно содержать электроизоляционный герметичный корпус.

В заявляемой конструкции трансформатора коэффициент связи обмоток трансформатора повышен за счет уменьшения потоков рассеяния магнитной индукции, достигаемого максимальным сближением первичной 8 и вторичной 2 обмоток и уменьшением их диаметра и длины, что достигается разделением вторичной 2 обмотки на взаимоизолированные секции и применением разделительной электроизоляционной обечайки с большой электрической прочностью между первичной 8 и вторичной 2 обмотками.

На Фиг.4 показан трансформатор с раздельными первичными (14 и 15) и вторичными обмотками, состоящий из сдвоенного каркаса 10 (описанного выше секционного типа) с разделительной перемычкой 11 без обмотки. Сдвоенный каркас 10 помещен в удлиненную трубчатую разделительную электроизоляционную обечайку 12 с отверстием 13, через которое выводятся наружу концы раздельных вторичных обмоток для формирования общих выводов, либо общий вывод внутреннего соединения концов вторичных обмоток.

Поверх обечайки 12 намотаны первичные обмотки 14 и 15, которые могут соединяться параллельно или последовательно в зависимости от необходимости. Описанная конструкция трансформатора после сборки заливается электроизоляционным компаундом 9 под вакуумом, причем компаунд заполняет и свободные пространства секций сдвоенного каркаса трансформатора со вторичными обмотками.

На Фиг.5 показан трансформатор без каркаса, который имеет вторичную обмотку 16, выполненную как галетная или перекрестная обмотка, или другого типа, применяемого для намотки катушек без сердечника, поверх которой с зазором 17 намотана первичная обмотка 8. Зазор 17 между обмотками выбирается минимальным и он ограничен только электрической прочностью применяемого при заливке компаунда или жидкого изоляционного вещества. Для недопущения контакта вторичной 16 и первичной 8 обмоток при заливке трансформатора компаундом под вакуумом в зазор 17 могут вставляться стержни 18 из изоляционного материала с высокой электрической прочностью при достаточном сродстве к адгезионной способности применяемого для заливки компаунда. Описанная конструкция трансформатора после сборки дополнительно заливается электроизоляционным компаундом 9 под вакуумом.

1. Высоковольтный импульсный трансформатор без сердечника, содержащий по меньшей мере одну первичную и по меньшей мере одну вторичную обмотки, упомянутая по меньшей мере одна вторичная высоковольтная обмотка намотана бескаркасно или с каркасом при минимальном начальном диаметре намотки, где упомянутый каркас выполнен секционным, стенки которого соединены между собой силовым осевым стержнем, при этом поверх упомянутой вторичной обмотки с минимальным зазором намотана по меньшей мере одна первичная низковольтная обмотка, а вся конструкция выполнена в электроизоляционном материале.

2. Трансформатор по п.1, отличающийся тем, что в упомянутом силовом осевом стержне выполнено сквозное осевое отверстие.

3. Трансформатор по п.1, отличающийся тем, что упомянутый секционный каркас выполняют с продольными разрезами в стенках секций для перехода провода при намотке, где упомянутые продольные разрезы в стенках секций для перехода провода при намотке содержат угловое смещение относительно друг друга.

4. Трансформатор по п.1, отличающийся тем, что содержит трубчатую разделительную электроизоляционную обечайку, установленную в зазор между упомянутыми обмотками.

5. Трансформатор по п.1, отличающийся тем, что содержит стержни из изоляционного материала, установленные в зазор между упомянутыми обмотками.

6. Трансформатор по п.4, отличающийся тем, что выполняют по меньшей мере с двумя раздельными вторичными обмотками, и трубчатая разделительная электроизоляционная обечайка содержит в своей цилиндрической или иной образующей по меньшей мере одно отверстие для вывода концов по меньшей мере двух раздельных вторичных обмоток или вывода внутренних соединений по меньшей мере двух раздельных вторичных обмоток.

