Источник тормозного излучения

Изобретение относится к ускорительной технике и может быть использовано в средствах неразрушающего контроля материалов и изделий. Источник тормозного излучения содержит магнитопровод, полюсы, обмотки возбуждения, центральные вкладыши, ускорительную камеру, мишень, две системы обмоток смещения с противоположно направленными импульсными ампер-витками в конце цикла ускорения. Обмотки смещения расположены между ускорительной камерой и магнитопроводом. В обмотках первой системы, образуемой ближними к полюсам обмотками смещения, направление импульсных ампер-витков совпадает с направлением токов в обмотках возбуждения, а обмотки второй системы расположены между обмотками первой системы с зазорами относительно обмоток первой системы и между собой. Первая система обмоток смещения выполнена с амплитудой импульсных ампер-витков, большей амплитуды импульсных ампер-витков второй системы. Техническим результатом является уменьшение размера фокусного пятна тормозного излучения в аксиальном направлении с возможностью регулирования соотношения размеров фокусного пятна в аксиальном и радиальном направлениях. 5 ил.

 

Изобретение относится к ускорительной технике и может быть использовано в средствах неразрушающего контроля материалов и изделий.

Известен источник тормозного излучения (Л.М.Ананьев, А.А.Воробьев, В.И.Горбунов. Индукционный ускоритель электронов - бетатрон. М.: Госатомиздат, 1961, с.228-231), содержащий магнитопровод, полюсы, обмотки возбуждения на полюсах, центральные вкладыши, ускорительную камеру между полюсами, мишень, расположенную в ускорительной камере, обмотки смещения ускоренных электронов на мишень с импульсными ампер-витками в конце цикла ускорения, расположенные на центральных вкладышах или на полюсах.

В этом источнике смещение электронов с равновесной орбиты на мишень реализуется за счет их доускорения импульсным магнитным полем обмоток смещения.

Известен источник тормозного излучения (Москалев В.А. Бетатроны. М.: Энергоиздат, 1981, с.38), выбранный в качестве прототипа, содержащий магнитопровод, полюсы, обмотки возбуждения на полюсах, центральные вкладыши, ускорительную камеру между полюсами, мишень, расположенную в ускорительной камере на радиусе, большем радиуса равновесной орбиты, две системы расположенных на полюсах обмоток смещения с одинаковыми по величине и противоположно направленными импульсными ампер-витками в конце цикла ускорения и радиальными размерами, меньшими радиуса равновесной орбиты ускоряемых электронов у обмоток смещения первой системы, и радиальными размерами, большими радиуса равновесной орбиты ускоряемых электронов у обмоток смещения второй системы.

В этом источнике смещение электронов с равновесной орбиты на мишень реализуется за счет уменьшения индукции в области равновесной орбиты импульсным магнитным полем обмоток смещения.

Известные источники тормозного излучения имеют достаточно малые размеры (до 0,2 мм) фокусного пятна только в радиальном направлении, но при гораздо больших размерах, превышающих 2 мм, в направлении, перпендикулярном плоскости ускорения - в аксиальном направлении. Такое соотношение ограничивает, например, функциональные параметры промышленных томографов на основе этих источников.

Большие размеры фокусного пятна в аксиальном направлении являются следствием больших амплитуд колебаний электронов в этом направлении в процессе смещения электронов с равновесной орбиты на мишень из-за малых сил, действующих на отклоняющиеся от плоскости ускорения электроны, величины которых определяются малыми величинами радиальной составляющей индукции между ускорительными полюсами вблизи плоскости ускорения в процессе смещения.

Задачей настоящего изобретения является уменьшение размера фокусного пятна тормозного излучения в аксиальном направлении с возможностью регулирования соотношения размеров фокусного пятна в аксиальном и радиальном направлениях.

Поставленная задача достигается тем, что в источнике тормозного излучения, который содержит магнитопровод, полюсы, обмотки возбуждения на полюсах, центральные вкладыши, ускорительную камеру между полюсами, мишень, расположенную в ускорительной камере на радиусе, большем радиуса равновесной орбиты, две системы обмоток смещения с противоположно направленными импульсными ампер-витками в конце цикла ускорения, обмотки смещения расположены между ускорительной камерой и магнитопроводом, в обмотках смещения первой системы, образуемой ближними к полюсам обмотками смещения, направление импульсных ампер-витков совпадает с направлением токов в обмотках возбуждения на полюсах, а обмотки смещения второй системы расположены между обмотками смещения первой системы с зазорами относительно обмоток смещения первой системы и между собой, причем первая система обмоток выполнена с импульсными ампер-витками в конце цикла ускорения, большими импульсных ампер-витков второй системы обмоток.

