Способ лазерно-искрового эмиссионного определения токсичных элементов в пищевом сырье и продуктах


 


Владельцы патента RU 2483294:

Хатюшин Петр Андреевич (RU)
Григорьев Владимир Владимирович (RU)
Скрипкин Арнольд Митрофанович (RU)

Изобретение относится к области аналитической химии элементного анализа и может быть использовано для лазерно-искрового эмиссионного определения свинца, кадмия, меди, цинка в пищевом сырье и продуктах. Способ основан на воздействии на поверхность исследуемого образца сфокусированного лазерного излучения с энергией импульса 0,3-1,2 Дж и длительностью 120 мкс. Проводят анализ свечения лазерной искры, что позволяет выделить спектральные линии паров определяемых элементов и идентифицировать спектральные линии. Для определения каждого из элементов используются экспериментально установленные наиболее чувствительные линии эмиссии волн в следующих диапазонах: для свинца 400-410 нм, кадмия 210-220 нм, меди 220-230 нм, цинка 200-210 нм. 1 з.п. ф-лы.

 

Изобретение относится к области аналитической химии элементного анализа и может быть использовано в целях решения задач качественного и количественного определения свинца, кадмия, меди, цинка в пищевом сырье и продуктах питания [1].

Актуальность предлагаемого изобретения обусловлена необходимостью разработки современных способов определения свинца, кадмия, меди, цинка в пищевом сырье и продуктах питания, в значительной степени лишенных недостатков, присущих применяемым способам определения данных элементов [2].

Изобретение представляет интерес для лабораторий химического и экологического контроля, предприятий АПК, Государственного таможенного комитета РФ, Министерства по чрезвычайным ситуациям как способ определения свинца, кадмия, меди, цинка в пищевом сырье и продуктах питания.

Известны способы определения свинца, кадмия, меди, цинка в пищевом сырье и продуктах питания, это колориметрический и атомно-эмиссионный. Недостатком данных способов является длительная и сложная подготовка исследуемых проб, использование спектрально чистых газов и реагентов на этапе проведения анализов, длительность проведения анализов [3].

Известен ближайший аналог (прототип) предлагаемого изобретения - это стандартизированный атомно-абсорбционный способ определения свинца, кадмия, меди, цинка в пищевом сырье и продуктах питания. Недостатком прототипа является длительная и сложная подготовка исследуемых проб, использование спектрально чистого ацетилена, химически чистых реагентов, большого количества лабораторной посуды, длительность проведения анализов [4].

Цель изобретения - разработка способа, позволяющего в автоматизированном режиме качественно и количественно определять свинец, кадмий, медь, цинк в пищевом сырье и продуктах питания, при котором отсутствует длительная и сложная подготовка исследуемых проб, не используются спектрально чистые горючие газы и химически чистые реагенты, а также лабораторная посуда.

Поставленная цель достигается тем, что исследуемый образец подвергается воздействию сфокусированного лазерного излучения, при этом на его поверхности возникает лазерная искра оптического пробоя [5]. Образующаяся плазма содержит пары вещества. Анализ свечения лазерной искры с помощью полихроматора, многоэлементного фотодетектора и блока сопряжения с ПК позволяют выделить спектральные линии паров определяемых элементов. Идентификация спектральных линий осуществляется в автоматическом режиме с помощью специально разработанного программного обеспечения, содержащего библиотеку эмиссионных спектров.

Методика определения свинца, кадмия, меди, цинка в пищевом сырье и продуктах питания

1. Аппаратура и материалы

Лазерно-искровой эмиссионный спектроанализатор со специально разработанным программным обеспечением, сертификат Госстандарта РФ №7450, номер в Госреестре 19155-00.

Весы аналитические АВ 60-01 ГОСТ 24104-2001.

Ступка и пестик фарфоровые ГОСТ 9147-80.

Пресс гидравлический настольный ручной ПГПР-4 ГОСТ 22690-88.

Пресс-форма для формирования таблеток.

Графит порошковый особой чистоты ГОСТ 23463-79.

2. Отбор проб

2.1. Отбор и подготовку лабораторной пробы к испытанию проводят в соответствии с нормативной документацией на данный вид продукции.

2.2. Минерализацию проб проводят по ГОСТ 26929-94.

3. Подготовка к испытанию

3.1. Подготовка лазерно-искрового эмиссионного спектроанализатора к работе и выбор условий измерения

Подготовка прибора к работе, его включение и выведение на рабочий режим осуществляется в соответствии с руководством по эксплуатации, прилагаемым к спектроанализатору.