7. Трансформатор по п.1, отличающийся тем, что дополнительно содержит электроизоляционый герметичный корпус.

8. Трансформатор по п.1 или 7, отличающийся тем, что упомянутый электроизоляционный материал представляет собой неэластичный или эластичный отверждаемый компаунд.

9. Трансформатор п.7, отличающийся тем, что упомянутый электроизоляционный материал представляет собой трансформаторное масло или иной жидкий изолятор.

10. Трансформатор по п.1 или 6, отличающийся тем, что выводы вторичной обмотки содержат дополнительную трубчатую эластичную изоляцию.



 

Похожие патенты:

Изобретение относится к электротехнике, к преобразовательной технике и может быть использовано в устройствах электропитания радиоэлектронной аппаратуры, содержащих импульсные преобразователи напряжения с использованием трансформаторов.

Изобретение относится к области электроэнергетики, конкретнее к автономным источникам электропитания, и может найти применение в промышленности, в бытовой технике и на транспорте.

Изобретение относится к области высоковольтной импульсной техники, а именно к высокочастотным высоковольтным импульсным трансформаторам с замкнутым сердечником в высоковольтных однотактных схемах преобразования постоянного напряжения в высоковольтное импульсное, и может быть использовано в малогабаритных преобразователях схем электропитания различных устройств, например электрошоковых устройств, газовых лазеров.

Изобретение относится к области высоковольтной импульсной техники, а именно к высокочастотным высоковольтным импульсным трансформаторам с замкнутым сердечником с зазором в высоковольтных однотактных схемах преобразования постоянного напряжения в высоковольтное импульсное и может быть использовано в малогабаритных преобразователях схем электропитания различных устройств, например, электрошоковых устройств (ЭШУ), газовых лазеров.

Изобретение относится к электротехнике, а именно к области трансформаторостроения, и может быть использовано в устройствах, использующих одновременно трансформатор и дроссель, например в автономных инверторах.

Изобретение относится к электротехнике, в частности к технике сильных импульсных магнитных полей, и предназначено преимущественно для использования в обмотке тороидального поля токамака, работающего в импульсном режиме.

Изобретение относится к электротехнике, в частности, к импульсной технике и может быть использовано во входных разделительных цепях сеточных высоковольтных импульсных модуляторов.

Изобретение относится к электротехнике, в частности к высоковольтной импульсной технике, и может быть использовано в малогабаритных ускорителях заряженных частиц, рентгеновских аппаратах и т.п. Технический результат состоит в повышении электропрочности и рабочего ресурса. Высоковольтный импульсный трансформатор содержит диэлектрический корпус, на поверхности которого расположена первичная обмотка. Внутри корпуса расположен диэлектрический каркас, на котором закреплена вторичная обмотка. Обе обмотки выполнены однослойными, корпус заполнен жидким диэлектриком. Согласно изобретению первичная обмотка содержит два витка, представляющие собой цилиндрические кольца с разрезом вдоль образующей, и расположена на внутренней поверхности корпуса. Каждое кольцо закреплено при помощи двух токопроводящих герметизирующих стягивающих элементов, которые выведены наружу через стенки колец и корпуса в радиальном направлении и имеют прижимной электрический контакт с кольцом, и резьбовой диэлектрической втулки с коническим участком, обеспечивающей прижим кольца к соответствующему торцевому выступу и внутренней поверхности корпуса. 4 з.п. ф-лы, 4 ил.

Изобретение относится к электротехнике, в частности к конструкциям индукционных генераторов тока, и может быть использовано в электромагнитных установках и электрических машинах, таких как двигатели, генераторы, трансформаторы, в частности, в качестве повышающего трансформатора. Технический результат состоит в повышении эдс на выходе за счет использования импульсных напряжений на вторичной обмотке и осуществления конструкции вторичной обмотки, которая бы позволяла производить непосредственный съем с генератора возникающего импульсного напряжения, и одновременно суммарной мощности первичной и вторичной обмоток. 6 з.п. ф-лы, 2 ил.
Наверх