Отличительными от прототипа признаками являются расположение обмоток смещения между ускорительной камерой и магнитопроводом, совпадение направлениий импульсных ампер-витков в обмотках смещения первой системы ближних к полюсам обмоток смещения с направлением токов в обмотках возбуждения на полюсах, расположение обмоток смещения второй системы с зазором относительно обмоток смещения первой системы ближних к полюсам обмоток смещения и между собой, выполнение первой системы обмоток смещения с импульсными ампер-витками в конце цикла ускорения, большими импульсных ампер-витков второй системы обмоток смещения.

Размеры фокусного пятна тормозного излучения задаются размерами области мишени, которая облучается электронами, ускоренными на равновесной орбите, относительно которой они совершали бетатронные колебания, смещенными с равновесной орбиты и переместившимися в пространстве между равновесной орбитой и мишенью по спиральной траектории.

Размер облучаемой области мишени в аксиальном направлении определяется амплитудами колебаний электронов в аксиальном направлении в процессе смещения, величины которых обратно пропорциональны величине аксиального градиента радиальной составляющей индукции.

При этом радиальный размер облучаемой области мишени определяется шагом спиральной траектории, величина которого задается распределением индукции в процессе смещения.

В процессе смещения импульсное магнитное поле, формируемое первой и второй системами обмоток, увеличивает в зависимости от величины импульсных ампер-витков степень спадания магнитного поля в области между равновесной орбитой и радиальным положением мишени в гораздо большей степени, чем при реализации процесса смещения в известных устройствах. Радиальная составляющая индукции во всех точках этой области вблизи плоскости ускорения увеличивается, причем степень увеличения является возрастающей функцией радиального отличия от положения равновесной орбиты. В результате в процессе смещения амплитуда аксиальных колебаний электронов уменьшается, электроны падают на мишень с уменьшенной амплитудой аксиальных колебаний, облучают область поверхности малого аксиального размера, что обеспечивает малый аксиальный размер фокусного пятна тормозного излучения.

Выполнение первой системы с импульсными ампер-витками обмоток в конце цикла ускорения, большими импульсных ампер-витков второй системы обмоток, позволяет смещать электроны при заданном в зависимости от соотношения импульсных ампер-витков первой и второй систем обмоток спадании индукции магнитного поля в области между равновесной орбитой и радиальным положением мишени за счет доускорения электронов действием различия в ампер-витках первой и второй систем обмоток. Это обеспечивает регулирование соотношения амплитуды аксиальных колебаний и шага спиральной траектории в процессе перемещения электронов от равновесной орбиты к радиальному положению мишени и, значит, соотношения между аксиальным и радиальным размерами фокусного пятна.

На фиг.1 показана схема предлагаемого устройства в двух проекциях.

На фиг.2 - радиальные распределения индукции В в плоскости ускорения.

Зависимость 1 - перед началом процесса смещения электронов с равновесной орбиты.

Зависимости 2, 3, 4, 5 - в момент достижения порогового значения магнитного потока в пределах равновесной орбиты: зависимость 2 - при реализации устройства-аналога со смещением за счет доускорения электронов, зависимость 3 - при реализации предлагаемого устройства при малых импульсных ампер-витках обмоток смещения, зависимость 4 - при реализации предлагаемого устройства при больших импульсных ампер-витках обмоток смещения, зависимость 5 - при реализации устройства-прототипа со смещением за счет уменьшения индукции в области равновесной орбиты.

На фиг.3 - зависимости магнитного потока F от радиуса R.

Зависимость 1 - перед началом процесса смещения электронов с равновесной орбиты.

Зависимости 2, 3, 4, 5 - в момент достижения порогового значения магнитного потока в пределах равновесной орбиты.

Зависимость 2 - при реализации устройства-аналога со смещением за счет доускорения электронов, зависимость 3 - при реализации предлагаемого устройства при малых импульсных ампер-витках обмоток смещения, зависимость 4 - при реализации предлагаемого устройства при больших импульсных ампер-витках обмоток смещения, зависимость 5 - при реализации устройства-прототипа со смещением за счет уменьшения индукции в области равновесной орбиты.

