Способ контроля состояния изоляции



 


Владельцы патента RU 2484488:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Дальневосточный федеральный университет" (ДВФУ) (RU)

Изобретение относится к области автоматизированного эксплуатационного контроля состояния изоляции высоковольтного оборудования. Способ включает регистрацию частичных разрядов, измерение их средних характеристик, которые используют для расчета предельного и текущих показателей состояния оборудования, которые сравнивают друг с другом. В начале эксплуатации, в производственных условиях определяют начальное значение средней мощности сигналов от частичных разрядов Р0 и соответствующее этому начальное значение концентрации неоднородностей, после чего, предпочтительно, в лабораторных условиях определяют предельно допустимое значение концентрации неоднородностей и соответствующее ему значение средней мощности сигналов от частичных разрядов Pn∂. В процессе эксплуатации повторяют определения значений средней Rn∂=Pn∂/P0 и Rm=Pm/P0, вычисляют отношение Rn∂/Rm и при его величине в пределах более 1 но менее 1,1, делают вывод об опасности эксплуатации оборудования, при его величине в пределах от 1,1 до 1,3 делают вывод о средней опасности эксплуатации оборудования, при его равенстве 1 принимают решение о замене изолирующего материала. При этом значение средней мощности сигналов от частичных разрядов измеряют в течение, по меньшей мере, двух полупериодов напряжения питания между амплитудными значениями. Технический результат заключается в упрощении способа и в повышении его оперативности. 1 з.п. ф-лы.

 

Изобретение относится к области использования измерительных средств для контроля и может быть использовано для автоматизированного эксплуатационного контроля состояния изоляции высоковольтного оборудования, например, трансформаторов шунтирующих реакторов под рабочим напряжением путем измерения характеристик частичных разрядов (ЧР) в изоляции.

В настоящее время одним из эффективных средств контроля состояния изоляции являются системы, производящие измерение характеристик частичных разрядов. При этом могут измеряться одна или несколько величин: кажущийся заряд, частота следования импульсов частичных разрядов, средний ток частичных разрядов, средняя мощность частичных разрядов и др.

Известен способ контроля изоляции (см. RU №2351939, G01R 31/00, опубл. 10.04.2009), основанный на измерении энергии спектральных составляющих в узкой полосе спектра сигналов частичных разрядов.

Недостатком данного технического решения является значительное ограничение в спектре и, следовательно, достоверности информации.

Известен способ контроля изоляции (см. RU №2377588, G01R 31/12, опубл. 27.12.2009), основанный на измерении рентгеновского излучения ЧР.

Недостатком такого технического решения является необходимость нанесения на изоляцию тонкого заземляющего электрода из алюминиевой фольги, использования специальной аппаратуры для регистрации рентгеновского излучения.

Известен способ контроля состояния изоляции, включающий регистрацию частичных разрядов, измерение их средних характеристик, которые используют для расчета предельного и текущих показателей состояния оборудования, которые сравнивают друг с другом (см. RU №2367969, G01R 31/02, опубл. 20.09.2009). Способ основан на измерении среднего тока импульсов частичных разрядов, измерении характеристик и сравнении его с заданным значением. При этом измеряется также частота следования импульсов ЧР, превышающих заданный уровень. Измерения проводятся в течение заданного интервала в промежутке углов от 7/6 до 3/2 периода напряжения.

Недостатком этого технического решения является значительная неопределенность в выборе граничных уровней тока и частоты следования импульсов, а также зависимость значения тока и уровня сигналов ЧР от места их регистрации, что снижает надежность и достоверность информации о состоянии изоляции.

Задача, на решение которой направлено заявленное решение, выражается в повышении надежности и достоверности информации о состоянии изоляции высоковольтного оборудования.

Технический результат, проявляющийся при решении названной задачи, выражается в обеспечении простоты и оперативности способа.

