Система передачи электрической энергии



Система передачи электрической энергии
Система передачи электрической энергии
Система передачи электрической энергии
Система передачи электрической энергии
Система передачи электрической энергии

 


Владельцы патента RU 2484571:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) (RU)

Использование: в области электротехники. Технический результат - повышение надежности работы системы. Предложено распределительную сеть выполнить в виде связанных шестиугольников, в вершинах которых расположены узлы нагрузки, каждый из них имеет питающую, транзитную и резервную линии с возможностью их взаимозаменяемости, каждая из линий через развилку из двух выключателей, рабочего и резервного, подключена к рабочей и резервной системам шин, последние соединены между собой секционным выключателем, к рабочей системе шин подключены потребительские линии, в каждом узле нагрузки установлен интегрированный модуль управления. 2 з.п. ф-лы, 6 ил.

 

Изобретение относится к области передачи и распределения электрической энергии и может быть использовано для распределительных сетей напряжением 10-220 кВ.

Практическая необходимость в использовании предлагаемого решения заключается в потребности полной автоматизации, самоорганизации и адаптации к режимам работы электрической сети, соответствующих принципам построения сетей Smart Grid. Важнейшим фактором снижения стоимости выпускаемого оборудования и его эксплуатационных расходов является унификация. Кроме того, увеличение уровня надежности систем электроснабжения является актуальным для городских и промышленных сетей. Известные способы передачи не в полной мере удовлетворяют возрастающие требования.

Известны кольцевые схемы электроснабжения (http://www.powergrids.ru/content/view/13/43/), применяемые для электроприемников второй и третьей категорий надежности электроснабжения (Фиг. 1). При повреждении любой из распределительных линий электроснабжение электроприемников восстанавливают ручным отключением поврежденной линии и включением резервной.

На Фиг.1 обозначены: РП1, РП2 - распределительные пункты, ТП1, ТП2, ТП3, ТП4 - трансформаторные подстанции.

В кольцевой схеме электроснабжения имеются места деления (разрывы) сети, в которых постоянно отключены разъединители или выключатели.

Разъединители или выключатели в месте деления сети включают при необходимости подачи электроэнергии от резервной линии в случае повреждения основной линии или отключения ее для производства на ней работ.

Перерыв в электроснабжении при этой схеме допускается на время, необходимое для отключения поврежденного участка и производства переключений (примерно 2 ч.).

Более надежными схемами электроснабжения электроприемников являются схемы, в которых предусматривается параллельная работа питающих линий или автоматическое включение резервного питания (АВР) (Фиг.2).

На Фиг.2 обозначены: ИП1, ИП2 - источники питания, РП - распределительный пункт, ТП1, ТП2 - трансформаторные подстанции.

ABP является методом релейной защиты, который служит для обеспечения надежной работы сети электропитания. АВР призвана создать возможность подключения резервных источников питания при аварии в основной системе электроснабжения. Переключение на резервный источник питания и отключение поврежденного участка происходит в диапазоне от 0,3 до 0,8 секунд.

Зачастую взаиморезервируемые линии электропередач прокладываются в параллельно идущих траншеях или даже в одной траншее с несгораемой перегородкой (кабельные линии) или подвешиваются на одну опору (воздушные линии). Тем самым, при определенных обстоятельствах, возможна потеря обеих взаиморезервируемых линий. Например: обрушение опоры с двухцепной воздушной линией при сильном гололеде; механические повреждения траншеи с двумя взаиморезервируемыми кабельными линиями при проведении земляных работ и т.п.

Опыт эксплуатации распределительных сетей 6-10 кВ, а также последствия известных аварий показывают, что существующая конфигурация сети 6-10 кВ не может удовлетворять растущим требованиям к надежности, предъявляемым городским и промышленным сетям.