3.2. Подготовка образцов для исследований

Из продуктов минерализованных в соответствии с п.2.2, отбирается навеска массой 30-200 мг, помещается в фарфоровую ступку, где растирается до состояния пыли, перемешивается. Далее проба помещается в специальную пресс-форму под настольный лабораторный гидравлический пресс, где под давлением 5-20 МПа прессуется таблетка в форме диска диаметром 5-12 мм.

4. Проведение измерений

4.1. В меню специально разработанного программного обеспечения лазерно-искрового эмиссионного спектроанализатора задаются экспериментально установленные параметры лазерного воздействия, а именно: длительность импульса лазера 120 мкс, энергия излучения лазера 0,3-1,2 Дж. Для увеличения яркости возникшей плазмы с помощью специальных электродов подается высокое напряжение в районе 2000-10000 В. Также для определения каждого из элементов используются экспериментально установленные наиболее чувствительные линии эмиссии в следующих спектральных диапазонах: для свинца 400-410 нм, кадмия 210-220 нм, меди 220-230 нм, цинка 200-210 нм.

4.2. Проба подготовленная по п.3.2 размещается на подложке программно-управляемого столика лазерно-искрового эмиссионного спектроанализатора, позволяющего исследовать всю поверхность пробы. Производятся импульсы сфокусированного лазерного излучения на исследуемую поверхность. Образующаяся плазма содержит пары вещества данного образца. Анализ свечения лазерной искры с помощью полихроматора, многоэлементного фотодетектора и блока согласования с ПК позволяет выделить спектральные линии паров, элементов содержащихся в образце. Идентификация спектральных линий и анализ осуществляется в автоматическом режиме. Измерение эмиссии каждого образца проводится не менее 2 раз.

5. Обработка результатов

5.1. Специальное программное обеспечение лазерно-искрового эмиссионного спектроанализатора позволяет в автоматическом режиме рассчитывать концентрации элементов по значению лазерной эмиссии.

5.2. Результаты качественного и количественного анализа пробы выдаются на экране монитора ПК.

Список использованных источников

1. ГОСТ 30178-96 Сырье и продукты пищевые. Атомно-абсорбционный метод определения токсичных элементов.

2. Методы анализа пищевых продуктов. В кн.: Сб. трудов РАН. Т.8. М.: Наука, 1998. - 342 с.

3. Современные методы анализа и оборудование в санитарно-гигиенических исследованиях. М.: Интерсэн, 1999. - 496 с.

4. Руководство по методам анализа качества и безопасности пищевых продуктов. М.: Медицина, 1998. - 341 с.

5. Менке Г., Менке Л. Введение в лазерный эмиссионный микроспектральный анализ. Пер. с нем. М.: Мир, 1968. - 250 с.

1. Способ лазерно-искрового эмиссионного определения свинца, кадмия, меди, цинка в пищевом сырье и продуктах основан на воздействии сфокусированного лазерного излучения на поверхность исследуемого образца, при этом возникает лазерная искра оптического пробоя, образующаяся плазма содержит пары исследуемого вещества, анализ свечения лазерной искры с помощью полихроматора, многоэлементного фотодетектора и блока сопряжения с ПК, позволяет выделить спектральные линии паров определяемых элементов, идентификация спектральных линий и анализ осуществляется в автоматическом режиме с помощью программного обеспечения, содержащего библиотеку эмиссионных спектров, отличающийся тем, что при данном способе определения токсичных элементов для возбуждения спектров элементов применяются специальные режимы лазерно-искрового воздействия на пробу, а именно длительность импульса лазера 120 мкс, энергия излучения лазера 0,3-1,2 Дж.

2. Способ по п.1, отличающийся тем, что специально подготовленная проба исследуемого пищевого продукта в форме диска диаметром 5-12 мм помещается на подложку программно-управляемого столика лазерно-искрового эмиссионного спектроанализатора, производятся импульсы лазера энергией 0,3-1,2 Дж и длительностью 120 мкс, на поверхность исследуемого образца с возбуждением лазерной плазмы и последующим определением токсичных элементов в автоматизированном режиме, для определения каждого из элементов используются экспериментально установленные наиболее чувствительные линии эмиссии волн в следующих диапазонах: для свинца 400-410 нм, кадмия 210-220 нм, меди 220-230 нм, цинка 200-210 нм.



 

Похожие патенты:

Изобретение относится к системам сигнализации и основано на использовании четырехкомпонентного настраиваемого лазера, работающего в средней части инфракрасного (ИК) диапазона для одновременного измерения и частиц, и газа.

Изобретение относится к области сельского хозяйства. .

Изобретение относится к способам определения кристаллизации и образования льда тяжелых изотопных видов воды в природной, при ее равномерном охлаждении, и применяется в датчиках кристаллизации установок разделения легкой и тяжелых вод.

