Бестрансформаторный источник постоянного тока

Изобретение относится к электротехнике и может быть использовано в качестве простого и экономичного источника постоянного тока низкого напряжения, включаемого к сети переменного тока, и содержит однополупериодные выпрямители и конденсатор фильтра нижних частот, две последовательно включенные однополупериодные цепи из последовательно включенных первого и второго диодов и первого и второго накопительных конденсаторов, заряжаемых от сети переменного тока поочередно от разнополярных полупериодов переменного напряжения, последовательно включенные накопительные конденсаторы подключены к конденсатору фильтра нижних частот через высокочастотную катушку индуктивности и силовой тиристор, управляющий электрод которого подключен через разделительный трансформатор к выходу компаратора, управляющий импульс которого образуется в момент достижения максимального напряжения в последовательно включенных первом и втором накопительных конденсаторах. Параллельно конденсатору фильтра нижних частот подключена активная нагрузка. Технический результат - упрощение конструкции и существенное уменьшение активной составляющей потребляемой энергии от источника переменного тока по сравнению с энергией постоянного тока, выделяющейся в активной нагрузке. Заявляемое устройство может найти спрос у разработчиков бытовых электронных приборов - телевизоров, компьютеров, музыкальных центров, радиотелефонов, светильников на светодиодных матрицах и др. Кроме того, это устройство обладает комплексной нагрузкой для сети переменного тока при чисто активной нагрузке у потребителя. 2 ил.

 

Изобретение относится к электротехнике и может быть использовано в качестве простого и экономичного источника постоянного тока низкого напряжения, включаемого к сети переменного тока.

В приборах бытовой техники нашли широкое применение низковольтные источники постоянного тока, подключаемые к сети переменного тока 220 В 50 Гц. Основными элементами таких источников являются понижающие трансформаторы, выпрямительные схемы и фильтры нижних частот [1].

Одним из недостатков известных устройств является применение в них сетевых понижающих трансформаторов.

Указанный недостаток устранен в заявляемом техническом решении.

Целью изобретения является упрощение конструкции и существенное уменьшение активной составляющей потребляемой энергии от источника переменного тока по сравнению с энергией постоянного тока, выделяющейся в активной нагрузке.

Указанные цели достигаются в заявляемом бестрансформаторном источнике постоянного тока, содержащем однополупериодные выпрямители и конденсатор фильтра нижних частот, отличающемся тем, что включает две последовательно включенные однополупериодные цепи из последовательно включенных первого и второго диодов и первого и второго накопительных конденсаторов, заряжаемых от сети переменного тока поочередно от положительного и отрицательного полупериодов переменного напряжения, последовательно включенные накопительные конденсаторы подключены к конденсатору фильтра нижних частот через высокочастотную катушку индуктивности и силовой тиристор, управляющий электрод которого подключен через разделительный трансформатор к выходу компаратора, управляющий импульс которого образуется в момент достижения максимального напряжения в последовательно включенных первом и втором накопительных конденсаторах, параллельно конденсатору фильтра нижних частот подключена активная нагрузка, причем входы компаратора связаны с цепью формирования управляющего его работой сигнала, которая включает две параллельно включенные к концам последовательно соединенных первого и второго накопительных конденсаторов цепи, первая из которых состоит из последовательно соединенных третьего диода, стабилитрона и дополнительного накопительного конденсатора, а вторая - из последовательно соединенных резистора запуска компаратора, четвертого диода и резистора калиброванной утечки заряда дополнительного накопительного конденсатора, подключенного параллельно последнему.

Достижение указанных целей объясняется отсутствием в схеме источника понижающего трансформатора, а также комплексным характером устройства для сетевого источника переменного напряжения, в котором доля реактивной (емкостной) составляющей является доминирующей. Эффективное запирание силового тиристора осуществляется действием э.д.с. самоиндукции в высокочастотной катушке индуктивности при разряде первого и второго накопительных конденсаторов на конденсатор фильтра нижних частот.