На фиг.4 - аксиальные распределения радиальной составляющей индукции BR на равновесной орбите.

Зависимость 1 - перед началом процесса смещения электронов с равновесной орбиты.

Зависимости 2, 3, 4, 5 - в момент достижения порогового значения магнитного потока в пределах равновесной орбиты.

Зависимость 2 - при реализации устройства-аналога со смещением за счет доускорения электронов, зависимость 3 - при реализации предлагаемого устройства при малых импульсных ампер-витках обмоток смещения, зависимость 4 - при реализации предлагаемого устройства при больших импульсных ампер-витках обмоток смещения, зависимость 5 - при реализации устройства-прототипа со смещением за счет уменьшения индукции в области равновесной орбиты.

На фиг.5 - аксиальные распределения радиальной составляющей индукции BR на радиусе положения мишени

Зависимость 1 - перед началом процесса смещения электронов с равновесной орбиты. Зависимости 2, 3, 4, 5 - в момент достижения порогового значения магнитного потока в пределах равновесной орбиты.

Зависимость 2 - при реализации устройства-аналога со смещением за счет доускорения электронов, зависимость 3 - при реализации предлагаемого устройства при малых импульсных ампер-витках обмоток смещения, зависимость 4 - при реализации предлагаемого устройства при больших импульсных ампер-витках обмоток смещения, зависимость 5 - при реализации устройства-прототипа со смещением за счет уменьшения индукции в области равновесной орбиты.

Источник тормозного излучения содержит магнитопровод 1, полюсы 2, обмотки возбуждения 3 на полюсах 2, центральные вкладыши 4, ускорительную камеру 5 с внешним радиусом RК между полюсами 2, мишень 6, расположенную на инжекторе 7 в ускорительной камере 5 на радиусе RM, большем радиуса равновесной орбиты R0, две системы обмоток смещения с противоположно направленными импульсными ампер-витками в конце цикла ускорения. Первая система содержит обмотки смещения 8 и 9, вторая система содержит обмотки смещения 10 и 11. Обмотки смещения 8, 9, 10, 11 расположены между ускорительной камерой 5 и магнитопроводом 1. В обмотках смещения первой системы ближних к полюсам обмоток смещения 8, 9 направление импульсных ампер-витков совпадает с направлением токов в обмотках возбуждения 3 на полюсах 2. Обмотки смещения 10 и 11 второй системы расположены с зазором Н относительно обмоток смещения 8, 9 первой системы ближних к полюсам обмоток смещения. Направление импульсных ампер-витков в обмотках смещения 10 и 11 противоположно направлению токов в обмотках возбуждения 3 и, соответственно, импульсных ампер-витков в обмотках смещения 8 и 9.

Обмотки смещения 10 и 11 расположены с зазором L между ними, меньшим, например, размера h ускорительной камеры 5 в аксиальном направлении.

Часть зазора, например, за пределами радиуса RFe между обмотками смещения 8 и 10, а также между обмотками смещения 9 и 11, заполнена магнитным материалом 12.

Системы обмоток выполнены с возможностью изменения амплитуд импульсных ампер-витков.

В цикле работы устройства нарастающий ток в обмотках возбуждения 3 создает нарастающий магнитный поток в магнитопроводе 1, центральных вкладышах 4, полюсах 2, межполюсном пространстве и, при наличии, в магнитном материале 12 в зазорах Н между обмотками смещения 8 и 10, 9 и 11. В момент оптимального соответствия между напряжением инжекции инжектора 7 и индукцией магнитного поля в пространстве между полюсами 2 часть электронов из инжектора 7 в ускорительной камере 5 захватывается в ускорение на равновесной орбите, радиус которой задается параметрами центральных вкладышей 4 и распределением магнитной индукции в пространстве между полюсами 2, задаваемым профилем полюсов 2 и, при наличии, магнитным материалом 12 в зазорах Н между обмотками смещения 8 и 10, 9 и 11.

Под действием электрического поля, индуцированного нарастающим магнитным потоком, электроны ускоряются на равновесной орбите, совершая относительно нее бетатронные колебания, амплитуда которых в радиальном и аксиальном направлениях определяется степенью спадания магнитной индукции в пространстве между полюсами.

