Способ испытания боеприпасов на аэроудар и устройство для его осуществления



Способ испытания боеприпасов на аэроудар и устройство для его осуществления

 


Владельцы патента RU 2484421:

Мужичек Сергей Михайлович (RU)
Жорник Кирилл Андреевич (RU)
Скрынников Андрей Александрович (RU)
Ефанов Василий Васильевич (RU)
Новиков Игорь Алексеевич (RU)

Изобретения относятся к области испытаний боеприпасов. Способ заключается в том, что осуществляют подрыв боеприпаса во взрывной камере с щелью, ширина и длина которой позволяют выделять часть осколочного поля боеприпаса, летящую в направлении, определяемом двугранным углом Δθ, осуществляют последовательный подрыв набора опытных боеприпасов с полным накрытием их полем поражения входной стенки типового отсека, последовательно увеличивая плотность поля поражения опытных боеприпасов добиваются полного разрушения отсека за счет аэроудара, оснащают боковые стенки типового отсека n датчиками, связанными с n приборами измерения давления и импульса ударной волны, измеряют для случая полного разрушения типового отсека величину критического среднего максимального давления аэроудара, возникающего в отсеке после пробития поражающими элементами опытного боеприпаса входной стенки отсека, рассчитывают критическую энергию аэроудара в отсеке, рассчитывают удельную критическую энергию потока поражающих элементов для типового отсека и рассчитывают величину критического показателя аэроудара для типового отсека. Устройство представляет собой взрывную камеру, имеющую щель, типовой отсек со сменными стенками, n датчиков, установленных в боковых стенках отсека, и n измерителей давления и импульса ударной волны. Повышается достоверность испытаний. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к области испытаний боеприпасов и может быть использовано для определения характеристик явления аэроудара, возникающего в отсеках конструкции объектов техники в результате действия полей поражения боеприпасов.

Известен способ измерения скорости малоразмерного высокоскоростного объекта при пробитии разнесенных преград, заключающийся в излучении радиолокационным устройством непрерывного радиолокационного сигнала, приеме отраженного от объекта сигнала, выделении частоты Доплера, определении скорости исследуемого объекта из формулы V=Fд·λ(2-cosα), где Fд - частота Доплера, λ - длина волны, α - угол наблюдения цели, измерении скорости объекта за преградой, в том числе разнесенной, обеспечении постоянного нахождения объекта в диаграмме направленности за счет дополнительно установленного второго радиолокационного устройства, причем центры диаграмм направленностей радиолокационных устройств расположены под острыми углами к направлению полета объекта симметрично относительно преграды или центра преград [1].

Известно устройство для измерения скорости малоразмерного высокоскоростного объекта при пробитии разнесенных преград, которое содержит плату индикации и последовательно соединенные первый модуль СВЧ и первую плату АРУ, последовательно соединенные аналого-цифровой преобразователь, блок вычисления быстрого преобразования Фурье, блок нахождения номера фильтра, в котором обнаружен сигнал с максимальной амплитудой, блок вычисления значения скорости и блок построения скоростной траектории, выход которого соединен со входом платы индикации, последовательно соединенные второй модуль СВЧ, вторую плату АРУ и сумматор, причем выходы первой и второй плат АРУ соединены с соответствующими входами сумматора, выход которого соединен со входом аналого-цифрового преобразователя [1].

Недостатком известных способа и устройства, является недостаточная информативность, так как при их использовании не определяются результаты воздействия полей поражения боеприпасов на отсеки объектов техники, заполненные газом, а именно не оценивается явление аэроудара в отсеках объектов техники.

Наиболее близким к изобретению является способ определения характеристик осколочного поля поражения боеприпасов, заключающийся в подрыве боеприпаса, расположенного горизонтально в центре полуцилиндрической мишени, и последующих расчетах дифференциального закона распределения осколков по направлениям разлета и закона распределения осколков по их массам [2].