Схема устройства представлена на рис.1, а действие его поясняется диаграммами напряжений, представленными на рис.2. Заявляемое устройство включает:

1 - первый диод однополупериодного выпрямителя D1,

2 - второй диод однополупериодного выпрямителя D2,

3 - первый накопительный конденсатор C1,

4 - второй накопительный конденсатор С2,

5 - третий диод первой цепи формирования запускающего компаратор сигнала D3,

6 - стабилитрон D4,

7 - дополнительный накопительный конденсатор С3,

8 - резистор запуска компаратора во второй цепи формирования R1,

9 - четвертый диод второй цепи формирования запускающего компаратор сигнала D4,

10 - резистор калиброванной утечки заряда дополнительного накопительного конденсатора R2,

11 - компаратор, вырабатывающий импульс, управляющий отпиранием силового тиристора A1,

12 - источник питания компаратора ИП,

13 - силовой тиристор Т,

14 - разделительный трансформатор Тр развязки цепи управления силовым тиристором Т,

15 - высокочастотная катушка индуктивности (низкоомная) L,

16 - конденсатор фильтра нижних частот C4,

17 - активная нагрузка источника постоянного тока R3.

На рис.2а приведен график сетевого переменного напряжения с периодом Т.

На рис.2б дан график напряжения в функции времени, образующегося на концах последовательно соединенных первого и второго накопительных конденсаторов C1 и С2. Амплитуда переменного сетевого напряжения обозначена как UC, максимальное напряжение заряда последовательно включенных первого и второго накопительных конденсаторов (в схеме Латура) равно 2UC. Максимальное напряжение на конденсаторе фильтра нижних частот С4 в момент окончания разряда первого и второго накопительных конденсаторов 3 и 4 через открытый тиристор (Т) 13 обозначено как UH.

Рассмотрим действие заявляемого устройства.

Переменное сетевое напряжение, например, с действующим значением 220 В, выпрямляется в схеме удвоения напряжения (в схеме Латура), состоящей их двух однополупериодных выпрямителей на элементах 1-4 (рис.1). При достижении напряжения на концах последовательно соединенных первого и второго накопительных конденсаторов 3 и 4 двойной величины амплитуды 2UC (порядка 620 В) автоматически открывается силовой тиристор 13, и заряд с первого и второго накопительных конденсаторов 3 и 4 стекает в конденсатор фильтра нижних частот 16 через открытый тиристор 13 и высокочастотную катушку индуктивности 15, и напряжение на конденсаторе фильтра нижних частот достигает наибольшей величины UH<<2UC при выборе C3>>C12. За счет импульса тока указанного разряда в высокочастотной катушке индуктивности 15 образуется э.д.с. самоиндукции, полярность которой закрывает силовой тиристор Т в конце указанного разряда. Указанные процессы повторяются с периодичностью T=20 мс при частоте сетевого напряжения f=50 Гц.

Рассмотрим действие управляющего работой компаратора 11 устройства на элементах 5-10. Сам компаратор представляет собой разновидность операционного усилителя со спусковой схемой в виде ждущего одновибратора с оконечным усилителем мощности импульсного сигнала, который подается на разделительный трансформатор 14, устраняющий гальваническую связь между компаратором 11, питаемым от отдельного источника питания ИП 12, и силовым тиристором 13. В установившемся режиме суммарное напряжение на первом и втором накопительных конденсаторах 3 и 4 изменяется периодически (с периодом Т) от UH до 2UC. При этом за счет включения стабилитрона (D1) 6 напряжение на дополнительном накопительном конденсаторе (С3) 7 устанавливается на уровне 2UC - UСТАБ, то есть меньше на несколько вольт (3-5 В) двойной амплитуды 2UC. До тех пор пока напряжение на конденсаторах 3 и 4 меньше величины 2UC - UСТАБ, ток в резисторе R1 запуска компаратора отсутствует, так как третий диод (D5) 9 является запертым. Когда указанное напряжение становится большим, чем величина 2UC - UСТАБ, третий диод 9 отпирается, и через резистор R1 8 запуска компаратора протекает ток. При этом на неинвертирующем входе компаратора 11 возникает положительный сигнал, запускающий компаратор, что приводит к появлению отпирающего силовой тиристор 13 импульса, поступающего с выхода компаратора через разделительный трансформатор 14. Указанным током управления на входе компаратора дополнительно подзаряжается дополнительный накопительный конденсатор 7, что незначительно увеличивает напряжение на нем. Поэтому для снижения величины этого напряжения до уровня 2UC - UСТАБ к моменту следующего разряда накопительных конденсаторов 3 и 4 на конденсатор фильтра нижних частот 16 в схеме формирования использован резистор калиброванной утечки заряда дополнительного накопительного конденсатора R2, величина сопротивления которого соответственно подбирается.

