Азотный генератор искусственных ледяных кристаллов

Изобретение относится к области технических средств, предназначенных для генерации ледяных кристаллов, и может быть использовано для регулирования метеорологических процессов. Азотный генератор искусственных ледяных кристаллов содержит размещенный на борту самолета сосуд Дьюара с жидким азотом. Сосуд содержит крышку и зажимы для ее крепления, питающий трубопровод, дренажный патрубок и устройство для принудительной подачи жидкого азота через питающий трубопровод в распылитель. Один конец трубопровода снабжен распылителем и выставлен за борт самолета, а второй конец через крышку введен в сосуд Дьюара. Устройство для принудительной подачи жидкого азота в распылитель содержит также размещенный на крышке электрический привод с опущенным вниз вращающимся валом. Вращающийся вал заключен в стакан, который открытым концом прикреплен к электрическому приводу, а закрытым концом погружен в жидкий азот. У днища стакана предусмотрено по оси отверстие, через которое наружу пропущен конец вращающегося вала. У основания стакана размещен центробежный насос. Кожух насоса с нагнетающим и всасывающим патрубками прикреплен к концу стакана, а рабочее колесо с лопастями прикреплено к выступающему из стакана концу вращающегося вала. К открытому концу нагнетающего патрубка подключен питающий трубопровод с распылителем. Обеспечивается упрощение конструкции устройства, а также повышение надежности и безопасности его работы. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к области технических средств, предназначенных для генерации искусственных ледяных кристаллов путем распыления жидкого азота в переохлажденную облачную среду с использованием самолета.

Известны различные конструкции устройств для генерации ледяных кристаллов методом распыления жидкости под давлением в атмосферу, содержащие баллон с распыляемой жидкостью, снабженный запорным органом и распылителем (п. РФ №1797181, кл. A01G 15/00, 1995 г.; п. РФ №1797182, кл. A01G 15/00, 1995 г.; п. РФ №2112358, кл. A01G 15/00, 1998 г.).

Известные устройства предназначены для генерации ледяных кристаллов в атмосфере путем их сбрасывания в переохлажденную облачную среду с самолетов.

К недостаткам известных устройств можно отнести то, что они могут быть использованы только для распыления таких жидкостей, как пропан, фреон и т.д., которые имеют невысокий уровень давления насыщенных паров при положительных рабочих уровнях температуры. Для распыления же в атмосферу жидкого азота, с температурой -196°С и достаточно высоким давлением насыщенных паров, известные устройства не пригодны.

Наиболее близким по технической сущности к заявляемому объекту является автономный азотный генератор искусственных ледяных кристаллов, содержащий размещенный на борту самолета сосуд Дьюара с жидким азотом, крышку с манометром и зажимами для крепления к горловине сосуда Дьюара, питающий трубопровод, один конец которого снабжен распылителем и выставлен за борт самолета в набегающий воздушный поток, а второй конец через крышку введен в сосуд Дьюара и опущен в жидкий азот, устройство для принудительной подачи жидкого азота через питающий трубопровод в распылитель, а также трубку аварийного сброса давления с вентилем, связывающим полость сосуда Дьюара с внешней средой (Автономный азотный генератор искусственных ледяных кристаллов // М.Р.Ватиашвили, С.В.Китовский, И.М.Шипилов, А.А.Ларин, Г.З.Акопов. Межрегиональная научно-практическая конференция. Социально-экономические проблемы развития потребительской кооперации. Часть-III. - Ставрополь, 2001. С.211-213 Прототип).

Недостатком известного устройства является то, что для принудительной подачи жидкого азота в распылитель используется баллон с газообразным азотом, снабженный понижающими давление редукторами и манометрами, что значительно усложняет конструкцию устройства и снижает безопасность его применения.