Недостатки существующих распределительных сетей:

- в существующих распределительных сетях нет такого понятия, как «самозаживающая» сеть. Если есть отказ питающей линии электропередачи 6-10 кВ при условии, что они имеют тенденцию работать на радиальной основе (по большей части), есть неизбежный перерыв в электроснабжении;

- высоки потери электроэнергии (до 16%);

- отставание сетевой инфраструктуры от потребности в электрической энергии и мощности;

- конфигурация распределительных сетей не позволяет осуществить принцип распределенной генерации;

- невозможно реализовать автоматическое управление распределением и потреблением ресурсов электроэнергии на всех уровнях напряжения.

Известен способ распределения электроэнергии и устройство для его осуществления (пат. РФ №2036503, G05B 19/18, H02J 4/00, опубл. 27.05.1995.) Способ заключается в формировании сигналов управления, которые объединяют в мультиплексные сигналы с использованием временного разделения каналов. Здесь речь идет об управлении распределением электроэнергии и патент не касается топологии сети.

В качестве прототипа принята система для реализации способа передачи электрической энергии по патенту РФ №2337451, H02J 3/00, опубл. 27.10.2008, содержащая передающую подстанцию, высоковольтный выключатель, выключатель отходящей линии, линию электропередачи с трехфазными кабелями, трансформаторную подстанцию, распределительную сеть, между выключателем отходящей линии и трансформаторной подстанцией включены две трехфазные вентильные группы с взаимно противоположными направлениями электропроводности, в трансформаторной подстанции установлен понижающий трансформатор с расщепленными первичными обмотками, соединенными по схеме «звезда», нейтрали которых соединены между собой, вентильные группы соединены двумя трехфазными кабелями с первичными обмотками понижающего трансформатора.

В этом решении ставится задача снижения величины токов короткого замыкания и снижения требований к выключателям по отключающей способности, удешевления распределительных устройств, уменьшения суммарного сечения питающих токоведущих проводников (проводов, кабелей), снижения потерь электроэнергии, напряжения и мощности.

Однако недостаточна эффективность и надежность работы из-за неравномерной загрузки сети и из-за хаотичного расположения потребителей, их удаленности от подстанции.

Решается задача создания более эффективной системы передачи электрической энергии.

Технический результат - повышение надежности работы системы за счет осуществления принципа распределенной генерации электрической энергии (равномерная загрузка сети, приближение потребителей к источникам питания), создание равномерно распределенных узлов потребления электрической энергии, соединенных между собой равномерно загруженными линиями электропередачи (кабелями одинакового сечения).

Этот технический результат достигается тем, что в системе передачи электрической энергии, содержащей передающую подстанцию, линию электропередачи, кабельную распределительную сеть к нагрузкам, выключатели, трансформаторы, распределительная сеть выполнена в виде связанных шестиугольников, в вершинах которых расположены узлы нагрузки, каждый из них имеет питающую, транзитную и резервную линии с возможностью их взаимозаменяемости, каждая из линий через развилку из двух выключателей, рабочего и резервного, подключена к рабочей и резервной системам шин, последние соединены между собой секционным выключателем, к рабочей системе шин подключены потребительские линии через выключатели, в каждом узле нагрузки установлен интегрированный модуль управления; к рабочей системе шин может быть подключен генератор; система выполнена многоуровневой, узлы нагрузки разных уровней соединены между собой трансформаторными связями.

Потребители питаются от ближних узлов короткой сети, при этом снижаются потери напряжения и мощности. Выход из строя одного или даже нескольких узлов нагрузки не приведет к разрушению сети благодаря жесткой связи всех узлов. При потере питающей линии (обрыв, авария) сеть обеспечит питание узла по одной из двух оставшихся линий, изменяя их предыдущее состояние в автоматическом режиме, сеть найдет оптимальный из возможных путей доставки электрической энергии потребителям. Организация уровней позволяет расширить площадь обслуживаемой территории.

Система передачи электрической энергии приведена на чертежах:

на Фиг.3 - принцип формирования сети,

на Фиг.4 - узел нагрузки,

на Фиг.5 - пространственное представление двухуровневой распределительной сети,

на Фиг.6 - схема узла нагрузки.

Система передачи электрической энергии включает передающую подстанцию, линию электропередачи (на чертеже не показаны).