В конце цикла ускорения перед началом процесса смещения магнитное поле, созданное током обмоток возбуждения 3 в пространстве между полюсами 2, достигает величины индукции на равновесной орбите В0, с радиальным распределением индукции В (фиг.2, зависимость 1) в области между равновесной орбитой с радиусом, например, R0=50 мм, и мишенью на радиусе RM=70 мм в плоскости ускорения при потоке в пределах равновесной орбиты, равном Fo (фиг.3, зависимость 1, R=50 мм).

Действием импульсных магнитных полей первой и второй систем обмоток смещения запускается процесс смещения ускоренных электронов на мишень.

При этом превышением импульсного магнитного потока, создаваемого первой системой обмоток смещения, над импульсным магнитным потоком, создаваемым второй системой обмоток смещения, импульсно увеличивается магнитный поток в пределах пространства, охватываемого равновесной орбитой, до порогового значения смещения, например, на 20%, при котором электроны за счет резкого нарастания магнитного потока доускоряются до энергии, при которой магнитное поле, несмотря на некоторое одновременное увеличение магнитной индукции на равновесной орбите, не может удерживать электроны на равновесной орбите.

Достижение порогового значения потока одновременно сопровождается увеличением спада магнитной индукции В в пространстве между равновесной орбитой и радиальным положением мишени 6.

Пороговому значению смещения соответствует распределение магнитной индукции В в пространстве между равновесной орбитой и радиальным положением мишени 6 (фиг.2, зависимости 3, 4) с большим спадом, чем до запуска процесса смещения (фиг.2, зависимость 1) и при реализации смещения в устройстве-прототипе (фиг.2, зависимость 5) и в устройстве-аналоге (фиг.2, зависимость 2), реализующем смещение электронов с равновесной орбиты на мишень за счет их доускорения при таком же пороговом импульсном возрастании потока в пределах равновесной орбиты.

При изменении величины ампер-витков первой системы обмоток смещения 8, 9 и второй системы обмоток смещения 10, 11 с поддержанием порогового превышения величины ампер-витков первой системы над величиной ампер-витков второй системы происходит смещение при одном и том же доускорении электронов, но при различном радиальном спаде индукции В. Зависимостям 4 на фиг. 2, 3 соответствуют ампер-витки первой системы, в 3,8 раз большие ампер-витков первой системы, соответствующих зависимостям 3. Изменением величин ампер-витков первой и второй систем обмоток смещения обеспечивается, например, множество радиальных распределений индукции В между зависимостями 3 и 4 с соответствующими спадами.

Увеличенным спадам соответствуют увеличенные аксиальные градиенты (фиг.4, 5) радиальной составляющей индукции.

Возрастающие от положения равновесной орбиты (фиг.4) к радиальному положению мишени (фиг.5) и регулируемые изменением ампер-витков систем обмоток смещения аксиальные градиенты (зависимости 3, 4) предлагаемого устройства превышают аксиальные градиенты известных устройств (зависимости 2, 5).

Увеличенным и регулируемым аксиальным градиентам соответствуют увеличенные и регулируемые аксиальные силы, действующие на электроны при их отклонении от плоскости смещения (ускорения), что приводит к регулируемому уменьшению амплитуды аксиальных колебаний электронов в процессе смещения и, значит, к регулируемому уменьшению аксиального размера облучаемой области поверхности мишени и, соответственно, к регулируемому уменьшению аксиального размера фокусного пятна тормозного излучения.

В то же время регулируемому увеличенному спаду соответствует регулируемый увеличенный шаг спиральных траекторий смещения электронов с равновесной орбиты на мишень, что приводит к одновременному регулируемому возрастанию радиального размера облучаемой области поверхности мишени и, соответственно, к регулируемому увеличению размера фокусного пятна тормозного излучения в радиальном направлении.

Тормозное излучение из мишени 6 с уменьшенным аксиальным размером фокусного пятна и возможностью регулирования его соотношения с радиальным размером выходит через стенку ускорительной камеры и зазор между обмотками 10, 11 второй системы на облучаемый объект.

Коммутацией импульсных ампер-витков систем обмоток смещения от цикла ускорения к циклу устройство обеспечивает коммутацию соотношения размеров фокусного пятна от цикла ускорения к циклу в заданном диапазоне, от минимального размера в радиальном направлении при большом размере в аксиальном направлении до минимального размера в аксиальном направлении при большом размере в радиальном направлении.