Другой существенный недостаток устройства заключается в том, что трубка аварийного сброса давления и питающий трубопровод для подачи жидкого азота в распылитель снабжены вентилями, которые при охлаждении до низких температур покрываются слоем льда, что в ряде случаев блокирует выходные каналы. В результате, как показала практика, давление в сосуде Дьюара начинает резко расти и, при достижении критического уровня, жесткие металлические зажимы разрушаются, и крышка с оглушительным грохотом выбрасывается из горловины баллона наружу. В лучшем случае выброшенная с силой крышка может разрушить не только систему трубопроводов и измерительную аппаратуру, но и обшивку самолета изнутри. А в худшем случае, при попадании крышки в иллюминатор, либо в обслуживающий персонал, подобный инцидент может привести к более серьезным трагическим последствиям.

Техническим результатом от использования заявленного технического решения является упрощение конструкции устройства, а также повышение надежности и безопасности его работы.

Технический результат достигается тем, что в известном азотном генераторе искусственных ледяных кристаллов, содержащем размещенный на борту самолета сосуд Дьюара с жидким азотом, крышкой и зажимами для крепления крышки к горловине сосуда Дьюара, питающий трубопровод, один конец которого снабжен распылителем и выставлен за борт самолета в набегающий воздушный поток, а второй конец через крышку введен в сосуд Дьюара, устройство для принудительной подачи жидкого азота через питающий трубопровод в распылитель, а также размещенную в крышке трубку аварийного сброса давления, трубка аварийного сброса давления согласно изобретению выполнена в виде дренажного патрубка, свободно связывающего газовую полость сосуда Дьюара с внешней средой, а устройство для принудительной подачи жидкого азота в распылитель содержит размещенный на крышке электрический привод с опущенным вниз вращающимся валом, при этом вращающийся вал заключен в стакан, который открытым концом прикреплен к электрическому приводу, а закрытым концом погружен в жидкий азот, при этом у основания стакана предусмотрено отверстие по оси, через которое наружу пропущен конец вращающегося вала, при этом к основанию стакана прикреплено устройство для подачи жидкого азота в питающий трубопровод, всасывающая часть которого выполнена сообщающейся с полостью сосуда Дьюара, а нагнетающая часть через выпускной патрубок подключена к питающему трубопроводу, при этом нагнетающий элемент данного устройства прикреплен к выступающему из стакана концу вращающего вала.

Технический результат достигается и тем, что нагнетающий элемент - устройство для подачи жидкого азота в питающий трубопровод выполнен в виде винта Архимеда, либо в виде рабочего колеса с лопастями.

Технический результат достигается также и тем, что электрический привод содержит регулятор числа оборотов вращающегося вала.

Сущность изобретения поясняется чертежами, где на фиг.1 представлен общий вид азотного генератора искусственных ледяных кристаллов, а на фиг.2 представлено устройство для подачи жидкого азота в питающий трубопровод, выполненное в виде винта Архимеда.

Азотный генератор искусственных ледяных кристаллов (фиг.1) содержит сосуд Дьюара 1 с жидким азотом 2, к горловине 3 которого с помощью зажимов 4 прикреплена крышка 5. Для обеспечения герметичности между крышкой 5 и корпусом горловины 3 размещено уплотнительное кольцо 6. Азотный генератор ледяных кристаллов содержит питающий трубопровод 7, один конец которого через иллюминатор 8 выведен наружу и содержит на конце распылитель 9, а второй конец через крышку 5 введен в сосуд Дьюара 1 и подключен к устройству для принудительной подачи жидкого азота 2 в распылитель 9. Питающий трубопровод 7 на выходе из крышки 5 содержит кран 10 и теплоизоляцию по всей длине, начиная от крышки и до иллюминатора 8 (теплоизоляция не показана). Согласно изобретению устройство для принудительной подачи жидкого азота в распылитель содержит размещенный на крышке 5 электрический привод 11 с опущенным вниз вращающимся валом 12. Вращающийся вал 12 заключен в стакан 13, который открытым концом прикреплен к электрическому приводу 11, а закрытым концом погружен в жидкий азот 2. У днища стакана 13 по оси предусмотрено отверстие 14, через которое наружу пропущен конец вращающегося вала 12, при этом у основания стакана 13 размещено устройство для подачи жидкого азота в питающий трубопровод 7. Данное устройство может быть выполнено в виде центробежного насоса 15, как показано на фиг.1, либо в виде насоса с нагнетающим элементом, выполненным в виде винта Архимеда (см. фиг.2).

