Электростартер

Электростартер предназначен для запуска ГТД наземного применения и оборудован системой охлаждения статора маслом от маслосистемы ГТД, в виде стакана, внутри которого расположена статорная обмотка, а на внешней стороне стакана выполнен в виде винтовой спирали канал А для прокачки масла в процессе запуска, соединенный с нагнетающей частью системы подачи масла на смазку и охлаждение опор ГТД, посредством входного штуцера и трубопровода, а последний относительно входа масла виток спирального канала А соединен, посредством выходного штуцера и трубопровода с магистралью слива масла в маслосистему ГТД, герметичность спирального канала А обеспечена за счет уплотнительных колец, расположенных на внешней стороне стакана на свободных от спирального канала поверхностях по два с каждой стороны. Технический результат - упрощение конструкции электростартера. 1 ил.

 

Изобретение относится к области электротехники и машиностроения, в частности к электростартерам для запуска газотурбинных двигателей наземного применения.

Известна синхронная электрическая машина, используемая как электростартер в составе системы электрозапуска газотурбинных установок [см. Левин А.В., Лаптев Н.Н. Система электрозапуска ГТУ в эксплуатации, Газотурбинные технологии, апрель 2009 г.]. С целью охлаждения тепловыделяющих элементов электростартера в процессе его работы на валу установлены две крыльчатки, обеспечивающие воздушное охлаждение электростартера.

Недостатком конструкции является применение охлаждающей среды - воздуха с низкими теплоотводящими свойствами, малая площадь соприкосновения охлаждающей среды и неравномерное распределение температуры, сложность конструкции, увеличенные габариты и масса, характерные для электрических машин постоянного тока, при малых мощностных характеристиках.

Известен частотно-управляемый электростартер для электрической системы запуска ГПА [см. Комогаров, Егорова. Электрозапуск газоперекачивающих агрегатов, Нефтегазовый комплекс №2, 2008 г.].

Недостатком конструкции является отсутствие отвода тепла от статора электростартера, что может способствовать чрезмерному нагреву обмотки статора электростартера и снижению эксплуатационной надежности электростартера.

Наиболее близким к заявляемой конструкции техническим решением - прототипом, является конструкция электростартера для запуска газотурбинных установок, используемых в газоперекачивающих агрегатах, который содержит редуктор, асинхронный электродвигатель, выполненный в виде коаксиально смонтированных ротора и статора, соединенный с сетью питания посредством преобразователя частоты с возможностью обеспечения получения плавно изменяющегося момента вращения электростартера в соответствии с потребным режимом раскрутки ротора газотурбинной установки [см. Патент RU 2362031, МПК F02C 7/26].

Недостатком конструкции высокооборотного электростартера на базе частотно управляемого асинхронного электродвигателя является возможность перегрева обмотки статора электростартера в процессе запуска при обеспечении электростартером моментно-мощностных характеристик и режимов работы газотурбинных установок. С ростом мощности процесс отвода тепла замедляется, что может приводить к снижению надежности электростартера, повреждению изоляции обмоточных проводов статора, сокращению количества запусков двигателя и введению технологических перерывов на охлаждение электростартера.

Технической задачей изобретения является увеличение количества запусков двигателя без технологических перерывов на охлаждение электростартера, повышение надежности работы электростартера, обеспечение эффективного и равномерного охлаждения статора электростартера при простоте конструкции, использование возможностей масляной системой ГТД.

Указанная задача в конструкции электростартера для запуска газотурбинных установок, содержащего редуктор, асинхронный электродвигатель, выполненный в виде коаксиально смонтированных ротора и статора, соединенный с сетью питания посредством преобразователя частоты с возможностью обеспечения получения плавно изменяющегося момента вращения электростартера в соответствии с потребным режимом раскрутки ротора газотурбинной установки, достигается тем, что электростартер оборудован системой охлаждения статора маслом, выполненной в виде стакана, внутри которого расположена статорная обмотка, а на внешней относительно оси устройства стороне стакана выполнен в виде винтовой спирали канал, соединенный с нагнетающей частью системы подачи масла на смазку и охлаждение опор газотурбинного двигателя (ГТД) посредством входного штуцера и трубопровода, а последний относительно входа масла виток спирального канала соединен посредством выходного штуцера и трубопровода с магистралью слива масла в маслосистему ГТД, причем на внешней стороне стакана на свободных от спирального канала поверхностях выполнены канавки под уплотнительные кольца, по две с каждой стороны.

Технический эффект в части оборудования электростартера системой охлаждения статора заключается в использовании возможностей масляной системы двигателя; в конструктивной простоте, прежде всего, за счет предлагаемой конструкции ее главного элемента - стакана, выполненного в виде одной детали предельно простой формы - цилиндрической оболочки постоянной толщины, и за счет минимального количества комплектующих системы охлаждения, в том числе изготовление деталей и узлов предлагаемой конструкции системы охлаждения и их монтаж, не требуют применения сложной технологической оснастки и специального инструмента; в незначительном изменении весогабаритных характеристик электростартера; в уменьшении затрат на ее изготовление и техническое обслуживание за счет конструктивной простоты.