Наиболее близким к изобретению является устройство, состоящее из боеприпаса, полуцилиндрической мишени и устройства инициирования [2].

Недостатком известных способа и устройства является недостаточная информативность, так как при их использовании нельзя определить результаты воздействия осколочного поля поражения боеприпаса на отсеки объектов техники, заполненные газом, а именно оценить явление аэроудара, возникающее в отсеках объектов техники при воздействии поля поражения боеприпаса, и сравнить между собой различные боеприпасы по их способности вызывать аэроудар в отсеках объектов техники, заполненных газом.

Технической задачей изобретения является повышение информативности способа за счет определения результатов воздействия поля поражения боеприпаса на отсеки объекта техники, заполненные газом, а именно оценки явления аэроудара, возникающего в отсеках объектов техники при воздействии поля поражения боеприпаса.

Решение технической задачи или сущность изобретения заключается в том, что в способе определения характеристик поля поражения боеприпасов, заключающемся в подрыве боеприпаса, расположенном горизонтально с помощью устройства инициирования, дополнительно подрыв боеприпаса осуществляют во взрывной камере, имеющей щель, ширина и длина которой позволяют выделять часть поля поражения боеприпаса, летящую в направлении, определяемом двугранным углом Δθ, осуществляют последовательный подрыв набора опытных боеприпасов с полным накрытием их полем поражения входной стенки типового отсека, последовательно увеличивая плотность поля поражения опытных боеприпасов добиваются полного разрушения отсека за счет аэроудара, оснащают боковые стенки типового отсека n пьезоэлектрическими датчиками, связанными с n приборами измерения давления и импульса ударной (баллистической) волны, измеряют для случая полного разрушения типового отсека величину критического среднего максимального давления аэроудара P c p м , возникающего в отсеке после пробития поражающими элементами опытного боеприпаса входной стенки отсека, рассчитывают критическую энергию аэроудара в отсеке по формуле Э к р = Р с р м V , где V - объем типового отсека, рассчитывают удельную критическую энергию потока поражающих элементов Э к р у д для типового отсека по формуле Э к р у д = Э к р / S , где S - площадь входной стенки типового отсека, рассчитывают величину критического показателя аэроудара для типового отсека по формуле П а к р = Э к р у д / С 0 , где С0 - энергетический критерий разрушения [3], испытываемый боеприпас устанавливают на заданном расстоянии от типового отсека так, чтобы его продольная ось была параллельна продольной оси щели взрывной камеры, измеряют величину среднего максимального давления аэроудара Р с р м , возникающего в типовом отсеке после пробития поражающими элементами испытываемого боеприпаса входной стенки отсека, рассчитывают энергию аэроудара в отсеке по формуле Э у д = Р с р м V , рассчитывают по формуле Пауд0 величину показателя аэроудара поля поражения испытываемого боеприпаса, сравнивают величину показателя аэроудара поля поражения испытываемого боеприпаса с величиной критического показателя аэроудара, по результатам сравнения судят о способности поля поражения испытываемого боеприпаса создавать аэроудар в отсеках объектов техники.

Устройство, реализующее описанный способ, содержащее боеприпас, устройство инициирования, дополнительно содержит взрывную камеру, имеющую щель, ширина и длина которой позволяют выделять часть поля поражения боеприпаса, летящую в направлении, определяемом двугранным углом Δθ, набор опытных боеприпасов, типовой отсек со сменными передней и задней стенками, n пьезоэлектрических датчиков, установленных в боковых стенках отсека, n измерителей давления и импульса ударной (баллистической) волны, входы которых связаны с выходами n пьезоэлектрических датчиков.

На фиг.1,а приведена схема устройства испытания боеприпасов на аэроудар, где 1 - боеприпас; 2 - взрывная камера, 3 - устройство инициирования; 4 - набор опытных боеприпасов, 5 - типовой отсек, 6 - n пьезоэлектрических датчиков, 7 - n измерителей давления и импульса ударной (баллистической) волны. На фиг.1,б приведена схема размещения боеприпаса во взрывной камере.