Центробежный насос 15 содержит кожух 16 с всасывающим 17 и нагнетающим 18 патрубками. С помощью кожуха 16 центробежный насос 15 прикреплен к концу стакана 13, при этом рабочее колесо 19 с лопастями 20 прикреплено к выступающему из стакана концу вращающегося вала 12. К открытому концу нагнетающего патрубка 18 подключен питающий трубопровод 7 с распылителем 9 на конце. Электрический привод 11 содержит регулятор числа оборотов вращающегося вала 12 (регулятор показан), позволяющий регулировать расход жидкого азота. Для обеспечения безопасности на крышке 5 сосуда Дьюара 1 размещен дренажный патрубок 21, свободно связывающий газовую полость сосуда Дьюара 1 с внешней средой.

При использовании центробежного насоса 15, всасывающая ее часть связана с полостью сосуда Дьюара 1, а нагнетающая ее часть подключена к питающему трубопроводу 7, при этом нагнетающий элемент данного устройства (колесо с лопастями) прикреплен к концу вала 12, выступающему из стакана 13.

Во втором варианте (см. фиг.2) нагнетающий элемент в устройстве для подачи жидкого азота в питающий трубопровод 7 выполнен в виде винта Архимеда 22, который размещен на конце вращающегося вала 12. Кожух устройства 15 прикреплен снизу к стакану 13, при этом всасывающая часть устройства 23 через патрубок 17 свободно сообщается с полостью сосуда Дьюара 2, где находится жидкий азот 2, а нагнетающая ее часть 24 через патрубок 18 подключена к нагнетающему трубопроводу 7. Трубопровод 7 показан на фиг.1.

Азотный генератор искусственных ледяных кристаллов, оснащенный центробежным насосом, работает следующим образом.

При вхождении самолета в переохлажденное облако открывается кран 10 и включается электропривод 11. При этом начинает работать центробежный насос 15, производительность которого, в зависимости от необходимости, регулируется с помощью регулятора числа оборотов вращающегося вала 11. Под действием центробежной силы, развиваемой лопастями 20, жидкий азот 2 через всасывающий патрубок 17 поступает в полость кожуха 16, а затем под давлением через нагнетающий патрубок 18 поступает в питающий трубопровод 7 и через распылитель 9 выбрасывается в атмосферу. При выбросе в атмосферу жидкий азот 2 диспергируется на мелкие частички, которые при интенсивном испарении охлаждают до низких температур набегающий воздушный поток с облачными водяными каплями. В результате под действием низких температур облачные водяные капли, находящиеся в воздушном потоке, замерзают и за самолетом образуется шлейф мелких до долей микрона ледяных кристаллов, при взаимодействии которых с облачной средой формируется необходимый эффект осадкообразования. В процессе работы генератора пары жидкого азота, образующиеся в сосуде Дьюара 1 за счет притоков тепла через ее стенки, свободно выходят через дренажный патрубок 20 наружу, что повышает безопасность работы всей системы.

Во втором случае жидкий азот 2 нагнетается в трубопровод 7 за счет давления, образующегося при вращении винта Архимеда 22.

Предлагаемый азотный генератор искусственных ледяных кристаллов отличается от известных своей высокой надежностью и простотой конструкции, что в результате обеспечивает практически полную ее безопасность при эксплуатации.

Преимущественная область применения устройства - активные воздействия на переохлажденные облака с использованием самолетов.