Предлагаемое изобретение поясняется чертежом, на котором дан продольный разрез электростартера со схемой системы охлаждения статора.

Электростартер 1 оборудован системой охлаждения статора маслом, выполненной в виде стакана 2, внутри которого расположена статорная обмотка 3, и ротором 4 а на внешней стороне стакана выполнен канал А в виде винтовой спирали, соединенный с нагнетающей частью системы 9 подачи масла на смазку и охлаждение опор газотурбинного двигателя посредством входного штуцера 6 и трубопровода 7, а последний относительно входа масла виток спирального канала А соединен посредством выходного штуцера 5 и трубопровода 8 с магистралью слива масла 10 в масло систему газотурбинного двигателя 11, уплотнительные кольца 12, расположенные на внешней стороне стакана на свободных от спирального канала поверхностях, по два с каждой стороны, обеспечивают герметичность спирального канала А.

Устройство работает следующим образом.

В процессе запуска газотурбинного двигателя 11 масло циркулирует по винтовой спирали канала А стакана 2 за счет частичного отбора (не более 2%) от нагнетающей части системы 9 подачи масла на смазку и охлаждение опор газотурбинного двигателя 11, посредством входного штуцера 6 и трубопровода 7 и обеспечивает эффективный съем тепла со статорной обмотки 3 электростартера за счет увеличения площади прикосновения охлаждающей жидкости - масла - к статору посредством канала А, выполненного в виде винтовой спирали, повторяющего геометрию статора и использования для изготовления стакана низкоуглеродистой стали с повышенной теплопроводностью и отвод масла в маслосистему 10 газотурбинного двигателя 11 за счет соединения последнего витка спирального канала А посредством выходного штуцера 5 и трубопровода 8 с магистралью слива масла 10 в маслосистему газотурбинного двигателя 11, уплотнительные кольца 12, расположенные на внешней стороне стакана, обеспечивают герметичность спирального канала А.

Электростартер для запуска газотурбинных установок, содержащий редуктор, асинхронный электродвигатель, выполненный в виде коаксиально смонтированных ротора и статора, соединенный с сетью питания посредством преобразователя частоты с возможностью обеспечения получения плавно изменяющегося момента вращения электростартера в соответствии с потребным режимом раскрутки ротора газотурбинной установки, отличающийся тем, что электростартер оборудован системой охлаждения статора маслом, выполненной в виде стакана, внутри которого расположена статорная обмотка, а на внешней относительно оси устройства стороне стакана выполнен в виде винтовой спирали канал, соединенный с нагнетающей частью системы подачи масла на смазку и охлаждение опор газотурбинного двигателя (ГТД) посредством входного штуцера и трубопровода, а последний относительно входа масла виток спирального канала соединен посредством выходного штуцера и трубопровода с магистралью слива масла в маслосистему ГТД, причем на внешней стороне стакана, на свободных от спирального канала поверхностях, выполнены канавки под уплотнительные кольца, по две с каждой стороны.



 

Похожие патенты:

Изобретение относится к авиационной технике и может быть использовано для запуска газотурбинных двигателей летательных аппаратов. .

Изобретение относится к способу запуска газотурбинного двигателя. .

Изобретение относится к технике розжига топливовоздушной смеси в камерах сгорания авиационных газотурбинных двигателей. .

Изобретение относится к технике розжига камер сгорания авиационных газотурбинных двигателей, а именно к запальным устройствам. .

Изобретение относится к технике запуска авиационных двигателей, в частности к системам запуска камер сгорания с электрическими системами зажигания. .

Изобретение относится к газотурбинным двигателям и направлено на усовершенствование конструкции стартер-генератора. .

Изобретение относится к проточным устройствам для импульсного зажигания высокоскоростных потоков гомогенных и гетерогенных горючих смесей в различных энергетических установках, прежде всего в импульсно-детонационных технологических устройствах и в импульсно-детонационных двигателях летательных аппаратов

Изобретение относится к способу запуска газовой турбины

Изобретение относится к технике розжига топливовоздушной смеси в камерах сгорания авиационных газотурбинных двигателей и может быть использовано для запуска авиационных газотурбинных двигателей. Способ управления выходными параметрами системы зажигания, заключающийся в том, что в системе зажигания обеспечивают непрерывные циклы заряда-разряда накопительного конденсатора с генерацией искровых разрядов в искровом промежутке свечи в первый интервал времени с повышенной частотой, а в последующий интервал времени, до прекращения подачи энергии в систему зажигания, с пониженной частотой по сравнению с первым интервалом времени, причем в первый интервал времени одновременно с началом подкачки энергии в накопительный конденсатор уменьшают установленное заданное для второго интервала времени напряжение, дополнительно вводят третий интервал времени, в течение которого уменьшают мощность накачки энергии в накопительный конденсатор по сравнению со вторым интервалом времени. Изобретение позволяет уменьшить время восстановления выхода двигателя на нормальный режим, а также повысить надежность поддержания горения топливовоздушной смеси в камере сгорания при работе двигателя в сложных метеоусловиях. 1 ил.

