Способ восстановления изношенных деталей из алюминиевых сплавов

Изобретение относится к области восстановления изношенных деталей, например, может быть использовано для восстановления с упрочнением наружных и внутренних цилиндрических, плоских и сложнопрофильных поверхностей деталей из алюминиевых сплавов. Способ включает приращение восстанавливаемой поверхности, механическую обработку и упрочнение этой поверхности микродуговым оксидированием в щелочном электролите, при этом приращение восстанавливаемой поверхности осуществляют электроискровой наплавкой электродом из деформируемого алюминиевого сплава АМг2 диаметром 5-6 мм при частоте вибрации электрода 275 Гц, длительности импульса 2,5 мс, рабочем токе 3,6 А и напряжении 96 В, а микродуговое оксидирование ведут в электролите, содержащем 2,2-2,5 г/л едкого калия и 9 г/л жидкого стекла при плотности тока 16-17 А/дм2 в течение 110 мин. Использование предлагаемого способа позволяет в среднем на 40…55% увеличить толщину упрочненного слоя покрытия, сформированного МДО, а также на 15% увеличить его микротвердость и на 30% - износостойкость. В результате долговечность восстановленных и упрочненных деталей увеличивается не менее чем на 20%. 1 табл.

 

Изобретение относится к области восстановления изношенных деталей, например, может быть использовано для восстановления с упрочнением наружных и внутренних цилиндрических, плоских и сложнопрофильных поверхностей деталей из алюминиевых сплавов.

В ремонтном производстве известен способ восстановления деталей с использованием наплавки намораживанием. Он включает в себя предварительную подготовку восстанавливаемой поверхности детали, нанесение на нее слоя флюса, наплавку намораживанием в кокиле с расплавом литейного алюминиевого сплава температурой 685±10°С и механическую обработку до номинального размера [Авторское свидетельство СССР 1294470, B22D 19/10, 27/08, опубл. в Б.И. №9, 1987].

Однако данным способом наиболее целесообразно восстанавливать плоские поверхности деталей. Кроме этого детали, восстановленные данным способом, обладают низкой износостойкостью.

Известен способ восстановления изношенных цилиндрических деталей наплавкой под слоем флюса с одновременной обработкой наплавляемой поверхности и удалением шлаковой корки двумя накатными роликами, расположенными с диаметрально противоположных сторон обрабатываемой детали, при этом накатные ролики смещают относительно друг друга на шаг наплавки и принудительно вращают с частотой 120…2400 мин-1 [Патент РФ 2186668, В23Р 6/00, B22D 19/10, В23К 9/04, опубл. в Б.И. №22, 2002].

Однако данный способ не позволяет восстанавливать цилиндрические поверхности деталей небольшого диаметра из-за их значительного нагрева, а также приводит к снижению усталостной прочности деталей.

Наиболее близким к предлагаемому способу по технической сущности и достигаемому результату является способ восстановления изношенных деталей из алюминия и его сплавов, включающий приращение (наплавку в среде защитных газов) восстанавливаемой поверхности, механическую обработку и упрочнение этой поверхности микродуговым оксидированием (МДО) в щелочном электролите с содержанием 1 г/л едкого калия и 6 г/л жидкого стекла при плотности тока 15 А/дм2 и продолжительности оксидирования 120 мин [Патент РФ 2119420, В23Р 6/00, опубл. в Б.И. №27, 1998 - прототип].

Однако при восстановлении деталей данным способом имеет место перегрев восстанавливаемой поверхности при ее приращении, который приводит к изменению структуры и свойств материала детали и, как следствие, снижению толщины и физико-механических свойств покрытия, сформированного МДО.

Задачей изобретения является повышение долговечности восстановленных и упрочненных деталей.

Техническим результатом изобретения является повышение толщины упрочненного слоя покрытия, сформированного МДО, а также его микротвердости и износостойкости.

Поставленная задача и указанный технический результат достигаются за счет того, что в известном способе восстановления изношенных деталей из алюминия и его сплавов, включающем приращение восстанавливаемой поверхности, механическую обработку и упрочнение этой поверхности микродуговым оксидированием в щелочном электролите, СОГЛАСНО ИЗОБРЕТЕНИЮ приращение восстанавливаемой поверхности осуществляют электроискровой наплавкой электродом из деформируемого алюминиевого сплава АМг2 диаметром 5…6 мм при частоте вибрации электрода 275 Гц, длительности импульса 2,5 мс, рабочем токе 3,6 А и напряжении 96 В, а микродуговое оксидирование ведут в электролите, содержащем 2,2…2,5 г/л едкого калия и 9 г/л жидкого стекла при плотности тока 16…17 А/дм2 в течение 110 мин.