Следует отметить, что первоначальный запуск схемы в работу при включении ее в сеть переменного тока происходит с некоторой задержкой, обусловленной переходными процессами в источнике питания 12 компаратора 11. При действии этой задержки реализуется режим заряда дополнительного накопительного конденсатора 7 до требуемого напряжения 2UC - UСТАБ. Дополнительный накопительный конденсатор 7 может иметь небольшую емкость (порядка 1 мкФ) с рабочим напряжением порядка 1 кВ.

Поскольку 2UC>>>UСТАБ, можно считать, что момент разряда первого и второго накопительных конденсаторов 3 и 4 на конденсатор фильтра нижних частот 16 осуществляется периодически в момент максимального напряжения ≈2UC. Указанный разряд происходит за время, меньшее четверти периода Т/4 колебаний сети (в последней четверти каждого периода), как это видно на графике рис.2б. В другой части этой четверти периода напряжение на втором накопительном конденсаторе (С2) 4 снова возрастает, и в первой четверти следующего периода увеличивается на величину амплитуды UC, после чего остается постоянным в течение второй четверти периода. Затем это напряжение дорастает в третьей четверти периода до величины, близкой к 2UC, строго говоря, не доходя точно до этой величины, поскольку начинается разряд через открытый силовой тиристор 13, при котором это напряжение резко снижается (по экспоненте), и отпирающий компаратор 11 ток в резисторе запуска R1 прекращается. Разряд инициируется формированием в компараторе 11 импульса, открывающего силовой тиристор 13 на вторичной обмотке разделительного трансформатора 14.

Ток разряда ограничивается включением в цепи разряда высокочастотной катушки индуктивности (L) 15. Одновременно в конце разряда в этой катушке возникает э.д.с. самоиндукции, ускоряющей запирание силового тиристора 13. Поскольку ток разряда достигает значительной величины, следует использовать первый и второй накопительные конденсаторы 3 и 4 импульсного типа с малой величиной собственной индуктивности и с рабочим напряжением 500-600 В. Конденсатор фильтра нижних частот 16 может быть выполнен электролитическим на относительно низкое рабочее напряжение, превышающее напряжение в активной нагрузке UH не менее чем в 1,5-2 раза.

Обратимся теперь к расчету напряжения на конденсаторе фильтра нижних частот 16, полагая потери в открытом силовом тиристоре и высокочастотной низкоомной катушке индуктивности 15 ничтожными. Максимальное напряжение заряда каждого из накопительных конденсаторов 3 и 4 равно UC. При этом энергия заряда двух этих конденсаторов равна W=С UC2, где С=C12, и эта энергия при разряде указанных конденсаторов перераспределяется между емкостями С/2 и С3 так, что имеем UH=(2UC-UH) (С/2С3)1/2. Нетрудно понять, что передаваемая в активную нагрузку мощность PH=C(2UC-UH)2 f/4, где f=1/T. Эта же мощность в установившемся режиме должна выделяться в активной нагрузке (R3) 17, величину которой можно записать в виде PH=UH2/R3, откуда значение активной нагрузки R3 выбирается равной R3=UH2/PH=2Т/С3.