Решение поставленной задачи обеспечивается тем, что способ контроля состояния изоляции, включающий регистрацию частичных разрядов, измерение их средних характеристик, которые используют для расчета предельного и текущих показателей состояния оборудования, которые сравнивают друг с другом, отличается тем, что в начале эксплуатации, в производственных условиях определяют начальное значение средней мощности сигналов от частичных разрядов Po и соответствующее этому начальное значение концентрации неоднородностей, после чего, предпочтительно, в лабораторных условиях определяют предельно допустимое значение концентрации неоднородностей и соответствующее ему значение средней мощности сигналов от частичных разрядов Pn∂, при этом в процессе эксплуатации повторяют определения значений средней мощности текущих сигналов от частичных разрядов Pm, вычисляют отношения Rn∂=Pn∂о и Rm=Pmо, вычисляют отношение Rn∂/Rm, и, при его величине в пределах более 1, но менее 1,1, делают вывод об опасности эксплуатации оборудования, при его величине в пределах от 1,1 до 1,3 делают вывод о средней опасности эксплуатации оборудования, при его равенстве 1 принимают решение о замене изолирующего материала. При этом значение средней мощности сигналов от частичных разрядов измеряют в течение, по меньшей мере, двух полупериодов напряжения питания между амплитудными значениями.

Указанные особенности изобретения представляют его отличие от прототипа и обуславливают новизну предложения, его отличия являются существенными, поскольку именно они обеспечивают достижение технического результата, отраженного в технической задаче, и отсутствуют в известных технических решениях с тем же эффектом.

Сопоставительный анализ совокупности существенных признаков заявляемого технического решения с существенными признаками аналогов и прототипа свидетельствуют о его соответствии критерию «новизна».

Признаки отличительной части формулы изобретения решают следующие функциональные задачи.

Признаки «… в начале эксплуатации, в производственных условиях определяют начальное значение средней мощности сигналов от частичных разрядов Po …» позволяют путем стандартных измерений и последующей стандартной математической обработкой их результатов определить среднюю мощность импульсов ЧР Р0.

Признаки, указывающие, что одновременно с определением начального значения средней мощности сигналов от частичных разрядов Ро определяют «соответствующее этому начальное значение концентрации неоднородностей», позволяют сопоставить измеряемые параметры с реальным состоянием изоляции и в последующем определить предельный и текущий показатели состояния оборудования.

Признаки, указывающие, что «предпочтительно, в лабораторных условиях определяют предельно допустимое значение концентрации неоднородностей и соответствующее ему значение средней мощности сигналов от частичных разрядов Pn∂», позволяют получить показатель (критерий), сравнение с которым позволяет оценить состояние изоляции.

Признаки «… в процессе эксплуатации повторяют измерения значений средней мощности текущих сигналов от частичных разрядов Pm, вычисляют отношения Rn∂=Pn∂о и Rm=Pmо …» позволяют вычислить соответствующие значения средних мощностей сигналов ЧР, соответствующие предельному и текущему показателю состояния изоляции.

Признаки, указывающие, что «вычисляют отношение Rn∂/Rm», позволяют получить показатель (критерий), позволяющий оценить наличие-отсутствие остаточного рабочего ресурса изоляции.

Признаки, указывающие, что при величине отношения Rn∂/Rm «в пределах более 1, но менее 1,1, делают вывод об опасности эксплуатации оборудования, при его величине в пределах от 1,1 до 1,3 делают вывод о средней опасности эксплуатации оборудования, при его равенстве 1 принимают решение о замене изолирующего материала», позволяют ранжировать опасность эксплуатации изоляции, оценить ее текущее значение и его близость к предельному значению и в целом техническое состояние оборудования.

Признаки, указывающие, что «мощность измеряют в течение нескольких полупериодов напряжения питания между амплитудными значениями», обеспечивают повышение достоверности полученных замеров.

В основе изобретения лежат следующие положения:

- изобретение предназначено для работы с высоковольтными устройствами, внутри которых циркулирует жидкий или газообразный диэлектрик;

- в диэлектрике присутствуют неоднородности - источники ЧР и их концентрация благодаря циркуляции диэлектрика одинакова по всему его объему. При таких условиях суммарный объем неоднородностей в каждом выделенном объеме остается в течение небольшого промежутка времени постоянным и изменяется в связи с ростом самих неоднородностей под действием ЧР только за длительное время, которое много больше периода напряжения питания.

Средняя за полупериод T/2 напряжения питания удельная мощность одного частичного разряда Р V = ( E з 2 E п 2 ) T , где Ез - напряженность электрического поля зажигания, Еп - напряженность погасания, зависит только от свойств неоднородности.