Изобретение относится к обнаружению дефектов газо- и нефтепроводов на основании многомерных спектральных характеристик каждой мишени. .

Изобретение относится к области техники спектроскопического измерения концентрации веществ (в том числе экологически вредных) в различных агрегатных состояниях автоматическими аналитическими методами, особенно применительно к природным условиям.

Изобретение относится к области лазерной спектроскопии и спектрального анализа, а именно к области применения перестраиваемых полупроводниковых лазеров, и может быть использовано для одновременной диагностики абсолютного и относительного содержания окислов углерода CO и CO2 в газообразной среде, для мониторинга содержания окислов углерода CO и CO2, например, в выдыхаемом воздухе, в атмосфере, в частности для биомедицинской диагностики.

Изобретение относится к области лазерной спектроскопии и спектрального анализа и может быть использовано для одновременной диагностики абсолютного и относительного содержания окислов углерода CO и CO2 в газообразной среде, для мониторинга содержания окислов углерода СО и CO2 например, в выдыхаемом воздухе, в атмосфере, в частности для биомедицинской диагностики.

Изобретение относится к бесконтактным исследованиям поверхности металлов и полупроводников оптическими методами. .

Изобретение относится к области химического анализа веществ, более конкретно - к устройствам для измерения количества химических веществ, содержащихся в атмосфере и других газовых средах.

Изобретение относится к спектральному анализу вещества. .

Изобретение относится к области приборостроения и может быть использовано для создания распределительных систем измерения температуры и деформации. Бриллюэновская система для отслеживания температуры и деформации содержит одно- или двухстороннее волокно с множеством волоконных брэгговских решеток (ВБР) на разных длинах волн и лазерную систему с задающей накачкой, настраиваемую в диапазоне существенно большем, чем бриллюэновский сдвиг. ВБР распределены по длине размещенного волокна и служат как выбираемые отражатели длины волны, позволяющие поддерживать работу устройства даже в случае разрыва волокна. Технический результат: повышение точности и достоверности данных измерений. 2 н. и 5 з.п. ф-лы, 4 ил.
Изобретение относится к области аналитической химии элементного анализа и может быть использовано для лазерно-искрового эмиссионного определения мышьяка в пищевом сырье и продуктах питания. Способ основан на воздействии на поверхность исследуемого образца сфокусированного лазерного излучения с энергией импульса 0,1-1,3 Дж и длительностью импульса 100-130 мкс. Проводят анализ свечения лазерной искры, что позволяет выделить спектральные линии паров определяемых элементов и идентифицировать спектральные линии. Для определения каждого из элементов используются экспериментально установленные наиболее чувствительные линии эмиссии мышьяка в диапазоне 203-223 нм. Технический результат - определение оптимальных параметров лазерно-искрового воздействия на образцы исследуемых пищевых продуктов для выявления мышьяка в пищевом сырье и продуктах питания. 1 з.п. ф-лы.

Использование: для исследования нелинейного спинового резонанса в объемных, тонкопленочных и двумерных полупроводниковых наноструктурах. Сущность изобретения заключается в том, что для исследования нелинейного спинового резонанса образец охлаждают, воздействуют на него изменяющимся постоянным и слабым переменным магнитным полем, изменяющимся со звуковой частотой Ω, воздействуют на образец двумя когерентными излучениями: мощным излучением накачки и слабым тестовым излучением, имеющими правую круговую поляризацию, регистрируют сигнал, пропорциональный второй производной мощности тестового излучения на частоте 2Ω, определяют резонансное магнитное поле, исследуют форму кривой нелинейного спинового резонанса, совмещенные когерентные излучения направляют параллельно постоянному магнитному полю, определяют g-фактор исследуемого полупроводника. Технический результат: обеспечение возможности определения параметров энергетических зон в тонкопленочных и двумерных полупроводниковых наноструктурах. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области аналитической химии и касается способа определения амина в образце. Сущность способа заключается в контактировании образца, содержащего амин, с раствором соли, содержащей 2,2',2”,6,6',6”-гексаметокситритильный карбокатион, и последующем определении конъюгатов методами высокоэффективной жидкостной хроматографии и масс-спектрометрии. Способ пригоден как для летучих аминов малой массы, так и для полярных аминогликозидных соединений. Образующиеся производные аминов обладают поглощением в УФ-области и повышенной склонностью к ионизации, что облегчает их детекцию указанными выше методами. Использование способа позволяет с высокой точностью определить амины в образце. 2 з.п. ф-лы, 1 табл., 33 пр., 33 ил.
Наверх