На Фиг.3 позицией 1 обозначена распределенная электрическая сеть, имеющая конфигурацию связанных шестиугольников 2 (образующих соты), в вершинах которых располагаются узлы нагрузки 3. Шестиугольники 2 не обязательно должны иметь правильную форму. Расстояние (плечо) между узлами нагрузки 3 определяется плотностью нагрузок. Каждый узел нагрузки 3 имеет питающую 4, транзитную 5 и резервную 6 линии. Стрелками обозначен поток мощности. Распределительная сеть является инвариантной. Питающая линия может стать при необходимости транзитной или резервной, транзитная - питающей, резервная - транзитной, т.е возможна переконфигурация узла и изменение потоков мощности в сети в зависимости от той или иной ситуации.

На Фиг.5 позицией 7 обозначена сеть первого уровня, где расположены узлы нагрузки, представляющие собой распределительные пункты на 10-20 кВ, 8 - сеть второго уровня, где расположены узлы нагрузки на 110-220 кВ. в третьем уровне (на чертеже не показан) - узлы нагрузки, представляющие собой распределительные пункты на 220 кВ и выше. Узлы нагрузки разных уровней связаны между собой трансформаторными связями 9. Позицией 10 обозначены потребительские линии, позицией 11 - генераторные установки.

На Фиг.6 каждая из линий 4, 5, 6 через развилку из двух выключателей 12, 13 - резервного и рабочего подключена к рабочей и резервной системам шин 14, 15. Системы шин 14, 15 соединены между собой секционным выключателем 16. К рабочей системе шин 14 подключены потребительские выключатели 17. Для преобразования напряжения и тока до значений, удобных для измерения, используются трансформаторы напряжения 18 и трансформаторы тока 19. В каждом узле нагрузки 3 установлен интегрированный модуль управления (ИМУ) 20, представляющий собой промышленный контроллер, анализирующий входящие сигналы от вторичных сетей (трансформаторов тока, трансформаторов напряжения и пр.), выключателей и выдающий соответствующие команды управления. Он может осуществлять также релейную защиту узла нагрузки, автоматизированный учет электроэнергии. Однако эти вопросы не являются предметом настоящей заявки.

К рабочей системе шин 14 с использованием выключателя 21 подключен генератор 22. Генераторы могут быть установлены в отдельных узлах нагрузки и могут быть выполнены как на традиционном топливе (газ, уголь, мазут), так и на возобновляемых источниках энергии (солнечные, ветровые и т.п.) В результате снизятся потери электрической энергии, т.к. источник энергии будет находиться ближе к потребителю.

В системе использованы типовые узлы и устройства. Оборудование в них комплектное, унифицированное, что упрощает изготовление, монтаж и наладку.

Система передачи электроэнергии работает следующим образом. Электрическую энергию передают через линию электропередачи, по кабелям одинакового сечения распределительных сетей - к узлам нагрузки 3. Все узлы нагрузки 3 находятся под напряжением, т.е. каждый узел может быть источником электроэнергии для потребителей. Работа узла нагрузки 3 может быть показана на примере. Питание осуществляется от линии 4, транзит происходит по линии 5, линия 6 находится в резервном состоянии. Выключатель 12 линии 4 отключен, выключатель 13 линии 4 включен. Выключатель 12 линии 5 отключен, выключатель 13 линии 5 включен. Выключатель 12 линии 6 включен, выключатель 13 линии 6 отключен. Секционный выключатель 16 отключен. При этом потребители получают электроэнергию с рабочей системы шин 14. При выходе из строя линии 4 отключается выключатель 13 линии 4. Включается секционный выключатель 16, и потребители питаются через резервную систему шин 15.

Узел нагрузки продолжает работать. На линии 4 в это время ликвидируют аварию, а питание осуществляется по линии 6.

Генератор 22 может работать как в штатном режиме, так и при возникновении дефицита мощности.