1. Азотный генератор искусственных ледяных кристаллов, содержащий размещенный на борту самолета сосуд Дьюара с жидким азотом, крышкой и зажимами для крепления крышки к горловине сосуда Дьюара, питающий трубопровод, один конец которого снабжен распылителем и выставлен за борт самолета в набегающий воздушный поток, а второй конец через крышку введен в сосуд Дьюара, устройство для принудительной подачи жидкого азота через питающий трубопровод в распылитель, а также размещенную в крышке трубку аварийного сброса давления, отличающийся тем, что согласно изобретению трубка аварийного сброса давления выполнена в виде дренажного патрубка, свободно связывающего газовую полость сосуда Дьюара с внешней средой, а устройство для принудительной подачи жидкого азота в распылитель содержит размещенный на крышке электрический привод с опущенным вниз вращающимся валом, при этом вращающийся вал заключен в стакан, который открытым концом прикреплен к электрическому приводу, а закрытым концом погружен в жидкий азот, при этом у основания стакана предусмотрено отверстие по оси, через которое наружу пропущен конец вращающегося вала, при этом к основанию стакана прикреплено устройство для подачи жидкого азота в питающий трубопровод, всасывающая часть которого выполнена сообщающейся с полостью сосуда Дьюара, а нагнетающая часть через выпускной патрубок подключена к питающему трубопроводу, при этом нагнетающий элемент данного устройства прикреплен к выступающему из стакана концу вращающегося вала.

2. Азотный генератор по п.1, отличающийся тем, что нагнетающий элемент устройства для подачи жидкого азота в питающий трубопровод выполнен в виде винта Архимеда, либо в виде рабочего колеса с лопастями.

3. Азотный генератор по п.1, отличающийся тем, что электрический привод содержит регулятор числа оборотов вращающегося вала.



 

Похожие патенты:

Изобретение относится к метеорологии и может быть использовано для активного воздействия на приземный слой атмосферы с целью ослабления туманов и улучшения видимости.

Изобретение относится к области метеорологии и может быть использовано для борьбы с аномальными атмосферными явлениями. .
Изобретение относится к пиротехническим составам для метеорологических ракет и пиропатронов, в частности аэрозолеобразующим составам для рассеяния облаков и туманов, предотвращения градобитий и вызывания осадков из переохлажденных облаков.
Изобретение относится к области активного воздействия на гидрометеорологические процессы, в частности для рассеивания тумана и облаков посредством генерирования адсорбирующего аэрозоля при горении пиротехнического заряда, включающего соли галогенов кислородсодержащих кислот.
Изобретение относится к пиротехническим составам, содержащим перхлорат и органический компонент, не являющийся взрывчатым, которые при горении образуют аэрозоль, воздействующий на состояние погоды, для рассеивания облаков и тумана из переохлажденных облаков с помощью льдообразующих ядер, получаемых при сгорании снаряжения реактивного наполнения средств доставки пиротехнических зарядов в обрабатываемый объем.

Изобретение относится к способу формирования представительных проб целевого аэрозоля, использующегося для изменения атмосферных условий. .

Изобретение относится к области сельского хозяйства и может быть использовано для изменения климатических условий. .
Изобретение относится к метеорологии и может быть использовано для создания облаков и стимулирования осадков. .

Изобретение относится к энергетическим устройствам и устройствам, определяющим климатические явления. .

Изобретение относится к области технических средств, предназначенных для воздействия на переохлажденные облака с целью предотвращения градобитий и искусственного увеличения осадков с использованием самолета.

Изобретение относится к устройствам для изменения атмосферных условий, а более конкретно к метеорологическим ракетам для рассеивания в облаках аэрозоля

Изобретение относится к области сельского хозяйства и метеорологии и может быть использовано для регулирования климатических условий местности

Изобретение относится к исследованиям верхней атмосферы Земли и околоземного космического пространства методом искусственных светящихся облаков и может быть использовано, например, при активных воздействиях на атмосферные процессы

Изобретение относится к области воздействия на погодные условия и может быть использовано для рассеивания тумана на контролируемой территории

Изобретение относится к прикладной метеорологии и может быть использовано для коррекции погодных условий и изменения климата в отдельных регионах в интересах сельского хозяйства и экологии