Устройство испытания боеприпасов на аэроудар содержит боеприпас 1, взрывную камеру 2, устройство 3 инициирования, набор 4 опытных боеприпасов, типовой отсек 5, n пьезоэлектрических датчиков 6, установленных в боковых стенках типового отсека 5, выходы которых соединены с входами n измерителей 7 давления и импульса ударной (баллистической) волны.

Устройство функционирует следующим образом.

Вначале с помощью устройства 3 инициирования во взрывной камере 2 подрывают один из набора 4 опытных боеприпасов, продольную ось которого совмещают со щелью взрывной камеры 2 таким образом, чтобы в щель попала часть поля поражения боеприпаса 1, летящая в направлении, определяемом двугранным углом Δθ. Щель взрывной камеры 2 вырезает часть поля поражения опытного боеприпаса, летящую в направлении, определяемом двугранным углом Δθ, в направлении входной стенки типового отсека 5. После попадания поражающих элементов во входную стенку типового отсека 5 они вызывают в типовом отсеке 5 аэроудар. Последовательно увеличивая плотность поля поражения боеприпаса путем подрыва других боеприпасов из опытного набора 4, добиваются полного разрушения типового отсека 5 за счет явления аэроудара.

Затем оснащают типовой отсек 5 n пьезоэлектрическими датчиками 6, установленными в боковых стенках типового отсека 5, выходы которых соединены с входами n измерителей 7 давления и импульса ударной (баллистической) волны. После этого осуществляют повторный подрыв опытного боеприпаса из набора 4, попадание части поля поражения которого во входную стенку типового отсека 5 приводит к его полному разрушению. После попадания поражающих элементов этого боеприпаса во входную стенку типового отсека 5 и ее пробития ими в отсеке формируется баллистическая волна. Кроме того, часть вторичных осколков, выбитых из входной стенки типового отсека поражающими элементами опытного боеприпаса, сгорает, выделяя при этом в типовой отсек 5 дополнительную энергию. В результате в типовом отсеке 5 формируется давление аэроудара, приводящее к его разрушению. Максимальная величина этого давления измеряется пьезоэлектрическими датчиками давления 6, установленными в боковых стенках типового отсека 5. Информация о величине максимального давления аэроудара, поступающая с выходов пьезоэлектрических датчиков 6, записывается в блоки памяти измерителей 7 давления и импульса ударной (баллистической) волны. Затем эта информация передается по радиоканалу на командный пункт, где осредняется по показаниям n измерителей 7 по формуле

P c p м = i = 1 n p i м n

Так рассчитывается среднее максимальное критическое давление аэроудара для типового отсека, затем рассчитывается величина критической энергии аэроудара в отсеке по формуле Э к р = Р с р м V , где V - объем типового отсека. После этого рассчитывается удельная критическая энергия аэроудара Экр для типового отсека по формуле Э к р у д = Э к р / S , где S - площадь входной стенки типового отсека. Далее рассчитывается величина критического показателя аэроудара для типового отсека по формуле П а к р = Э к р у д / C 0 , где С0 - энергетический критерий разрушения. Критерий С0 определяется экспериментально и характеризует прочностные свойства отсека [3]. Для нашего случая критерий С0 является известной величиной.

Затем испытываемый боеприпас размещается во взрывной камере 2 на высоте h от пола так, чтобы продукты взрыва его заряда взрывчатого вещества не оказывали влияния на процесс разлета и скорость поражающих элементов, а продольная ось боеприпаса была совмещена со щелью взрывной камеры таким образом, чтобы в щель попала часть поля поражения боеприпаса, летящая в направлении, определяемом двугранным углом Δθ.

Испытываемый боеприпас 1, установленный на заданном расстоянии от типового отсека 5, подрывается с помощью устройства 3 инициирования. Щель взрывной камеры 2 вырезает часть поля поражения боеприпаса, летящую в направлении, определяемом двугранным углом Δθ, в направлении входной стенки типового отсека 5.