Изобретение относится к энергетике. Способ запуска водородной паротурбинной энергоустановки основан на продувке полостей и магистралей нейтральным газом, поэтапной подаче компонентов топлива и воды в энергоустановку, согласно первому варианту изобретения запуск осуществляют при сниженном расходе компонентов топлива, не более 80% от номинального, в процессе запуска регулируют расход пара через турбину, изменяя мощность на выходном валу, а при выходе на номинальный режим подают дополнительные компоненты топлива и воды. Кроме того, подача дополнительных компонентов топлива и воды, в отличие от первого варианта, может быть выполнена регулируемой. Также представлены устройства для реализации способов согласно первому и второму вариантам. Изобретение позволяет повысить долговечность за счет снижения термических напряжений в конструкции при запуске с малым временем выхода на режим. 4 н.п. ф-лы, 2 ил.

Система зажигания содержит свечу полупроводникового типа в оболочке, трубку, жестко соединенную с камерой сгорания газотурбинного двигателя, подвижную втулку и средства направления воздуха для охлаждения полупроводника свечи. Подвижная втулка обеспечивает установку свечи в трубку и воспринимает расширение свечи, перпендикулярное ее оси. Подвижная втулка содержит цилиндрическую часть, образующую со свечой кольцевую полость втулки для циркуляции охлаждающего воздуха. Оболочка и полупроводник на своих концах со стороны камеры сгорания образуют кольцевую полость свечи. Оболочка содержит отверстия в области указанной кольцевой полости свечи, сообщающиеся с кольцевой полостью втулки, и отверстия на ее поверхности, обращенной к камере сгорания. Другие изобретения группы относятся к камере сгорания, содержащей указанную выше систему зажигания, и газотурбинному двигателю, включающему такую камеру сгорания. Изобретения позволяют повысить срок службы полупроводниковой свечи зажигания. 3 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к авиационному двигателю, включающему в себя топливно-насосное устройство. Топливно-насосное устройство содержит топливный насос (26) высокого давления, имеющий вход, соединенный с топливной трубой (28) низкого давления, и выход, соединенный с основным контуром подачи топлива высокого давления. Двигатель включает электрическое устройство (40) для запуска двигателя и охлаждающее устройство для электрического пускового устройства, соединенное с насосным устройством для охлаждения топлива путем циркуляции. Охлаждающее устройство (54, 56, 58) снабжается топливом с помощью насоса (50), имеющего вход, соединенный с насосным устройством выше по потоку от насоса (26) высокого давления, и которое приводится в действие с помощью электрического мотора (52) независимо от насоса (26) высокого давления. Обеспечивается достаточная скорость потока охлаждающего топлива при низкой скорости без переразмеренности производительности насоса высокого давления, что выражается в меньшей громоздкости и меньшей сложности внедрения, чем добавление насоса, приводимого в действие механическим путем с помощью двигателя. 5 з.п. ф-лы, 2 ил.

Изобретение относится к энергетике. Автоматизированный способ запуска авиационных звездообразных поршневых двигателей, в котором в смесесборник топливо подают из дополнительного топливного резервуара, в процессе подачи топлива его переводят в туманообразное состояние, в сформированном туманообразном состоянии смешивают с воздухом, образованную топливовоздушную смесь в такте всасывания подают в цилиндры с одновременной прокруткой коленчатого вала двигателя сжатым до 45-50 атм воздухом, поданным в цилиндры камеры сгорания в такте расширения 2-3° после верхней мертвой точки. Также представлена система запуска для осуществления способа. Изобретение позволяет повысить надежность запуска авиационных двигателей в условиях различного диапазона температур окружающей среды. 2 н.п. ф-лы, 1 ил.

Способ запуска и охлаждения микрогазотурбинного двигателя пусковым компрессором с воздушным клапаном включает запуск газотурбинного двигателя путем подачи сжатого пускового воздуха со стороны двойного воздухозаборника в компрессор. Запуск производят воздухом от пускового компрессора. После прекращения работы микрогазотурбинного двигателя повторно включают пусковой компрессор без подачи топлива и охлаждают камеру сгорания, турбину и подшипники ротора. Микрогазотурбинный двигатель содержит камеру сгорания, компрессор, турбину, холодный воздуховод, горячий воздуховод, вал ротора. Устройство запуска и охлаждения микрогазотурбинного двигателя содержит пусковой компрессор с воздушным клапаном, соединенный с компрессором микрогазотурбинного двигателя переходной муфтой, при этом пусковой компрессор и воздушный клапан находятся в двойном воздухозаборнике. Изобретение обеспечивает мягкую передачу вращающего момента на ротор двигателя, принудительное охлаждение камеры сгорания, турбины и подшипников ротора, тем самым увеличивается общий ресурс установки. 2 н.п. ф-лы, 1 ил.
Наверх