Дефектоскоп стальных прядных канатов

Изобретение относится к области неразрушающего контроля качества изделий и предназначено для дефектоскопии стальных прядных канатов. Технический результат - повышение точности определения координат дефектов, выявленных при дефектоскопии прядных стальных канатов. Сущность: дефектоскоп содержит канал 1 для прохождения контролируемого каната 2, намагничивающий узел 3 с магнитными полюсами 4 и 5, обращенными к каналу 2, блок измерительных магниточувствительных элементов 6, расположенных между магнитными полюсами 4 и 5, блок обработки сигналов 7. Дефектоскоп снабжен также тремя дополнительными магниточувствительными элементами 8, 9, 10 и блоком регистрации импульсов 11, соединенным своими входами с каждым из дополнительных магниточувствительных элементов 8, 9, 10, размещенных между магнитными полюсами на одной линии, параллельной оси канала над его внешней поверхностью. Магниточувствительные элементы 8, 9, 10 выполнены с возможностью регулировки расстояния между ними. Предварительно расстояния между соседними дополнительными магниточувствительными элементами 8, 9, 10 выбираются такими, чтобы в сумме они не превышали половину расстояния между вершинами соседних прядей вдоль оси контролируемого каната. 1 з.п. ф-лы, 1 ил.

 

Настоящее изобретение относится к области неразрушающего контроля качества изделий и предназначено для дефектоскопии стальных прядных канатов.

Известен дефектоскоп стальных прядных канатов, содержащий намагничивающий узел с полюсами, обращенными к зоне контроля, последовательно соединенные блок измерительных магниточувствительных элементов и блок обработки сигналов, а также датчик дистанции перемещения контролируемого каната [1].

В известном дефектоскопе датчик дистанции перемещения контролируемого каната содержит выполненное с возможностью вращения колесо, предназначенное для механического контакта с поверхностью контролируемого каната, а также преобразователь угла поворота колеса в пропорциональный ему выходной сигнал датчика.

Недостаток известных дефектоскопов состоит в высокой погрешности определения координат выявленных дефектных участков. Это связано с тем, что смазка каната, грязь, вода на его поверхности приводят либо к проскальзыванию колеса, либо к его полной остановке.

Наиболее близок к предложенному принятый за прототип дефектоскоп прядных стальных канатов, содержащий канал для прохождения контролируемого каната, намагничивающий узел с полюсами, обращенными к каналу, последовательно соединенные блок измерительных магниточувствительных элементов и блок обработки сигналов, а также датчик дистанции перемещения контролируемого каната, расположенный между этими полюсами [2].

Однако и этот дефектоскоп обладает высокой погрешностью определения координат выявленных дефектных участков, так как и в нем используется датчик с колесом, предназначенным для механического контакта с контролируемым канатом.

Цель изобретения - повышение точности определения координат дефектов, выявленных при дефектоскопии прядных стальных канатов.

Поставленная цель в дефектоскопе прядных стальных канатов, содержащем канал для прохождения контролируемого каната, намагничивающий узел с магнитными полюсами, обращенными к каналу, последовательно соединенные блок измерительных магниточувствительных элементов, расположенных между магнитными полюсами магнитопровода, и блок обработки сигналов, достигается благодаря тому, что он снабжен тремя дополнительными магниточувствительными элементами и блоком регистрации импульсов, соединенным своими входами с каждым из дополнительных магниточувствительных элементов, размещенных на поверхности канала между магнитными полюсами на одной линии, параллельной оси канала.

Кроме того, для контроля канатов с различным шагом прядей рекомендуется дополнительные магниточувствительные элементы выполнять с возможностью регулировки расстояния между ними.

Проведенные заявителем патентно-литературные исследования не выявили технических решений с существенными признаками, идентичными или эквивалентными отличительным признакам заявляемого объекта. Таким образом, по мнению заявителя, заявляемое техническое решение соответствует критерию "существенные отличия".

На фиг.1 представлена структурная схема заявляемого дефектоскопа.