Так, при T=20 мс, С=100 мкФ и С3=0,1 Ф (электролитический низковольтный конденсатор типа ЭТО или К-52М) имеем R3=0,4 Ом. При этом постоянная времени нагрузки τ=R3 С3=0,4*0,1=0,04 с=40 мс равна удвоенному периоду Т. Это означает, что за период перезаряда конденсатора фильтра нижних частот напряжение на нем не снижается ниже уровня UH MIN=0,6UH при экспоненциальном квазилинейном разряде. Однако это означает, что для полного расхода потребляемой устройством мощности в активной нагрузке 17 ее величина должна быть выбрана несколько ниже вышеуказанной расчетной величины. Для рассмотренного примера величина напряжения, в первом приближении, равна UH1≈2UC(С/2С3)1/2=2*1,41*220*(10-4/2*0,1)1/2=620/20001/2=13,86 В. Более точно это значение находится заменой напряжения 2UC на напряжение 2UC-UH1, и тогда более точное значение напряжения UH равно UH=(2UC-UH1)(С/2С3)112≈606/20001/2=13,55 В. Среднее значение этого напряжения за период T можно принять равным около 10,8 В. Мощность PH, рассеиваемая в активной нагрузке 17, равна PH=С(2UC-UH)2 f/4=10-4(606)2*50/4=459 Вт, и при величине среднего напряжения на конденсаторе фильтра нижних частот, равного 10,8 В, сопротивление активной нагрузки следует снизить до величины R3*=10,82/459=0,254 Ом вместо ранее указанного значения R3=0,4 Ом. Но при этом уменьшится постоянная времени τ выходной цепи нагрузки, что потребует вновь произвести расчет напряжения UH на основе метода последовательного приближения.

Разряд накопительных конденсаторов 3 и 4 является апериодическим, должен закончиться приблизительно за 1/8 периода Т, то есть за 2,5 мс. При этом средняя импульсная мощность разряда составляет 8*459=3,67 кВт при среднем токе разряда, равном IP ИМП=3670/10,8=340 А, и с учетом этой величины тока должен быть выбран силовой тиристор 13 с рабочим обратным напряжением порядка 1 кВ.

Если принять величину э.д.с самоиндукции, возникающую в высокочастотной катушке индуктивности 15, равной порядка 100 В, то при крутизне изменения тока разряда в ней порядка 340 А/2,5*10-3с≈1,36*105 А/с, находим величину индуктивности L этой катушки, равную L=100/1,36*105=735 мкГн. Эта катушка может выполняться на ферритовом сердечнике медным проводником с достаточно большим сечением для снижения сопротивления постоянному току, например, проводом с диаметром 3 мм.

Особенностью заявляемой схемы является зависимость выходного напряжения UH от величины активного сопротивления нагрузки 17, что непременно следует учитывать при выборе рабочего напряжения конденсатора фильтра нижних частот 16. Иначе говоря, данная схема не допускает «холостого» режима ее работы - без калиброванной нагрузки. Схема может быть дополнена устройством автоматического отключения источника питания 12 компаратора 11 при достижении определенного (предельно допустимого) напряжения на конденсаторе фильтра нижних частот 16, например, с помощью реле, включенного к этому конденсатору через стабилитрон, пробой в котором возникает при заданном предельном напряжении UH MAX, например, при использовании схемы для заряда аккумуляторных батарей (стабилитрон выбирается на напряжение 14,4 В).