Таким образом, при реализации предлагаемого изобретения достигаются следующие результаты: существенное увеличение надежности и экономической эффективности функционирования ЕЭС России; улучшение качества обслуживания потребителей электроэнергии при удешевлении поставляемой электроэнергии.

1. Система передачи электрической энергии, содержащая передающую подстанцию, линию электропередачи, кабельную распределительную сеть к нагрузкам, выключатели, трансформаторы, отличающаяся тем, что распределительная сеть выполнена в виде связанных шестиугольников, в вершинах которых расположены узлы нагрузки, каждый из них имеет питающую, транзитную и резервную линии с возможностью их взаимозаменяемости, каждая из линий через развилку из двух выключателей: рабочего и резервного подключена к рабочей и резервной системам шин, последние соединены между собой секционным выключателем, к рабочей системе шин подключены потребительские линии через выключатели, в каждом узле нагрузки установлен интегрированный модуль управления.

2. Система передачи электрической энергии по п.1, отличающаяся тем, что в каждом узле нагрузки к рабочей системе шин подключен генератор.

3. Система передачи электрической энергии по п.1, отличающаяся тем, что она выполнена многоуровневой, узлы нагрузки разных уровней соединены между собой трансформаторными связями.



 

Похожие патенты:

Изобретение относится к области передачи и распределения электрической энергии и может быть использовано для распределительных сетей напряжением 10-220 кВ. .

Изобретение относится к электроснабжению летательных аппаратов. .

Изобретение относится к авиационному электроборудованию. .

Изобретение относится к управлению электропитанием скважинных устройств. Техническим результатом является обеспечение эффективной подачи электроэнергии на скважинные устройства, в частности уменьшение количества или полного устранения приемников электрической энергии скважинных устройств, питаемых нежелательным током или получающих электроэнергию иными нежелательными путями за счет обеспечения изоляции тока, подаваемого на приемник. Предложенная система для соединения с токоведущими линиями, включающими в себя токоведущую линию оболочки, первую токоведущую линию, вторую токоведущую линию и третью токоведущую линию, содержит: первый управляющий модуль, выполненный с возможностью соединения с первой токоведущей линией и с возможностью находиться в последовательном электрическом соединении с первым электроприемником в скважине, соединенным со второй токоведущей линией; второй управляющий модуль, выполненный с возможностью соединения со второй токоведущей линией и с возможностью находиться в последовательном электрическом соединении со вторым электроприемником в скважине, соединенным с первой токоведущей линией; третий управляющий модуль, выполненный с возможностью соединения с первой токоведущей линией и с возможностью находиться в последовательном электрическом соединении с третьим электроприемником в скважине, соединенным с третьей токоведущей линией; и четвертый управляющий модуль, выполненный с возможностью соединения с первой токоведущей линией и с возможностью находиться в последовательном электрическом соединении с четвертым электроприемником в скважине, соединенным с токоведущей линией оболочки. Причем при пропускании первым управляющим модулем тока на первый электроприемник в скважине второй, третий и четвертый управляющие модули не пропускают нежелательный ток на второй, третий и четвертый электроприемники в скважине соответственно. 2 н. и 16 з.п. ф-лы, 6 ил.

Электроимпульсное противообледенительное устройство содержит ряд индукторных модулей, каждый из которых включает накопительный конденсатор, управляемый ключ, защитный диод, вольточувствительную цепь с генератором управляющих импульсов и индуктор, расположенный вблизи от очищаемой ото льда металлической поверхности. Вход индукторного модуля соединен с входом накопительного конденсатора, а выход через управляемый ключ связан с индуктором, параллельно которому подключен защитный диод. К выводам управляемого ключа подключена вольточувствительная цепь с генератором управляющих импульсов. Имеется блок управления индукторных модулей, вход которого через выключатель подключен к питающей сети, а выходы - к входам индукторных модулей. Блок управления индукторных модулей включает источник питания, логическую систему управления, коммутаторные ключи, зарядное устройство и выпрямитель напряжения. Входы выпрямителя напряжения и источника питания соединены с входом блока управления индукторных модулей. Выход выпрямителя напряжения через зарядное устройство и коммутаторные ключи связан с выходами блока управления индукторных модулей. Изобретение направлено на повышение надежности и безопасности эксплуатации. 1 з.п. ф-лы, 3 ил.