Дефектоскоп стальных прядных канатов содержит канал 1 для прохождения контролируемого каната 2, намагничивающий узел 3 с магнитными полюсами 4 и 5, обращенными к каналу 1, последовательно соединенные блок измерительных магниточувствительных элементов 6, расположенных между магнитными полюсами 4 и 5 магнитопровода, и блок 7 обработки сигналов, дополнительные магниточувствительные элементы 8, 9, 10 и блок 11 регистрации импульсов, соединенный своими входами с каждым из дополнительных магниточувствительных элементов 8, 9, 10, размещенных между магнитными полюсами 4 и 5 на одной линии 12, параллельной оси канала 1 и над его внешней поверхностью. Дополнительные магниточувствительные элементы 8, 9, 10 рекомендуется выполнять с возможностью регулировки расстояния между ними. Дополнительные магниточувствительные элементы 8, 9, 10 рекомендуется выполнять в виде датчиков Холла.

Заявляемый дефектоскоп работает следующим образом. Предварительно расстояния между соседними дополнительными магниточувствительными элементами 8, 9, 10 выбираются такими, чтобы в сумме они не превышали половину расстояния между вершинами соседних прядей вдоль оси контролируемого каната. Контролируемый канат вводится в канал 1 и перемещается с помощью соответствующего устройства (не показано) вдоль его оси. Намагничивающий узел 3 создает магнитный поток, частично замыкающийся по участку каната 2, находящемуся в канале 1. При наличии дефектов каната 2 в зоне контроля между полюсами 4 и 5 происходит перераспределение магнитного потока, выявляемое измерительными магниточувствительными элементами 6 и регистрируемое блоком обработки сигналов 7.

Так как участок каната между полюсами 4 и 5 намагничен до насыщения, часть магнитного потока идет не по проволокам каната, а "перескакивает" с пряди на прядь, образуя над его поверхностью локальные поля рассеяния. Период следования этих локальных полей рассеяния равен расстоянию между вершинами соседних прядей вдоль оси каната. С помощью дополнительных магниточувствительных элементов 8, 9, 10 регистрируют эти локальные поля рассеяния и фиксируют их в блоке регистрации импульсов 11. По числу и порядку следования фиксируемых импульсов определяют количество прядей на всем проконтролированном участке каната. Координата определяется умножением количества прядей на расстояние между вершинами соседних прядей вдоль оси каната. Это расстояние определяется для любого каната как длина шага свивки (паспортная для каната величина), деленная на количество прядей вокруг сердечника каната (паспортная величина).

Применение трех дополнительных магниточувствительных элемента 8, 9, 10 позволяет осуществить реверсивный счет прядей при остановке и изменении направления движения контролируемого каната, то есть различать прямое и обратное направление движения. Определение направление движения каната по последовательности следования импульсов с элементов 8, 9, 10 осуществляется с помощью известных электронных схем реверсивных счетчиков.

Заявляемый дефектоскоп по сравнению с известными обеспечивает более точное определение координаты выявленных дефектов путем реверсивного счета прядей движущегося через дефектоскоп контролируемого каната. Координата любого обнаруженного дефекта определяется умножением соответствующего подсчитанного числа прядей на длину шага прядей вдоль оси этого каната. Повышение точности достигается за счет бесконтактного определения дистанции перемещения контролируемого каната.

Источники информации

1. Патент США № 4659991, НКИ 324/241, МПК G01N 27/82.

2. UK Patent application GB 2206969, G01N 27/83/ - 1989 (прототип).

1. Дефектоскоп стальных прядных канатов, содержащий канал для прохождения контролируемого каната, намагничивающий узел с магнитными полюсами, обращенными к каналу, последовательно соединенные блок измерительных магниточувствительных элементов, расположенных между магнитными полюсами магнитопровода, и блок обработки сигналов, отличающийся тем, что он снабжен тремя дополнительными магниточувствительными элементами и блоком регистрации импульсов, соединенным своими входами с каждым из дополнительных магниточувствительных элементов, размещенных между магнитными полюсами на одной линии, параллельной оси канала, и над его внешней поверхностью.