Источник тормозного излучения, содержащий магнитопровод, полюсы, обмотки возбуждения на полюсах, центральные вкладыши, ускорительную камеру между полюсами, мишень, расположенную в ускорительной камере на радиусе, большем радиуса равновесной орбиты, две системы обмоток смещения с противоположно направленными импульсными ампер-витками в конце цикла ускорения, отличающийся тем, что обмотки смещения расположены между ускорительной камерой и магнитопроводом, в обмотках смещения первой системы, образуемой ближними к полюсам обмотками смещения, направление импульсных ампер-витков совпадает с направлением токов в обмотках возбуждения на полюсах, а обмотки смещения второй системы расположены между обмотками смещения первой системы с зазорами относительно обмоток смещения первой системы и между собой, причем первая система обмоток выполнена с импульсными ампер-витками в конце цикла ускорения, большими импульсных ампер-витков второй системы обмоток.



 

Похожие патенты:

Изобретение относится к области ускорительной техники и предназначено для генерации позитронных пучков с большой энергией для последующего использования высокоэнергетичных позитронов для целей дефектоскопии, томографии, радиационных испытаний стойкости материалов, лучевой терапии и др.

Изобретение относится к рентгеновской досмотровой технике. .

Изобретение относится к ускорительной технике и может быть использовано в области физики частиц высоких энергий, промышленности, медицины и научных исследований. .

Изобретение относится к области ускорительной техники и может использоваться для ускорения плазмы до гиперскоростей. .

Изобретение относится к ускорительной технике. .

Изобретение относится к проблеме управляемого термоядерного синтеза и может найти применение в качестве сильноточного индукционного ускорителя предпочтительно положительно заряженных частиц и ионов, а также для создания пучка нейтронов.

Изобретение относится к ускорительной технике и может быть использовано в средствах неразрушающего контроля материалов и изделий

Изобретение относится к ускорительной технике и может быть использовано при создании индукционных циклических ускорителей промышленного назначения, например, для модификации и производства новых материалов, стерилизации медицинских инструментов и пищевых продуктов, дезинфекции медицинских и других отходов, очистки дымовых газов промышленных предприятий от вредных SOx и NOx окислов. Предложенный способ заключается в том, что для получения заданной конечной энергии (≤10 МэВ) используется прямоугольная волна ускоряющего индукционного напряжения и треугольная волна ведущего магнитного поля, для сохранения радиуса равновесной орбиты постоянным в процессе ускорения выполняют специальные соотношения между амплитудно-временными характеристиками магнитной индукции на орбите и индуцированным ускоряющим напряжением. Для реализации жесткой фокусировки формируют магнитное поле на орбите с большим знакопеременным градиентом. Техническим результатом является увеличение средней мощности пучка ускоренных заряженных частиц, а также уменьшение габаритов и веса ускорителя циклического индукционного ускорителя электронов, упрощение системы питания индукционной ускоряющей системы, снижение стоимости ускорителя. 5 ил.

Бетатрон (1), прежде всего, в рентгеновской досмотровой установке, с вращательно-симметричным внутренним ярмом из двух расположенных на расстоянии друг от друга частей (2a, 2b), внешним ярмом (4), соединяющим обе части (2a, 2b) внутреннего ярма, по меньшей мере одной катушкой (6a, 6b) основного поля, тороидальной камерой (5) бетатрона, расположенной между частями (2a, 2b) внутреннего ярма, по меньшей мере одной катушкой сжатия и расширения (СР-катушкой) 7a, 7b, при этом соответственно ровно одна СР-катушка (7a, 7b) расположена между торцевой стороной части (2a, 2b) внутреннего ярма и камерой (5) бетатрона, а радиус СР-катушки (7a, 7b) равен, по существу, заданному радиусу орбиты электронов в камере (5) бетатрона. Бетатрон содержит электронную схему (8) управления, выводы катушки (7a, 7b) сжатия и расширения соединены с источником (11) тока или напряжения, а, по меньшей мере, в одной линии между катушкой (7a, 7b) сжатия и расширения и источником (11) тока или напряжения расположен переключатель (9), управляемый электронной схемой (8) управления, причем электронная схема (8) управления выполнена таким образом, чтобы во время выброса электронов вызывать прохождение тока через катушку сжатия и расширения, так что материал ярма находится на нелинейном участке кривой гистерезиса. Технический результат - повышение кпд. 2 н. и 5 з.п. ф-лы, 4 ил.