В течение полупериода Т/2 между амплитудными значениями напряжения питания от одной неоднородности на вход измерителя мощности поступает сигнал средней мощностью Рср=PVnγΘ, где n - количество разрядов за полупериод, зависящее от амплитуды напряженности электрического поля, γ - коэффициент затухания сигнала, Θ - объем неоднородности.

Разделим условно объем устройства на N областей, в пределах которых n и γ изменяются незначительно. Тогда средняя мощность на входе измерителя Р с р = k = 1 N P V n k γ k V k , где nk, γk - значения n, γ для k-й области, V k = Θ k - суммарный объем неоднородностей в k-й области. Очевидно, что Рср=PVГV0, где V 0 = k = 1 N V k - объем всех неоднородностей, Г = ( k = 1 N n k γ k V k ) / V 0 .

Величины nk, γk зависят только от расположения k-й области и не зависят от времени, Vk при постоянной концентрации неоднородностей может изменяться только за счет их роста, который происходит очень медленно. Поэтому в течение небольшого отрезка времени (несколько десятков периодов) Г можно считать постоянной величиной.

Таким образом, начальное значение средней мощности ЧР при запуске устройства P c p 0 = P V k = 1 N n k γ k V k = P V Г V 0 .

Известно, что объем неоднородностей под действием ЧР увеличивается по закону V = V 0 e α P I n t , где α - коэффициент, зависящий только от свойств самой неоднородности. Количество ЧР за полупериод n зависит от амплитуды напряженности электрического поля. Однако, благодаря циркуляции диэлектрика, неоднородности перемещаются из одной области с высокой напряженностью в области с низкой напряженностью и обратно и рост для всех неоднородностей определяется неким средним коэффициентом K(t), т.е. Θ=Θ0K(t). Если все неоднородности перемещаются в электрическом поле примерно одинаковым образом, то и функция K(t) для них примерно одна и та же. Таким образом, для суммарного объема неоднородностей можно записать Vk1(t)=∑K(t)Θk1(t)=K(t)Vk; V1(t)=∑K(t)Vk=K(t)V0, где Θk1(t), Vk1(t), V1(t) - величины, аналогичные Θk, Vk, V0 после эксплуатации устройства в течение времени t. Средняя мощность ЧР по истечении времени t: Р с р 1 ( t ) P V k = 1 N n k γ k K ( t ) V k P V K ( t ) Г V 0 P V Г V 1 ( t )

Отношение мощностей Pcp1(t) и Pcp0(t) Pcp1(t)/Pcp0(t)≈V1(t)/V0=C1(t)/C0, где С0 - начальная концентрация неоднородностей, С1(t) - концентрация неоднородностей после эксплуатации устройства в течение времени t.

Таким образом, при описанных выше условиях, отношение текущей средней мощности ЧР к ее начальному значению примерно равно отношению текущего значения концентрации неоднородностей, к ее начальному значению. Начальное значение концентрации неоднородностей может быть измерено на производстве, а предельно допустимое значение - в лабораторных условиях. Предложенный способ позволяет, зная начальную концентрацию неоднородностей, оценить ее текущее значение и его близость к предельному значению.

Для реализации способа пригодны существующие методы и приборы, используемые для измерения средней мощности. Это могут быть:

- USB-датчик мощности МА24126А. Высокочастотный USB-датчик поглощаемой мощности может выполнять высокоточные измерения в частотном диапазоне от 10 МГц до 26 ГГц в динамическом диапазоне 60 дБ. Датчик использует архитектуру "двойной путь", что позволяет проводить истинные среднеквадратичные измерения в широком частотном диапазоне и с динамическим диапазоном от 0,1 мкВт до 100 мВт (от -40 дБм до +20 дБм), позволяя измерять среднюю мощность гармонических, мультитональных сигналов и сигналов с дискретной модуляцией, используемых во всех основных диапазонах сотовой связи и СВЧ-систем типа "точка-точка", а также в аэрокосмических и оборонных системах.

- Ваттметр СВЧ М3-108. Ваттметр поглощаемой мощности М3-108 предназначен для измерения средних значений мощности СВЧ непрерывных и импульсно-модулированных колебаний частотой до 17,85 ГГц с уровнями от 0,1 мкВт до 100 Вт. Наличие микропроцессорного управления обеспечивает отсчет результатов измерения как в натуральных единицах мощности мкВт, мВт, Вт, так и в децибелах относительно уровня 1 мВт (дБм) или относительно любого, заданного оператором, уровня в дВ и %. Прибор дает возможность сравнивать текущее значение измеряемой мощности с нижним и/или верхним заранее установленным значением мощности, при достижении которых формируется информация в виде символов (на дисплее) и сигналов о превышении (занижении) измеряемой мощности заданных значений. Инициирование команд управления прибором, а также выдача измерительной информации в персональный компьютер могут осуществляться через интерфейс RS-232. Ваттметр состоит из унифицированного измерительного блока и 4-х типов приемных преобразователей мощности СВЧ.