2. Дефектоскоп стальных прядных канатов по п.1, отличающийся тем, что дополнительные магниточувствительные элементы выполнены с возможностью регулировки расстояния между ними.



 

Похожие патенты:

Изобретение относится к области контрольно-измерительной техники и может быть использовано при контроле эксплуатационных колонн нефтяных и газовых скважин. .

Изобретение относится к области неразрушающего контроля. .

Изобретение относится к области автоматизации сварочных процессов, в частности к датчикам положения сварочного электрода относительно стыка. .
Изобретение относится к области разработки способов метрологической поверки, настройки и калибровки измерителей износа стальных проволочных канатов, в частности магнитных дефектоскопов.

Изобретение относится к области неразрушающего контроля, в частности к внутритрубной дефектоскопии, и может быть использовано для контроля технического состояния стенок труб непосредственно в процессе транспортировки поставляемого по трубе жидкого или газообразного продукта, например газа по магистральному газопроводу.

Изобретение относится к области магнитной дефектоскопии в промышленности и на транспорте, в частности может быть использовано в целях обнаружения избыточных изгибных напряжений в рельсовом пути, в металлических профилях промышленных конструкций, трубопроводах и других протяженных деталей и объектов, непосредственно при их эксплуатации.

Изобретение относится к области строительства и предназначено для диагностирования трубопроводов и других стальных пустотелых сооружений. .

Изобретение относится к области геофизических исследований скважин, а именно к комплексным средствам для изучения технического состояния обсадных колонн и насосно-компрессорных труб нефтегазовых скважин методами профилеметрии и дефектоскопии.

Изобретение относится к области неразрушающего контроля, в частности к устройствам для внутритрубной диагностики состояния стенок труб газо-, нефте-, продуктопроводов, и может быть использовано при диагностике действующих газопроводов.

Изобретение относится к области железнодорожного транспорта, а именно к способам определения неровностей и других дефектов рельсового пути

Изобретение относится к области неразрушающего контроля качества стальных канатов

Изобретение относится к неразрушающему контролю и может быть использовано для выявления подповерхностных дефектов в ферромагнитных объектах. Сущность изобретения заключается в том, что в предлагаемом способе контролируемый объект намагничивают постоянным магнитным полем, возбуждают с помощью вихретокового преобразователя на контролируемом участке вихревые токи, регистрируют вносимое в вихретоковый преобразователь напряжение U _ в н и по нему судят о наличии дефектов, и согласно изобретению путем изменения параметра Р, регулирующего воздействие постоянного магнитного поля на контролируемый объект, плавно изменяют напряженность Н постоянного магнитного поля от минимальной величины до максимальной, регистрируют максимум Uмax амплитуды вносимого в вихретоковый преобразователь напряжения U _ в н и величину соответствующего ему значения параметра Р, а параметры дефекта оценивают по совокупности значений Uмах и Р. Технический результат - повышение чувствительности и информативности контроля. 2 з.п. ф-лы, 3 ил.

Изобретение относится к железнодорожному транспорту и может быть использовано для контроля технического состояния колесной пары железнодорожного транспорта при его движении по рельсовому пути. Согласно способу после наезда колеса (9) на стык (4) в колесе начинает распространяться круговая волна, которая проходя по колесу (9), вызывает появление акустической волны, исходящей от колеса и регистрируемой датчиком (1). Датчик преобразует акустическую волну в электрический сигнал. При отсутствии трещин длительность и частота сигнала будут иметь определенное значение. В случае наличия трещины в колесе указанные параметры изменятся - длительность и частота уменьшатся, что будет свидетельствовать о недопустимости дальнейшей эксплуатации этого колеса. Затем колесо (9) начнет катиться по участку (5), протяженность которого в данном случае равна половине длины окружности колеса, на котором с помощью акустических датчиков осуществляется проверка качества поверхности катания. В результате упрощается конструкция осуществляющего контроль устройства, повышаются эксплуатационные характеристики, снижается энергопотребление. 7 з.п. ф-лы, 3 ил.