После попадания поражающих элементов испытываемого боеприпаса 1 во входную стенку типового отсека 5 и ее пробития ими в отсеке п пьезоэлектрическими датчиками 6 измеряется максимальное давление аэроудара, приводящее к его разрушению (повреждению). Величина этого давления, так же как и для опытного боеприпаса из набора 4, определяется путем осреднения измеренного n пьезоэлектрическими датчиками 6 максимального давления аэроудара в отсеке. Затем, так же как и для опытного боеприпаса из набора 4, информация о величине максимального давления аэроудара, поступающая с датчиков, записывается в блоки памяти измерителей 7 давления и импульса ударной (баллистической) волны, где обрабатывается и передается по радиоканалу на пункт управления, в котором осредняется по формуле

P c p м = i = 1 n p i м n

Так рассчитывается среднее максимальное давление аэроудара в типовом отсеке. Далее по формуле Э к р = Р с р м V , где V - объем типового отсека, рассчитывается удельная критическая энергия аэроудара Экр испытываемого боеприпаса для типового отсека и по формуле Пауд0 определяется величина показателя аэроудара поля поражения испытываемого боеприпаса. Путем сравнения величины полученного показателя аэроудара поля поражения испытываемого боеприпаса с величиной критического показателя аэроудара для типового отсека судят о способности поля поражения испытываемого боеприпаса создавать аэроудар в отсеках объектов техники.

Источники информации

1. Патент РФ на изобретение №2311661, 2007 г.

2. А.Н.Дорофеев, А.П.Морозов, Р.С.Саркисян. Авиационные боеприпасы. ВВИА им. проф. Н.Е.Жуковского, 1978, с.210-214, 218-219, 228.

3. Е.П.Желязков, Н.Ю.Комраков, А.В.Крысин. Методы разработки и обоснования характеристик уязвимости воздушных целей при действии по ним обычных боеприпасов. Тверь, 2 ЦНИИ МО РФ, 2006, с.48-61.

1. Способ испытания боеприпасов на аэроудар, заключающийся в подрыве боеприпаса, расположенного горизонтально, с помощью устройства инициирования, отличающийся тем, что подрыв боеприпаса осуществляют во взрывной камере, имеющей щель, ширина и длина которой позволяет выделять часть осколочного поля боеприпаса, летящую в направлении, определяемом двугранным углом Δθ, осуществляют последовательный подрыв набора опытных боеприпасов с полным накрытием их полем поражения входной стенки типового отсека, последовательно увеличивая плотность поля поражения опытных боеприпасов, добиваются полного разрушения отсека за счет аэроудара, оснащают боковые стенки типового отсека n пьезоэлектрическими датчиками, связанными с n приборами измерения давления и импульса ударной (баллистической) волны, измеряют для случая полного разрушения типового отсека величину критического среднего максимального давления аэроудара P c p м , возникающего в отсеке после пробития поражающими элементами опытного боеприпаса входной стенки отсека, рассчитывает критическую энергию аэроудара в отсеке по формуле Э к р = Р с р м V , где V - объем типового отсека, рассчитывают удельную критическую энергию потока поражающих элементов Э к р у д для типового отсека по формуле Э к р у д = Э к р / S , где S - площадь входной стенки типового отсека, рассчитывают величину критического показателя аэроудара для типового отсека по формуле П а к р = Э к р у д / С 0 , где С0 - энергетический критерий разрушения, испытываемый боеприпас устанавливают на заданном расстоянии от типового отсека так, чтобы его продольная ось была параллельна продольной оси щели взрывной камеры, измеряют величину среднего максимального давления аэроудара Р с р м , возникающего в типовом отсеке после пробития поражающими элементами испытываемого боеприпаса входной стенки отсека, рассчитывают энергию аэроудара в отсеке по формуле Э уд . = Р ср м V , рассчитывают по формуле Пауд0 величину показателя аэроудара поля поражения испытываемого боеприпаса, сравнивают величину показателя аэроудара поля поражения испытываемого боеприпаса с величиной критического показателя аэроудара, по результатам сравнения судят о способности поля поражения испытываемого боеприпаса создавать аэроудар в отсеках объектов техники.