- IFR 2450 Aeroflex CPM 20. Данный прибор предназначен для измерений мощности и частоты синусоидальных СВЧ-сигналов, а также среднего значения мощности импульсно-модулированных СВЧ-сигналов в диапазоне от 10 МГц до 20 ГГц - 2450 (CPM 20) и от 10 МГц до 46 ГГц - 2451 (CPM 46), для измерения выходной мощности и частоты измерительных генераторов и других источников СВЧ-сигналов, измерения затухания четырехполюсников, калибровки ваттметров проходящей (поглощаемой) мощности. Диапазон измерения постоянного напряжения от 0 до 10 В. Погрешность Т 2,5%.

Таким образом, можно констатировать, что в настоящее время имеется аппаратная и методологическая основа для проведения измерений, обеспечивающих реализацию заявленного способа.

Заявленный способ реализуется в следующем порядке.

В начале эксплуатации, в производственных условиях определяют начальное значение средней мощности сигналов от частичных разрядов Р0, для этого известным образом осуществляют несколько замеров мощности сигналов от частичных разрядов Рi по которым определяют значение средней мощности сигналов от частичных разрядов Р0 как среднее арифметическое выполненных замеров. При этом мощность измеряют в течение нескольких полупериодов напряжения питания между амплитудными значениями. Известным образом отбирают пробу диэлектрика, часть которой используют для определения начального значения концентрации неоднородностей. Оставшийся объем пробы используют известным образом в лабораторных условиях для определения предельно допустимого значения концентрации неоднородностей и соответствующего ему значения средней мощности сигналов от частичных разрядов Рn∂.

В процессе эксплуатации регулярно повторяют определения значений средней мощности текущих сигналов от частичных разрядов Рm. Полученные данные используют для вычисления отношений Rn∂n∂0 и Rmm/P0.

Далее вычисляют отношение Rn∂/Rm.

Промежуток между замерами на начальном этапе эксплуатации оборудования назначают по опыту эксплуатации аналогичного оборудования. При отсутствии такого опыта промежуток между замерами назначают порядка 2 месяцев.

Если значение Rn∂/Rm свыше 1,3, то состояние изоляции соответствует норме и ее эксплуатация может быть продолжена до следующих плановых замеров.

Если значение Rn∂/Rm находится в пределах от 1,1 до 1,3, то делают вывод о средней степени опасности эксплуатации оборудования, при этом, промежуток времени до последующего замера сокращают вдвое, по сравнению с начальным этапом эксплуатации.

Если значение Rn∂/Rm находится в пределах более 1, но менее 1,1, делают вывод о высокой степени опасности эксплуатации оборудования и принимают меры по учащенному контролю состояния оборудования.

Если значение Rn∂/Rm равно 1, оборудование выводят из эксплуатации.

1. Способ контроля состояния изоляции, включающий регистрацию частичных разрядов, измерение их средних характеристик, которые используют для расчета предельного и текущих показателей состояния оборудования, которые сравнивают друг с другом, отличающийся тем, что в начале эксплуатации в производственных условиях определяют начальное значение средней мощности сигналов от частичных разрядов Р0 и соответствующее этому начальное значение концентрации неоднородностей, после чего предпочтительно в лабораторных условиях определяют предельно допустимое значение концентрации неоднородностей и соответствующее ему значение средней мощности сигналов от частичных разрядов Pn∂, при этом в процессе эксплуатации повторяют определения значений средней мощности текущих сигналов от частичных разрядов Pm, вычисляют отношения Rn∂=Pn∂0 и Rm=Pm/P0, вычисляют отношение Rn∂/Rm и, при его величине в пределах более 1, но менее 1,1 делают вывод об опасности эксплуатации оборудования, при его величине в пределах от 1,1 до 1,3 делают вывод о средней опасности эксплуатации оборудования, при его равенстве 1 принимают решение о замене изолирующего материала.