Расчеты показали, что данная схема для источника переменного напряжения представляет собой комплексную нагрузку, активная составляющая потребляемой энергии которой существенно меньше реактивной (емкостной) с соотношением приблизительно 1:4 и, следовательно, электросчетчик активной энергии, как правило устанавливаемый в квартирах и частных домах граждан, покажет лишь 20% от реально потребленной энергии от сети переменного тока. Действительно, когда сетевое напряжение достигает максимума (величины UC), ток в накопительных конденсаторах в соответствующих полупериодах равен нулю, хотя он максимален в случае чисто активной нагрузки в известных выпрямителях. Правильный учет расходуемой от сети энергии электрического тока возможен при установке дополнительного последовательно подключенного электросчетчика реактивной энергии. Если совместно с рассматриваемой схемой в том же помещении работают электродвигатели с малым cosφ, то возможна полная или частичная компенсация реактивностей (емкостной и индуктивной), и учет энергии электросчетчиком активной энергии будет более правильным.

Возможна дополнительная электронная фильтрация выходного постоянного тока с помощью широко известных схем.

Автором предложен иной вариант решения рассматриваемой задачи [2].

Заявляемое устройство может найти спрос у разработчиков бытовых электронных приборов - телевизоров, компьютеров, музыкальных центров, радиотелефонов, светильников на светодиодных матрицах, зарядных устройств для аккумуляторов и др.

Литература

1. 750 практических электронных схем. Справочное руководство под ред. Р.Фелпса, пер. с англ. В.А.Логинова. - М.: Мир, 1986, с.3-40.

2. Меньших О.Ф., Бестрансформаторный источник постоянного тока. Заявка на изобретение №2011114690/07 (021805) на «Бестрансформаторный источник постоянного тока» с приоритетом от 13.04.2011, решение о выдаче патента РФ от 06.02.2012.

Бестрансформаторный источник постоянного тока, содержащий однополупериодные выпрямители и конденсатор фильтра нижних частот, отличающийся тем, что включает две последовательно включенные однополупериодные цепи из последовательно включенных первого и второго диодов и первого и второго накопительных конденсаторов, заряжаемых от сети переменного тока поочередно от положительного и отрицательного полупериодов переменного напряжения, последовательно включенные накопительные конденсаторы подключены к конденсатору фильтра нижних частот через высокочастотную катушку индуктивности и силовой тиристор, управляющий электрод которого подключен через разделительный трансформатор к выходу компаратора, управляющий импульс которого образуется в момент достижения максимального напряжения в последовательно включенных первом и втором накопительных конденсаторах, параллельно конденсатору фильтра нижних частот подключена активная нагрузка, причем входы компаратора связаны с цепью формирования управляющего его работой сигнала, которая включает две параллельно включенные к концам последовательно соединенных первого и второго накопительных конденсаторов цепи, первая из которых состоит из последовательно соединенных третьего диода, стабилитрона и дополнительного накопительного конденсатора, а вторая - из последовательно соединенных резистора запуска компаратора, четвертого диода и резистора калиброванной утечки заряда дополнительного накопительного конденсатора, подключенного параллельно последнему.



 

Похожие патенты:

Изобретение относится к электротехнике и может быть использовано для управления выпрямителем с емкостным фильтром на выходе при создании электромеханических систем.

Изобретение относится к преобразовательной технике и может быть использовано в качестве зависимого многозонного инвертора на электроподвижном составе, получающем питание от контактной сети однофазного переменного тока.

Изобретение относится к электротехнике. .

Изобретение относится к электротехнике и может быть использовано в качестве простого и экономичного источника постоянного тока низкого напряжения, включаемого к сети переменного тока.

Изобретение относится к области преобразовательной техники и может быть использовано на электроподвижном составе. .

Изобретение относится к электротехнике, в частности к полупроводниковой технике, и может быть использовано на электроподвижном составе для регулирования мощности тягового электродвигателя и других потребителей электроэнергии, получающих питание от электрической сети переменного и постоянного тока.

Изобретение относится к преобразовательной технике и может быть использовано в первом варианте для преобразования трехфазного переменного напряжения в постоянное, 6-пульсное на двух однофазных трансформаторах, вторичные обмотки которых включены по мостовой схеме выпрямления на 4-х диодах, а во втором варианте - тоже в постоянное, 12-пульсное.