Генератор ледяных кристаллов содержит, размещенный на борту самолета сосуд Дьюара с жидким азотом, крышку с манометром и зажимами для крепления к горловине сосуда Дьюара. По оси крышки размещен питающий трубопровод, один конец которого снабжен распылителем и выставлен за борт самолета в набегающий воздушный поток, а второй конец через крышку введен в сосуд Дьюара и опущен в жидкий азот. Генератор содержит устройство для подачи жидкого азота через питающий трубопровод в распылитель, а также трубку аварийного сброса давления. В целях упрощения конструкции устройства и повышения надежности и безопасности ее эксплуатации крышка выполнена в виде обратного клапана и подпружинена к горловине сосуда Дьюара с помощью упругих зажимов. При этом боковая поверхность крышки, контактирующая с внутренней боковой поверхностью горловины, содержит дренажный паз, соединяющий газовую полость сосуда Дьюара с внешней средой при достижении давления в ней критического порогового уровня. Устройство для принудительной подачи жидкого азота в распылитель выполнен в виде конического обтекателя, выставленного за борт самолета, а распылитель размещен по оси конического обтекателя и направлен в сторону, противоположную направлению движения самолета. Использование данного изобретения позволяет повысить надежность работы устройства. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области метеорологии и может быть использовано для предотвращения торнадо. Способ предотвращения торнадо состоит в определении координат завихрения образующегося торнадо спутником с прибором визуального обзора и передающей антенной. Координаты передают на приемную антенну, а оттуда в расчетное устройство. Результаты расчета поступают на блок наведения полноповоротной передающей антенны. Антенна направляет луч сверхвысокочастотной энергии к ионосфере под таким углом, который обеспечивает попадание отраженного луча СВЧ энергии в центр завихрения образующегося торнадо. Устройство для предотвращения торнадо содержит приемную антенну, взаимодействующую с расчетным устройством, взаимодействующим с блоком наведения. Приемная антенна установлена на мачте и заземлена в грунт. Дополнительно введена передающая полноповоротная антенна с блоком наведения, спутниковое устройство с визуальным обзором и передающей антенной. Спутниковое устройство прибором визуального обзора и передающей антенной взаимодействует с приемной антенной. Приемная антенна взаимодействует с расчетным устройством. Расчетное устройство взаимодействует с блоком наведения передающей полноповоротной антенны. Луч СВЧ энергии взаимодействует с ионосферой земли, а отраженный от ионосферы земли луч СВЧ энергии взаимодействует с центром завихрения образующегося торнадо. Обеспечивается расширение функциональных возможностей устройства и повышение эффективности борьбы с торнадо. 2 н.п. ф-лы, 2 ил.

Изобретение предназначено для сдвига и разрушения антициклонов в тропосфере. Способ включает длительное воздействие на атмосферу вертикальным восходящим конвективным потоком от системы излучателей, поднятых над Землей и разнесенных по площади, образуемым завихрением магнитным полем генерируемых коронирующими электродами ионов и их канализацией посредством соленоидов в каждом излучателе при пропускании через них тока коронирования и разогрева потока ионов электромагнитным полем на длине волны больше критической, для создаваемой плотности концентрации в объеме соленоидов за счет соосного их охвата элементами спиральной антенны с осевой результирующей диаграммой направленности. Технический результат - образование струйных течений от восходящего потока ионов, изменяющих динамику атмосферных процессов. 5 ил.

Изобретение касается метеорологии и может быть использовано для сдвига и разрушения антициклонов в тропосфере. Устройство содержит генератор высокочастотного напряжения и присоединенную к нему систему коронирующих электродов, каждый из которых выполнен в виде соленоида с венчиком игл на концах, помещенных во внутренний нижний торец соленоидов. Каждый из соленоидов соосно охвачен витками элементов спиральной антенны, размещенных в двух взаимно ортогональных плоскостях, с общим рефлектором, создающих осевую результирующую диаграмму направленности. Антенна подключена к высокочастотному передатчику электромагнитных волн. Технический результат - образование в тропосфере струйных течений восходящего потока ионов, изменяющих динамику атмосферных процессов. 6 ил.
Наверх