2. Устройство испытания боеприпасов на аэроудар, содержащее боеприпас, устройство инициирования, отличающееся тем, что дополнительно содержит взрывную камеру, имеющую щель, ширина и длина которой позволяет выделять часть поля поражения боеприпаса, летящую в направлении, определяемом двугранным углом Δθ, набор опытных боеприпасов, типовой отсек со сменными передней и задней стенками, n пьезоэлектрических датчиков, установленных в боковых стенках отсека, n измерителей давления и импульса ударной (баллистической) волны, причем выходы n пьезоэлектрических датчиков связаны с входами n измерителей давления и импульса ударной (баллистической) волны, выходы которых по радиоканалу связаны с входом пульта управления.



 

Похожие патенты:

Изобретение относится к полигонным испытаниям боеприпасов и может быть использовано, в частности, для измерения характеристик осколочного поля снаряда. .

Изобретение относится к способам испытания боеприпасов, а более конкретно к способам испытания осколочных боеприпасов естественного дробления с круговыми полями.

Изобретение относится к способам испытания боеприпасов, а более конкретно к способам испытания осколочных боеприпасов естественного дробления с круговыми полями.

Изобретение относится к оборонной технике и, в частности, к комплексным средствам контроля электрических параметров управляемых зенитных ракет и пусковых устройств.

Изобретение относится к полигонным испытаниям боеприпасов и может быть использовано, в частности, для измерения характеристик осколочного поля снаряда. .

Изобретение относится к области испытаний боеприпасов и может быть использовано для определения характеристик осколочного действия боеприпасов. .

Изобретение относится к области исследования быстропротекающих процессов, а конкретно к испытаниям боеприпасов. .

Изобретение относится к области испытания боеприпасов и может быть использовано при оценке пробивного действия снарядов. .

Изобретение относится к области машиностроения и может быть использовано для оперативной оценки эффективности поражающего действия боеприпасов. .

Изобретение относится к области испытания боеприпасов и может быть использовано при определении инициирующей способности различных поражающих элементов, а также при определении стойкости боеприпасов к воздействию этих элементов.

Изобретение относится к области испытания боеприпасов и может быть использовано при определении инициирующей способности боевых частей дистанционных боеприпасов

Изобретение относится к области испытания боеприпасов и может быть использовано при оценке пробивного действия полей поражения дистанционных боеприпасов

Группа изобретений относится к области испытаний осколочного боеприпаса с осесимметричным полем разлета осколков. Способ включает подрыв боеприпаса, установленного в заданное положение в центре профилированной мишенной стенки, размеченной на зоны, соответствующие направлениям разлета осколков в принятой системе координат, регистрацию попаданий, улавливание и подсчет числа осколков, попадающих в каждую зону, измерение размеров и площади пробоин. Оценку качественных и количественных характеристик осколочного поля по массам, скоростям, форме и размерам осколков осуществляют посредством регистрации, записи и последующей обработки сигналов с электретных датчиков, размещенных по соответствующим зонам мишенной стенки и равным им по размерам. Стенд для реализации способа содержит профилированную мишенную стенку, выполненную с возможностью регулировки радиуса кривизны. Обшивка стенки выполнена в виде набора электретных датчиков, по отдельности электрически связанных с компьютеризованной системой регистрации и записи. Электроды датчика выполнены из механически слабосвязанных мелкодисперсных металлических частиц. Повышается точность измерений. 2 н. и 8 з.п. ф-лы, 15 ил.