Предлагаемое техническое решение относится к способам бесконтактной внетрубной диагностики стальных нефтяных труб, применяемых при транспортировке нефти трубопроводным способом, в том числе, малого и среднего диаметра (100-500 мм), а также при дефектоскопии стальных и чугунных металлоконструкций. Техническим результатом изобретения является повышение точности способа трассирования, снижение энергоемкости устройства, а также повышение производительности труда оператора при использовании предлагаемого способа и устройства. Сущность изобретения состоит в использовании новой навигационной системы, включающей узел датчиков, который состоит из двух групп. Каждая группа включает три однокомпонентных датчика, причем одноименные оси датчиков параллельны, тогда как оси датчиков каждой из групп ортогональны, причем оси двух датчиков в каждой из групп параллельны друг другу и направлению движения и расположены в горизонтальной плоскости. При этом измерение компонент переменного магнитного поля производят непрерывно, на основе измеренных компонент вычисляют углы поворота и наклона узла датчиков, а также величину отступа узла датчиков от проекции оси трубопровода. Команды оператору выдают в виде речевых указаний на известном оператору языке на основе сравнения сигналов, соответствующих углам поворота и наклона, а также величинам отступов, по заранее определенным пороговым значениям этих сигналов. Информацию о техническом состоянии трубопровода получают на основе отношений ортогональных компонент, измеренных вдоль горизонтальной и вертикальной осей в каждой из групп. 2 н. и 2 з.п.ф-лы, 3 ил.

Изобретение относится к способам бесконтактной внетрубной диагностики стальных нефтяных труб, применяемых при транспортировке нефти трубопроводным способом, в том числе малого и среднего диаметра (100-500 мм), а также при дефектоскопии стальных и чугунных металлоконструкций. Технический результат: повышение точности определения траектории залегания трубопровода, обнаружения, геометризации и ранжирования дефектов металла и изоляции. Сущность: в способе диагностики в качестве датчиков поля используют, по меньшей мере, 18 однокомпонентных датчиков постоянного магнитного поля, осуществляют компенсацию влияния на результаты измерений флуктуации постоянного магнитного поля Земли. Математическую обработку измерений проводят на основе суммы и разности сигналов соосных компонент поля. В качестве математической обработки используют тензорную обработку матрицы градиентов, составленной на основе результатов измерений, с получением линейных, квадратичных и кубических инвариантов и вычисления компонент магнитных моментов аномалий дефектов, полученных на основе решения системы уравнений. При обработке измерений исключают из обработки интервалы записи измерений, превышающие время действия перегрузок, определяемое по превышению амплитуд пороговых значений измеряемых сигналов. 2 н. и 4 з.п. ф-лы, 5 ил.

Изобретение относится к внутритрубной дефектоскопии и может быть использовано для обнаружения отверстий в трубопроводах. Сущность: инструмент содержит соединенные между собой блок питания (1), позиционирующий и управляющий блок (2) и блок магнитных датчиков (3). Блок магнитных датчиков выполнен в виде постоянных магнитов, расположенных радиально в короне датчиков с возможностью взаимодействовать своим магнитным полем с датчиками Холла (302). Функция инструмента заключается в его прохождении через трубопровод по всей его длине, контролируя толщину этого трубопровода и обнаруживая любое отверстие по пути прохождения и, в соответствии с полученными данными, устанавливая расстояние, на котором расположены отверстия, начиная от исходной точки, время в момент обнаружения, а также положение по окружности трубопровода. Все измерения являются частью онлайнового процесса, выполняемого по мере движения инструмента через трубопровод. В конце выполнения процесса информация может быть загружена в компьютер, где она становится доступной для использования и для принятия соответствующих решений относительно целостности трубопровода. 2 табл., 36 з.п. ф-лы, 10 ил.