Изобретение относится к области силовой электроники и может быть использовано для питания автономных инверторов, станций катодной защиты, установок микродугового оксидирования и для питания других различных электротехнологических установок. Импульсный регулятор постоянного напряжения содержит соединенные последовательно первый диод, управляемый ключ, индуктивность фильтра и нагрузку, два нулевых диода и конденсаторы фильтра, управляющий микроконтроллер, драйвер управления, цепь обратной связи и пульт ручного управления, блок синхронизации, два входа которого соединены со вторыми разноименными выводами первых диодов, а два выхода подключены, соответственно, к входам драйвера управления и управляющего микроконтроллера. Индуктивности фильтра выполнены на общем магнитопроводе магнитосвязанными. Дополнительно импульсный регулятор содержит два дополнительных конденсатора и два вторых диода. Каждая из индуктивностей фильтра выполнена с дополнительным выводом. Выводы дополнительных конденсаторов присоединены к дополнительным выводам соответственно индуктивностей фильтра и общей клемме первичного источника питания переменного тока, а выводы вторых диодов подключены к дополнительному и выходному выводам соответствующих индуктивностей фильтра. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники и предназначено для использования во вторичных источниках электропитания приборов и устройств измерительной техники. Технический результат - снижение значения потребляемой активной мощности и повышение стабильности выходного напряжения. Преобразователь напряжения состоит из двух одинаковых секций узла гашения избыточного напряжения, выполненных в виде последовательно соединенных конденсатора и резистора, включенных соответственно в оба провода между выводами для подключения источника питания и входами первого и второго мостовых выпрямителей, выход первого выпрямителя подключен параллельно со входом стабилизатора напряжения, а в обоих проводах на выходе второго выпрямителя введены первый и второй регулирующие элементы, которые включены последовательно со входом стабилизатора напряжения. 2 ил.

Изобретение относится к электротехнике и к импульсной силовой электронике, в частности к преобразователям постоянного напряжения в переменное - инверторам и регуляторам напряжения, и предназначено для использования в автономных системах электропитания и в электроприводах перспективных авиакосмических летательных аппаратах с преимущественно или полностью электрифицированным приводным оборудованием. Технический результат заключатся в расширении функциональных возможностей устройства при его реализации, а именно получении выходного напряжения с произвольно задаваемой периодически-непрерывной формой, в частности синусоидальной, при сохранении свойств простоты схем реализации его и жесткой нагрузочной характеристики. Для этого заявленное устройство, содержащее нагрузку, первую и вторую входные клеммы, первую и вторую выходные клеммы, ключевой транзистор, индуктивность, разрядный диод, конденсатор, образующий с индуктивностью индуктивно-емкостной фильтр Г-образного типа, резистивный датчик выходного напряжения, блок сравнения напряжения датчика с напряжением блока опорного напряжения и блок управления ключевым транзистором, дополнительно снабжено блоком изменения направления тока в нагрузке, при этом блок выполнен с возможностью изменения направления тока в нагрузке. 4 ил.

Изобретение относится к области электротехники и может быть использовано в источниках вторичного электропитания в качестве преобразователя постоянного напряжения в постоянное. Техническим результатом является увеличение надежности и повышение коэффициента полезного действия. Двухтактный обратноходовой преобразователь постоянного напряжения в постоянное содержит первичную обмотку первого трансформатора, конец которой соединен со стоком первого МОП-транзистора с n-каналом и с встроенным диодом, исток которого соединен с отрицательным полюсом входного напряжения, а затвор которого является входом для управляющего сигнала Uупр1; начало первичной обмотки второго трансформатора соединено с истоком второго МОП-транзистора с n-каналом и с встроенным диодом, сток которого соединен с положительным полюсом входного напряжения, а затвор является входом для управляющего сигнала Uупр2. Один вывод накопительного конденсатора соединен между концом первичной обмотки первого трансформатора и стоком первого МОП-транзистора с n-каналом и с встроенным диодом, второй вывод которого соединен между началом первичной обмотки второго трансформатора и истоком второго МОП-транзистора с n-каналом и с встроенным диодом. Начало вторичной обмотки первого трансформатора соединено с отрицательным выводом нагрузки, конец которой соединен с анодом первого выпрямительного диода, катод которого соединен с положительными выводами нагрузки, выходного конденсатора, отрицательный вывод которого соединен с отрицательным выводом нагрузки. Начало вторичной обмотки второго трансформатора соединено с отрицательным выводом нагрузки, конец которой соединен с анодом второго выпрямительного диода, катод которого соединен с положительным выводом нагрузки. 2 ил.