Изобретение относится к ускорительной технике и может быть использовано для генерации электронных и ионных пучков наносекундной длительности с высокой частотой следования импульсов. Линейный индукционный ускоритель содержит индукционную систему (1) в виде набора ферромагнитных сердечников, охваченных витками намагничивания с объединенными выводами (2) с каждой стороны сердечников, магнитный коммутатор, магнитный импульсный генератор (3), состоящий из последовательных контуров сжатия, каждый из которых образован конденсатором и дросселем насыщения, и имеющий заземленный и потенциальный выводы, к которым подсоединен дроссель насыщения (8), а к потенциальному выводу подключен один из трех электродов двойной формирующей линии (4). Второй электрод двойной формирующей линии (4) одним концом подключен к заземленному выводу магнитного импульсного генератора, а между другим концом этого электрода и одним из выводов витков намагничивания индукционной системы включен магнитный коммутатор (9). Между третьим электродом (7) двойной формирующей линии (4) и вторым выводом витков намагничивания (2) индукционной системы (1) включена одинарная формирующая линия (10). Между точкой соединения двойной (4) и одинарной (10) формирующих линий и точкой соединения магнитного коммутатора (9) и индукционной системы (1) включен дополнительный дроссель насыщения (11). Технический результат - снижение потерь энергии и повышение надежности за счет уменьшения числа элементов в схеме. 2 ил.

Изобретение относится к ускорительной технике и может быть использовано в области физики частиц высоких энергий, промышленности, медицины и научных исследований. Заявленный циклический ускоритель электронов включает в себя отклоняющие дипольные магниты, индукционную ускоряющую систему, системы ввода и вывода пучка, расположенные на прямолинейных участках. Для ускорения электронов в диапазоне энергий ~0,3-10 МэВ ускоритель включает в себя генератор возбуждения витков индукторов ускоряющей системы прямоугольной волной напряжения. Длительность ускоряющих импульсов волны равна не ½ длительности периода обращения электронов на орбите, которая составляет несколько наносекунд, а длительности полного цикла ускорения от энергии инжекции до заданной конечной энергии ~10-4-10-6 с. Для сохранения равновесного радиуса орбиты при ускорении и медленном выводе электронов ускоритель содержит генератор питания отклоняющих дипольных магнитов, обладающий свойством возбуждения трапецеидальной волны магнитной индукции. Ускоритель также содержит жесткофокусирующую систему в отклоняющих дипольных магнитах и прямолинейных участках. Техническим результатом является увеличение средней мощности ускоренного пучка электронов, уменьшение габаритов и веса ускорителя, упрощение ускоряющей системы и увеличение диапазона регулировки энергии ускоренных электронов. 4 ил.

Изобретение относится к области ускорительной техники и предназначено для генерации позитронов с большой энергией для последующего использования в дефектоскопии, томографии, радиационных испытаниях стойкости материалов, лучевой терапии и др. Способ генерации ускоренных позитронов включает инжекцию позитронов в ускорительную камеру бетатрона от радиоактивного изотопа, накопление в управляющем магнитном поле, в котором показатель спада поля по радиусу лежит в пределах 0<n<1, а величина индукции магнитного поля соответствует энергии инжектируемых позитронов, так что позитроны движутся по круговой орбите, радиус которой равен среднему радиусу ускорительной камеры, ускорение заряженных частиц вихревым электрическим полем циклического индукционного ускорителя со скоростью роста магнитного поля, синхронизованной с индуцированным электрическим полем таким образом, что орбита, по которой движутся позитроны, остается постоянной. Накопление позитронов выполняют в нарастающем магнитном поле с напряженностью в пределах, соответствующих диапазону в энергетическом распределении позитронов радиоактивного изотопа, причем накопление завершают до момента равенства между мощностью магнитно-тормозного излучения позитрона и мощностью, передаваемой позитрону вихревым электрическим полем бетатрона, индуцированным нарастающим магнитным полем. Технический результат - увеличение количества ускоренных позитронов в импульсе излучения бетатрона и его соотношения с фоновым излучением. 13 ил.