Изобретения относятся к испытательному оборудованию. Способ определения характеристик срабатывания пиротехнических изделий состоит в том, что на элемент накаливания пиротехнического изделия подают электрический ток от источника постоянного тока, фиксируют момент t1 подачи тока и значение величины поданного тока I. Фиксируют момент воспламенения заряда пиротехнического изделия t2 по моменту появления вибрации на корпусе пиротехнического изделия, определяют время инициирования пиротехнического изделия Т и для получения зависимости времени инициирования Т от различных значений величины подаваемого тока I повторяют вышеперечисленные операции при различных значениях величины токов. Устройство для определения характеристик срабатывания пиротехнических изделий состоит из цепи подрыва с источником питания, подключенной к элементу накаливания пиротехнического изделия. В него введены устройство для обнаружения вибраций, установленное на пиротехническом изделии, и блок определения времени инициирования. Цепь подрыва состоит из последовательно соединенных источника питания, ключа для замыкания цепи, элемента накаливания пиротехнического изделия, устройства измерения силы тока в цепи подрыва. Выходы устройства для обнаружения вибраций и устройства измерения силы тока электрически подключены к входам блока определения времени инициирования. Повышается достоверность испытаний. 2 н.п. ф-лы, 1 ил.

Изобретения относятся к испытательному оборудованию. Способ определения характеристик срабатывания пиротехнических изделий состоит в том, что на элемент накаливания пиротехнического изделия подают электрический ток от источника постоянного напряжения, фиксируют момент t1 подачи тока и значение величины поданного тока I. Фиксируют момент воспламенения заряда пиротехнического изделия t2 по моменту появления скачка тока на элементе накаливания пиротехнического изделия и определяют время инициирования пиротехнического изделия Т как разницу между моментом воспламенения заряда пиротехнического изделия t2 и моментом подачи постоянного электрического тока t1. Устройство для определения характеристик срабатывания пиротехнических изделий состоит из цепи подрыва с источником питания, подключенной к элементу накаливания пиротехнического изделия. В устройство введен блок определения времени инициирования. Цепь подрыва состоит из последовательно соединенных источника питания, ключа для замыкания цепи, элемента накаливания пиротехнического изделия, устройства измерения силы тока в цепи подрыва и регулируемого сопротивления. Выход устройства измерения силы тока электрически подключен к входу блока определения времени инициирования. Источник питания выполнен в виде источника постоянного напряжения. Повышается достоверность испытаний. 2 н. и 1 з.п. ф-лы, 1 ил.

Группа изобретений относится к области полигонных испытаний боеприпасов. Предусмотрено дополнительное размещение двух датчиков на заданном расстоянии между собой, выполнение конструкции датчиков в виде трех перпендикулярно расположенных линеек излучающих диодов и фотоприемников, осуществление подрыва снаряда на траектории движения и формирование поля поражения снаряда. При этом фиксируются моменты времени и количество последовательных срабатываний элементов фотоприемников дополнительных датчиков в процессе движения эшелонированных групп осколков снаряда к мишени, определяются временные интервалы между эшелонированными группами осколков снаряда на основе фиксации последовательностей моментов срабатывания датчиков. Далее производятся фиксирование комбинации сработавших элементов фотоприемников в трех плоскостях, определение координаты сработавших элементов фотоприемников на основе информации о комбинации сработавших элементов фотоприемников. На основе данных о координатах и временных интервалах сработавших элементов фотоприемников дополнительных датчиков определяются скорости движения эшелонированных групп осколков снаряда. Определяются также три координаты векторов движения эшелонированных групп осколков снаряда и углы подхода эшелонированных групп осколков снаряда к мишени. Выполняется индикация величин скоростей движения эшелонированных групп осколков снаряда, геометрических размеров эшелонированных групп осколков снаряда в трех плоскостях, углов подхода эшелонированных групп осколков снаряда к мишени. Группа изобретений позволяет повысить информативность испытаний боеприпасов. 2 н. и 3 з.п. ф-лы, 7 ил.