2. Способ по п.1, отличающийся тем, что мощность измеряют в течение, по меньшей мере, двух полупериодов напряжения питания между амплитудными значениями.



 

Похожие патенты:

Изобретение относится к определению появления электрической дуги на электрическом кабеле. .

Изобретение относится к устройствам для проверки трансформаторов. .

Изобретение относится к способам защиты от электрического пробоя вводов и внутрикорпусных проводников (электродов) в заполненных жидким диэлектриком высоковольтных трансформаторах, автотрансформаторах, трансформаторах тока и другом электротехническом оборудовании.

Изобретение относится к контрольно-измерительной технике. .

Изобретение относится к диагностике высоковольтного компонента (7). .

Изобретение относится к технике высоких напряжений, в частности к диагностике силовых трансформаторов методом измерения характеристик частичных разрядов. .

Изобретение относится к мониторингу состояния высоковольтной изоляции системы генерации, передачи или распределения электроэнергии и/или энергетического оборудования.

Изобретение относится к диагностике состояния элементов высоковольтных установок переменного тока. .

Изобретение относится к прикладной электротехнике

Изобретение относится к измерительной технике и может быть использовано для определения дефектов изоляции проводов

Изобретение относится к измерительной технике и может быть использовано для определения нарушений целостности изоляции проводов

Изобретение относится к кабельной технике и может быть использовано в электромашиностроении, в производстве трансформаторов, в сфере производства и применения обмоточных проводов

Изобретение относится к электроизмерительной технике, в частности, для испытания переменным напряжением электрических высоковольтных компонентов. Система (10, 50) включает инвертор (84), тестовый трансформатор (14, 96), высоковольтный дроссель (16, 36, 98) и другой высоковольтный компонент (18а, 18b, 18с, 22а, 22b, 22с, 86, 88, 90, 92) в качестве тестовых компонентов, при этом перечисленные компоненты расположены в общем квадратном контейнере (12). Кроме того, высоковольтный дроссель (16, 36, 98) посредством устройства (44) передвижения через отверстие на ограничительной поверхности контейнера (12) может выдвигаться из него, и другой высоковольтный компонент (18а, 18b, 18с, 22а, 22b, 22с, 86, 88, 90, 92) может передвигаться внутри квадратного контейнера (12) из транспортного положения (18а, 18b, 18с, 22b) в рабочее положение (32а, 32b, 32с, 64). Технический результат заключается в повышении компактности установки. 15 з.п. ф-лы, 3 ил.

Изобретение относится к контролю изменения изолирующей способности изоляции между двумя объектами индуктивного рабочего элемента. По меньшей мере, одним из объектов является обмотка. Сущность: устройство содержит анализирующий блок, который получает первый частотный спектр (40), связанный с частотным откликом на сигнал переменной частоты. Упомянутый сигнал переменной частоты может быть применен к первому объекту индуктивного рабочего элемента, а упомянутый частотный отклик может быть получен от второго объекта индуктивного рабочего элемента. Анализирующий блок сравнивает полученный первый частотный спектр (40) со вторым эталонным частотным спектром (42), детектирует пик (44) в полученном первом частотном спектре (40), который не проявляется во втором эталонном частотном спектре (42), анализирует форму детектированного пика и определяет изменение изолирующей способности на основе проанализированной формы. Технический результат: возможность определения ухудшения изолирующей способности без демонтажа индуктивного рабочего элемента, увеличение информации об изолирующей способности. 2 н. и 14 з.п. ф-лы, 7 ил.

Изобретение относится к области электротехники. Сущность: последовательно проводят испытания исходного и высоковольтного устройств. При испытании исходного устройства элементарные резисторы соединяют в систему и определяют ее суммарное активное сопротивление. При каждом фиксированном значении характерного параметра на высоковольтный электрод исходного устройства подают напряжение, увеличивают его до получения испытательного напряжения изоляционного промежутка, измеряют испытательное напряжение и испытательный ток. Для каждого характерного параметра определяют коэффициент нелинейности по соотношению, учитывающему испытательное напряжение изоляционного промежутка исходного устройства, испытательный ток и суммарное активное сопротивление системы элементарных резисторов, и среднее напряжение на элементарном резисторе. По результатам испытания исходного устройства определяют калибровочную зависимость коэффициента нелинейности от среднего напряжения на элементарном резисторе системы элементарных резисторов. При испытании высоковольтного устройства элементарные резисторы соединяют в систему и определяют ее суммарное активное сопротивление. Подают напряжение на высоковольтный электрод, измеряют испытательный ток, при фиксированном характерном параметре определяют среднее напряжение на элементарном резисторе, определяют коэффициент нелинейности по калибровочной зависимости и рассчитывают испытательное напряжение по соотношению, учитывающему коэффициент нелинейности, испытательный ток и суммарное активное сопротивление системы элементарных резисторов. Технический результат - повышение точности определения испытательного напряжения высоковольтного устройства. 19 з.п. ф-лы, 4 ил.