Изобретение относится к ускорительной технике и предназначено для генерации электронов с большой энергией для последующего использования в дефектоскопии, томографии, радиационных испытаниях стойкости материалов, лучевой терапии и других областях техники. Способ ускорения электронов включает формирование возрастающего во времени магнитного поля, коррекцию магнитного поля дополнительным импульсным магнитным полем, импульсную инжекцию электронов в скорректированное магнитное поле, ускорение пучка частиц на равновесной орбите. Корректирующее дополнительное импульсное магнитное поле включают после начала импульсной инжекции электронов в магнитное поле. Техническим результатом является увеличение количества ускоренных электронов в импульсе излучения бетатрона. 5 ил.

Изобретение относится к ускорительной технике и может быть использовано в области физики частиц высоких энергий, промышленности, медицины и научных исследований. Технический результат - ускорение в постоянном магнитном поле с почти постоянным радиусом орбит во всем диапазоне ускорения, существенное снижение нижнего порога энергии инжекции, увеличение диапазона ускоряемых энергий и отношения Z/A частиц (где Ζ - зарядность, А - атомный номер), отсутствие пред-ускорителей, уменьшение стоимости создания и эксплуатации ускорителя. Ускоритель включает в себя: импульсную индукционную систему с датчиками времени пролета пучка для синхронизации ускоряющих импульсов с импульсами тока пучка; систему формирования замкнутых орбит ускоряемых частиц, которая состоит из отражающих пучок магнитных диполей и корректирующих устройств для компенсации дефокусируещего действия диполей в вертикальной плоскости; системы жесткой фокусировки на прямолинейных участках; системы ввода и вывода пучка; вакуумную систему. Корректирующие устройства расположены на входе и выходе каждой отклоняющей пучок секции и представляют собой короткую линзу. Магнитные диполи системы формирования орбит, отражая частицы пучка, создают замкнутые орбиты. При этом угол падения пучка на диполь равен углу отражения. Поскольку это равенство не зависит от характера распределения поля поперек продольной оси диполя, равенство углов падения и отражения сохраняется и в краевых полях диполей. Это обстоятельство снимает ограничения на нижний порог энергии инжекции. 1 з.п. ф-лы, 4 ил.

Изобретение относится к cпособу ускорения заряженных частиц. В заявленном способе инжектированные в ускоритель частицы ускоряются импульсами индукционного электрического поля, которые синхронизированы с импульсами тока ускоряемого пучка. Синхронизация импульсов осуществляется с помощью датчиков времени пролета пучка. Азимутальная устойчивость ускоряемых частиц обеспечивается формой вершины индукционных импульсов. Замкнутые орбиты частиц при их ускорении формируются посредством многократного отражения частиц от диполей. В результате многократного отражения инжектированные частицы, с предельно низкой энергией, движутся по хордам кольцевой орбиты ускоренных частиц. Величина отклонения траекторий инжектированных и ускоренных частиц зависит от числа отражающих диполей. Вертикальную дефокусировку частиц полями отклоняющих диполей компенсируют на входе и выходе отклоняющих пучок секций. На прямолинейных участках частицы фокусируют квадрупольными линзами и после ускорения выводят их. Техническим результатом является расширение диапазона энергий ускоряемых частиц путем существенного уменьшения нижнего порога энергий, связанного с потерей частиц с малой энергией, а также возможность отказаться от применения пред-ускорителей частиц и упрощение эксплуатации ускорителя. 3 ил.

Изобретение относится к области ядерной физики, а именно к приборам с магнитными управляющими элементами для ускорения и фокусировки заряженных частиц, и предназначено для получения потока электронов больших энергий. Технический результат - увеличение энергии ускорения заряженных частиц с одновременным повышением технологичности конструкции устройства путем оптимизации системы, создающей переменное магнитное поле. Индукционный ускоритель содержит вакуумную камеру, выполненную в виде участка кольцевой трубы, с размещенными в ней источником заряженных частиц и мишенью, а также систему, создающую переменное магнитное поле и обеспечивающую выполнение бетатронного условия. Упомянутая система выполнена в виде токопроводящих цилиндров параболической формы. Токопроводящие цилиндры могут быть многослойными - набранными из тонких токопроводящих лент, отделенных друг от друга слоями изолятора. 2 з.п. ф-лы, 2 ил.
Наверх