Изобретение относится к электротехнике и, в частности, к системам электроснабжения. Многоканальная система электроснабжения содержит N идентичных каналов генерирования переменного тока, каждый из которых состоит из последовательно соединенных двигателя, m-фазного генератора, основных фидеров, выпрямителя, инвертора и силового фильтра. Выходные цепи тока выпрямителей всех каналов соединены друг с другом с помощью 2-проводных резервных фидеров, причем мощность генератора и выпрямителя каждого канала рассчитана на k-кратное превышение номинальной мощности нагрузки канала, а мощность инвертора и силового фильтра каждого канала рассчитана на номинальную мощность нагрузки канала, при этом k - коэффициент, определяемый как k=N/(N-L), где N - число каналов генерирования, L - число отказавших каналов. По второму варианту выполнения в многоканальной системе электроснабжения выпрямители каналов состоят из k соединенных параллельно по выходу идентичных выпрямительных секций, входы которых подсоединены соответственно к выходам генераторов каналов с помощью m-фазных фидеров переменного тока, при этом мощность каждой выпрямительной секции, инвертора и силового фильтра каждого канала рассчитана на номинальную мощность нагрузки канала. 2 н.п. ф-лы, 2 ил.

Изобретение относится к подводному оборудованию для добычи нефти, в частности к средствам передачи переменного тока большой мощности на большие расстояния. Техническим результатом является исключение влияния емкостного эффекта и скин-эффекта для обеспечения возможности передачи электрического питания к оборудованию, расположенному на большом удалении от источника питания. Предложена подводная система повышения давления для работы под водой на расстояниях удаления более 40 км, которая содержит по меньшей мере один передающий электроэнергию подводный протяженный кабель, проходящий от ближнего конца, расположенного в сухом месте на суше или на верхней поверхности надводного объекта, к дальнему концу, расположенному возле одной или более подводной нагрузки, такой как подводные насосы, подводные компрессоры или другие нагрузки. Причем к ближнему концу присоединен по меньшей мере один источник электроэнергии для подачи электроэнергии постоянной частоты, а размеры кабеля выбраны из условия работы на этой частоте или на более низкой частоте, при работе на которой к ближнему концу кабеля подключено понижающее частоту устройство, с тем чтобы контролировать емкостный эффект и электрические потери. Кроме того, система содержит по меньшей мере один активный преобразователь электрической частоты, функционально включенный между дальним концом кабеля и подводными нагрузками. Причем указанный преобразователь расположен в емкости высокого давления и преобразует рабочую частоту указанного кабеля в частоту, подходящую для приведения в действие присоединенных подводных нагрузок. 3 н. и 7 з.п. ф-лы, 8 ил., 4 табл.

Сеть распределения электрической энергии на воздушном судне, содержащая первую и вторую гальванически изолированные силовые шины и первый и второй дистанционные концентраторы данных (ДКД), причем каждый ДКД имеет интерфейс ввода-вывода и источник питания, источник питания первого ДКД подключен к первой силовой шине, источник питания второго ДКД подключен ко второй силовой шине, устройство ввода-вывода подключено к интерфейсу ввода-вывода первого ДКД и к интерфейсу ввода-вывода второго ДКД, каждый ДКД выполнен с возможностью подачи электроэнергии на устройство ввода-вывода посредством соответствующего ему интерфейсу ввода-вывода, при этом каждый ДКД включает в себя переключатель для изолирования устройства ввода-вывода, а переключатели функционально связаны таким образом, чтобы электроэнергия не могла подаваться на устройство ввода-вывода одновременно двумя ДКД. Предложен также способ функционирования сети. Технический результат - обеспечение изоляции силовых шин сети друг от друга при одноканальной архитектуре интегрированной модульной авионики. 3 н. и 13 з.п. ф-лы, 3 ил.
Наверх