Способ осуществляют следующим образом.

При восстановлении изношенных поверхностей деталей из алюминиевых сплавов вначале производят их механическую обработку до выведения следов изнашивания. Электроискровую наплавку осуществляют на установке для электроискровой обработки БИГ-2, разработанной и производимой ГНУ «ГОСНИТИ» Россельхозакадемии. Инструмент-электрод из деформируемого алюминиевого сплава АМг2, являющийся анодом, вводят в соприкосновение с восстанавливаемой поверхностью детали, являющейся катодом. При этом возникает электрический разряд и происходит перенос металла инструмента на восстанавливаемую поверхность. Периодическое перемещение инструмента позволяет наплавить всю изношенную поверхность. Режимы электроискровой наплавки: диаметр электрода - 5…6 мм; энергетический режим работы установки - 5; частота вибрации электрода - 275 Гц; длительность импульса - 2,5 мс; энергия импульса - 1,66 Дж; рабочий ток - 3,6 А; напряжение - 96 В; время обработки 1 см2 восстанавливаемой поверхности - 4…5 мин.

Затем поверхности, восстановленные с помощью электроискровой наплавки, подвергают механической обработке с припуском под покрытие, формируемое МДО. После этого осуществляют их упрочнение МДО в щелочном электролите следующего состава: едкий калий - 2,2…2,5 г/л, жидкое стекло - 9 г/л, остальное - дистиллированная вода. Режимы обработки: плотность тока - 16…17 А/дм2, продолжительность оксидирования - 110 мин, температура электролита - 18…20°С. Толщина упрочненного слоя покрытия, сформированного МДО, составляет 105…110 мкм.

Микротвердость упрочненного слоя покрытия, сформированного МДО, определяли с помощью микротвердомера модели ПМТ-3М. Износостойкость оценивали по результатам сравнительных ускоренных испытаний на изнашивание. Испытания проводили в соответствии с ГОСТ 23.224 «Обеспечение износостойкости изделий. Методы оценки износостойкости восстановленных деталей». Долговечность восстановленных деталей оценивали по результатам сравнительных ускоренных испытаний, проводимых в соответствии с рекомендациями руководящего документа РД 70.0009.006 «Указания по методам ускоренных испытаний восстановленных деталей для основных марок тракторов, комбайнов и других машин».

Благодаря тому что приращение восстанавливаемой поверхности осуществляют электроискровой наплавкой, температура нагрева детали при приращении снижается в среднем в 4…5 раз, тем самым исключается ее перегрев и не происходит изменения структуры и свойств материала детали. Все это приводит к тому, что толщина, микротвердость и износостойкость упрочненного слоя покрытия, сформированного МДО, существенно увеличиваются (таблица).

Таблица
Показатели Прототип Предлагаемый способ
1. Толщина упрочненного слоя, сформированного МДО, мкм 70…75 105…110
2. Микротвердость упрочненного слоя покрытия, сформированного МДО, МПа 8000 9200
3. Износостойкость, % 100 130
4. Долговечность восстановленной и упрочненной детали, % 100 120

Как видно из таблицы, предлагаемый способ восстановления изношенных деталей из алюминиевых сплавов позволяет в среднем на 40…55% увеличить толщину упрочненного слоя покрытия, сформированного МДО, а также на 15% увеличить его микротвердость и на 30% - износостойкость. В результате долговечность восстановленных и упрочненных деталей увеличивается не менее чем на 20%.

Способ восстановления изношенных деталей из алюминиевых сплавов, включающий приращение восстанавливаемой поверхности, механическую обработку и упрочнение этой поверхности микродуговым оксидированием в щелочном электролите, отличающийся тем, что приращение восстанавливаемой поверхности осуществляют электроискровой наплавкой электродом из деформируемого алюминиевого сплава АМг2 диаметром 5-6 мм при частоте вибрации электрода 275 Гц, длительности импульса 2,5 мс, рабочем токе 3,6 А и напряжении 96 В, а микродуговое оксидирование ведут в электролите, содержащем 2,2-2,5 г/л едкого кали и 9 г/л жидкого стекла при плотности тока 16-17 А/дм2 в течение 110 мин.



 

Похожие патенты:

Изобретение относится к способу восстановления элементов турбомашины. .
Изобретение относится к машиностроительному, металлургическому, транспортному и другим видам производств, где используются зубчатые передачи с чугунными зубчатыми колесами, и предназначено для восстановления изношенных слоев на рабочих поверхностях зубьев зубчатых колес.