Группа изобретений относится к области испытания боеприпасов. Способ заключается в размещении полуцилиндрической мишени, выполненной в виде N секторов неконтактных датчиков и определении дифференциального закона распределения осколков по направлениям разлета в каждом эшелоне осколочного поля боеприпаса на основании фиксации координат сработавших чувствительных элементов линейки фотоприемников в картинной плоскости. Затем определяют массу осколков. После чего определяют закон распределения осколков по массе в каждом эшелоне осколочного поля боеприпаса. Затем определяют среднюю массу осколка на основе закона распределения осколков по их массам. Определяют плотность потока осколков. После чего определяют математическое ожидание числа поражающих осколков, попадающих в цель. Устройство содержит взрывную камеру, устройство инициирования и боеприпас, ПЭВМ, радиолокационный измеритель скорости и полуцилиндрическую мишень, выполненную в виде бесконтактных датчиков с N секторами, N блоков первичной обработки информации. Взрывная камера имеет щель, ширина и длина которой позволяют улавливать часть осколочного поля боеприпаса. Радиолокационный измеритель состоит из последовательно соединенных антенны, генератора высокой частоты, блока широкополосных усилителей, n фильтров, первых входов n ключей, причем вторые входы n ключей соединены с выходом устройства инициирования. Выходы n ключей соединены n входами ПЭВМ. Достигается повышение информативности испытаний. 2 н. и 3 з.п. ф-лы, 11 ил.

Группа изобретений относится к области испытания боеприпасов. Способ заключается в том, что подрыв боеприпаса осуществляют во взрывной камере, получают временную зависимость фильтрованных частот Доплера сигналов, отраженных от части осколочного поля относительно момента подрыва боеприпаса. Устанавливают радиолокационный измеритель скорости так, что ось диаграммы направленности антенны составляет с плоскостью, проходящей через продольную ось боеприпаса и продольную ось щели взрывной камеры, острый угол α. Частоты Доплера сигналов, отраженных от части осколочного поля, фильтруют при нахождении поля в пределах диаграммы направленности радиолокационного измерителя скорости. Скорости лидирующих и замыкающих осколков, среднюю скорость и глубину осколочного поля определяют по временной зависимости фильтрованных частот Доплера сигналов, отраженных от части осколочного поля относительно момента подрыва боеприпаса. Затем определяют количество эшелонов осколочного поля. Устройство содержит взрывную камеру, полуцилиндрическую мишень, боеприпас, устройство инициирования, радиолокационный измеритель скорости. Достигается повышение информативности испытаний. 2 н.п. ф-лы, 2 ил.

Группа изобретений относится к области испытания боеприпасов. Способ заключается в размещении полуцилиндрической мишени и определении дифференциального закона распределения осколков по направлениям разлета в каждом эшелоне осколочного поля боеприпаса на основе последовательной фиксации комбинаций координат сработавших элементов матрицы чувствительных элементов линеек фотоприемника в картинной плоскости относительно первой строки матрицы чувствительных элементов линейки фотоприемников, расположенных по оси Х. Определяют массу осколков. Определяют закон распределения осколков по массе в каждом эшелоне осколочного поля боеприпасов на основе последовательной фиксации комбинации координат срабатывания элементов матрицы чувствительных элементов фотоприемников в пространстве. Определяют количество эшелонов осколочного поля боеприпаса на основе определения последовательностей срабатывания первой строки элементов матрицы чувствительных элементов линейки фотоприемника, расположенной по оси Х. После чего определяют динамику изменения распределения осколков по направлению и массе в каждом эшелоне осколочного поля боеприпаса на основе фиксации комбинаций сработавших элементов матрицы чувствительных элементов линейки фотоприемника в пространстве относительно каждой строки элементов матрицы чувствительных элементов фотоприемников, расположенных по оси Z. Устройство содержит взрывную камеру, устройство инициирования и боеприпас, микроЭВМ, радиолокационный измеритель скорости и полуцилиндрическую мишень. Достигается повышение информативности испытаний. 2 н. и 3 з.п. ф-лы, 5 ил.
Наверх