Изобретение относится к электроизмерительной технике, в частности, для испытания переменным напряжением электрических высоковольтных компонентов. Испытательная система (50, 100) для испытания переменным напряжением электрических высоковольтных компонентов (172) содержит инвертор (54, 152), испытательный трансформатор (58, 158) и высоковольтный дроссель (68, 70, 108, 114, 160) в качестве испытательных компонентов, при этом указанные испытательные компоненты расположены в общем имеющем прямоугольную форму контейнере (52, 124). Кроме того, предусмотрена возможность перемещения высоковольтного дросселя (68, 70, 108, 110, 160) с помощью перемещающего приспособления (72, 112) из первого положения в контейнере (52, 124) во второе положение, при котором изоляционные расстояния до других компонентов являются достаточными для проведения испытания. Технический результат заключается в повышении компактности установки. 14 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано для детектирования и измерения частичных разрядов в электрических системах или компонентах. Сущность: устройство содержит широкополосную антенну (1), содержащую первый плоский проводник (22), взаимодействующий со вторым проводником (21). Профиль второго проводника (22) сходится к первому плоскому проводнику (22) в одной точке или вдоль линии. Второй проводник (21) меньше примерно на два порядка величины, чем длина волны детектируемого поля. Широкополосная антенна (1) является нерезонансной в диапазоне от приблизительно 0,1 МГц до приблизительно 100 МГц. Технический результат: обеспечение сигналов, имеющих форму, схожую с формой излученного импульса, для улучшенной идентификации и анализа, небольшой размер, повышение безопасности. 15 з.п. ф-лы, 3 ил.

Изобретение относится к мониторингу частичных разрядов, происходящих в электрических или энергетических системах. Способ заключается в том, что определяют нижний порог срабатывания триггера и верхний порог срабатывания триггера, определяют длительность меньшего временного интервала, отслеживают по меньшей мере одну фазу электрической системы с целью обнаружения импульса на протяжении меньшего временного интервала, определяют максимальную амплитуду импульса, возникающего в электрической системе на протяжении меньшего временного интервала, устанавливают, превышает ли измеренная максимальная амплитуда импульса нижний порог срабатывания триггера и верхний порог срабатывания триггера, присваивают импульсу коэффициент пульсации, если максимальная амплитуда импульса превышает нижний порог срабатывания триггера и верхний порог срабатывания триггера, регистрируют импульс или касающуюся его информацию, если коэффициент пульсации, соответствующий импульсу, меньше предварительно заданного порогового коэффициента пульсаций в меньшем временном интервале, применяют временной сдвиг подвижного триггера, так что: если импульс превышает нижний порог срабатывания триггера, но не верхний порог срабатывания триггера, а коэффициент пульсации равен предварительно заданному числу пульсаций, регистрируют промежуток во времени на протяжении меньшего временного интервала, в котором это имеет место, и прекращают регистрацию импульсов с амплитудой, превышающей нижний порог срабатывания триггера, но не верхний порог срабатывания триггера, до наступления этого промежутка во времени в следующем меньшем временном интервале, и переустанавливают на ноль промежуток во времени временного сдвига подвижного триггера, и начинают регистрацию на протяжении следующего меньшего временного интервала импульсов с амплитудой, превышающей только нижний порог срабатывания триггера, после того, как величина временного сдвига подвижного триггера становится равной величине меньшего временного интервала, и сохраняют зарегистрированные импульсы в запоминающем устройстве. Также заявлено устройство, реализующее указанный способ. Технический результат заключается в повышении точности определения частичных разрядов. 2 н. и 8 з.п. ф-лы, 6 ил.
Наверх