Изобретение относится к бесконтактной диагностике металлических труб в процессе эксплуатации. Сущность: способ включает определение места и глубины залегания трубопровода на исследуемом участке, установку вдоль оси трубопровода, по крайней мере, двух идентичных датчиков для измерения напряженности (тангенциальной составляющей) магнитного поля, синхронную запись изменения напряженности магнитного поля, вызванного блуждающими токами, сравнительную обработку информации от всех датчиков и диагностическое заключение. Устройство содержит, по крайней мере, два идентичных датчика для установки вдоль оси трубопровода, определяющих напряженность магнитного поля, средство для привязки на местности, средство определения глубины залегания трубопровода, средство синхронизации включения и работы датчиков, средство записи изменения напряженности магнитного поля, вызванного блуждающими токами, и обработки данных. Технический результат: упрощение поиска мест коррозии на трубопроводе, повышение точности локализации повреждений. 2 н. и 10 з.п. ф-лы, 8 ил., 11 табл.

Изобретение относится к производственной промышленности и может быть использовано для обнаружения и локализации металлических предметов в готовой продукции или в сырье. Техническим результатом заявленного изобретения выступает повышение чувствительности металлодетектора и уменьшение влияния внешней электромагнитной обстановки, что влечет уменьшение количества ложных срабатываний. Технический результат достигается благодаря тому, что в промышленном детекторе для конвейерных линий площадь приемных катушек в разы меньше площади «окна» металлодетектора. Сигналы с приемных катушек поступают на входные усилители (отдельные для каждой катушки), с выхода усилителя сигнал подается на сумматор, где он суммируется с сигналом «компенсации», приходящим с ЦАП, который позволяет скомпенсировать сигнал х.х., затем сигнал поступает на АЦП. Данные со всех АЦП, датчика скорости и еще одной приемной катушки, включенной параллельно передающей, а также данные с весов (опционально) подаются на блок центрального процессора, в котором происходит определение присутствия металла. Также параллельно передающей катушке включена петля калибровки, которая периодически замыкается, что позволяет прибору самостоятельно производить автопроверку и автокалибровку. В рассматриваемом металлодетекторе катушка возбуждения, подключенная к генератору переменного тока, создает переменное магнитное поле возбуждения, воздействующее на обследуемый объект, перемещающийся сквозь контрольную зону. 1 ил.

Предлагаемое техническое решение относится к области дефектоскопического контроля состояния трубопровода и может быть использовано для обнаружения и оконтуривания зон напряженно-деформированного состояния металла трубопровода, нарушения целостности трубопровода и его изоляционного покрытия, выявления несанкционированных врезок, а также диагностики технического состояния других подземных металлических трубопроводов и металлоконструкций. Сущность изобретения сводится к реализации возможности измерения реальных во времени градиентов вдоль продольной оси трубопровода компонент постоянного магнитного поля на нескольких уровнях с помощью, по крайней мере, 3-х линеек магниторезисторов, перемещаемых оператором при движении вдоль оси трубопровода. Две линейки магниторезисторов установлены вертикально, а одна горизонтально. Каждая линейка состоит из трех трехкомпонентных датчиков. На основе этих записей вычисляются градиенты (т.е ∂Xi/∂у, ∂Yi/∂у, ∂Zi/∂у) для каждой компоненты каждого датчика за интервал времени, определяемый быстродействием аппаратуры, т.е. со скоростью 6256 измерений в секунду. Градиенты определяются как разности (Xi+1-Xi)/Δу, (Yi+1-Yi)/Δу, (Zi+1-Zi)/Δу при Δу→0. Использование градиентов, получаемых за малый интервал времени, позволяет избавиться от погрешностей, связанных с нестабильностью работы датчиков, изменений их чувствительности, увеличения разброса параметров датчиков и их зависимости от температуры. Техническим результатом предлагаемого изобретения является увеличение быстродействия и точности выявления дефектов подземных трубопроводов, а также улучшение эксплуатационных характеристик устройства диагностики технического состояния подземных трубопроводов. 2 н. и 2 з.п. ф-лы, 2 ил.
Наверх