Изобретение относится к области машиностроения и может быть использовано в турбомашиностроении при восстановительном ремонте наплавкой или сваркой и модернизации рабочих и направляющих лопаток паровых турбин, газоперекачивающих установок и компрессоров газотурбинных двигателей.

Изобретение относится к способу ремонта изношенной торцевой части металлической пластины ремонтируемой детали. .

Изобретение относится к машиностроению и может быть применено для ремонта литых деталей из черных и цветных металлов, имеющих поверхностные дефекты типа открытых раковин, а также деталей, изношенных при эксплуатации и имеющих открытые дефекты типа выбоин, трещин, прогаров.

Изобретение относится к области ремонта механически обрабатываемых деталей, таких как лопатки турбомашины или лопатки моноблочного лопаточного диска. .

Изобретение относится к области восстановления деталей и ремонта агрегатов машин и может быть использовано на ремонтно-технических предприятиях при восстановлении интегральных рулевых механизмов с гидроусилителем руля.
Изобретение относится к области восстановления деталей и ремонта агрегатов машин. .

Изобретение относится к области сельскохозяйственного, дорожного, строительного машиностроения, в частности к изготовлению деталей повышенной износостойкости, работающих в условиях абразивного изнашивания, с повышением их износостойкости.

Изобретение относится к области восстановления и ремонта металлических изделий и может быть использовано в машиностроении, приборостроении и других отраслях промышленности.
Изобретение относится к области металлургии, а именно к восстановлению резьбы на валах без изменения первоначального размера, и может быть использовано при сорванной, изношенной резьбе или при наличии забоин на ней

Изобретение относится к способу механической обработки компонентов двигателя внутреннего сгорания посредством изменяющего качество поверхности обрабатывающего инструмента

Изобретение относится к области ремонта почвообрабатывающих, землеройных и погрузочных машин, в частности к восстановлению и упрочнению изношенных деталей, работающих в почвенной среде, и может быть использовано для возобновления ресурса конструктивных элементов строительной, сельскохозяйственной и дорожной техники
Изобретение относится к области восстановления изношенных деталей и может быть использовано для восстановления с упрочнением наружных и внутренних цилиндрических, плоских и сложнопрофильных поверхностей деталей из черных и цветных металлов и сплавов

Изобретение относится к рельсовому транспорту, в частности к железнодорожному транспорту, и может быть использовано для восстановления изношенных поверхностей обода вагонных колес методом наплавки

Изобретение относится к технологии ремонта деталей, в частности коленчатых валов двигателей внутреннего сгорания

Изобретение относится к упрочнению с помощью износостойких элементов поверхностей изделий, работающих в условиях интенсивного износа
Изобретение относится к области ремонта изношенных шеек вала при их консольном расположении без изменения первоначального размера вала

Изобретение относится к способу исправления металлических деталей, соединенных между собой при помощи высокотемпературной пайки. Исправляют паяные зоны при помощи лазера. Пиковая мощность лазера составляет (1500-3000) Вт. Лазер используют в импульсном режиме с частотой импульсов (4-8) Гц. В результате устраняются дефекты пайки и пустоты при более низком расходе лазерной энергии. 9 з.п. ф-лы, 3 ил.

Изобретение относится к автоматизированному ремонту детали машин, в частности турбинные лопатка или лопасти. Способ включает оцифровку первой геометрии детали машин, включая поврежденную часть детали машин, механическую обработку впадины над поврежденной частью детали машин, при этом обработку выполняют с числовым управлением с использованием оцифрованных геометрических данных первой геометрии детали машин, оцифровку второй геометрии детали машин после указанной обработки, при этом вторая геометрия включает впадину, и нанесение материала для заполнения впадины, при этом нанесение материала выполняют с числовым управлением с использованием оцифрованных геометрических данных второй геометрии детали машин, при этом числовое управление нанесением включает определение пути нанесения материала в ответ на идентификацию положения впадины на детали машин на основе сравнения оцифрованных геометрических данных второй геометрии с находящимися в памяти эталонными геометрическими данными детали машин, и дополнительно включает этапы сохранения оцифрованных геометрических данных детали машин после завершения текущего ремонта детали машин и использования сохраненных оцифрованных геометрических данных детали машин в качестве эталонной геометрии детали машин для следующего ремонта. 8 з.п. ф-лы, 4 ил.
Наверх