Изобретение относится к области электротехники и может быть использовано в преобразователях трехфазного переменного напряжения в постоянное 9-пульсное с купированием всех видов намагничивания трансформатора и равными углами коммутации вентилей. Технический результат - отсутствие всех видов намагничивания трансформатора и равные углы коммутации вентилей. Преобразователь содержит трехфазный трансформатор с тремя группами вторичных фазных обмоток, соединенных каждая в звезду. Вывод каждой фазной обмотки первой подключен к одноименным электродам вентилей, другие электроды которых подключены к свободным одноименным с ним выводам разноименных фазных обмоток второй группы и свободному разноименному с ним выводу одноименной фазной обмотки третьей группы. Число витков фазной обмотки второй группы равно 1,8794·w, а число витков фазной обмотки третьей группы - 1,5321·w, где w - число витков фазной обмотки первой группы. Трансформатор дополнительно содержит четвертую и пятую группы вторичных фазных обмоток, соединенных каждая в разомкнутый треугольник. Общая точка одноименных выводов второй группы фазных обмоток соединена с одноименным с ней крайним выводом фазной обмотки четвертой группы. Общая точка одноименных выводов третьей группы фазных обмоток соединена с одноименным с ней крайним выводом фазной обмотки пятой группы. Общая точка свободных крайних выводов фазных обмоток четвертой и пятой групп и общая точка одноименных выводов фазных обмоток первой группы образуют выходные выводы. Фазная обмотка четвертой группы состоит из основной и дополнительной частей. Число витков фазной обмотки пятой группы и основной части фазной обмотки четвертой группы соответственно равно 0,844·w и 0,2931·w. Дополнительная часть фазной обмотки четвертой группы состоит из пары равных встречно последовательно соединенных частей, число витков каждой из которых равно 0,21756·w. 1 ил.

Изобретение относится к области электротехники и может быть использовано в источниках вторичного электропитания в качестве преобразователя переменного напряжения в постоянное. Технический результат заключается в увеличении надежности и повышении коэффициента полезного действия. Преобразователь переменного напряжения в постоянное содержит первичную обмотку первого трансформатора, начало которой соединено с анодом первого диода, катод которого соединен с анодом второго диода, катод которого соединен со стоком первого МДП-транзистора с n-каналом, затвор которого является входом для управляющего сигнала Uупр1, исток которого соединен со вторым входом преобразователя. Начало первичной обмотки второго трансформатора соединено с анодом третьего диода, катодом соединенного с анодом четвертого диода, катодом соединенного со стоком второго МДП-транзистора с n-каналом, затвор которого является входом для управляющего сигнала Uупр2, а исток соединен с первым входом преобразователя. Входной конденсатор подключен параллельно входам преобразователя. Первый вывод накопительного конденсатора подключен между катодом первого диода и анодом второго диода, второй вывод накопительного конденсатора подключен между катодом третьего диода и анодом четвертого диода. Начало вторичной обмотки первого трансформатора подключено к положительному выходу преобразователя, а конец подключен к отрицательному выходу преобразователя. Первый вывод выходного конденсатора подключен к положительному выходу преобразователя, второй вывод выходного конденсатора - к отрицательному выходу преобразователя. 3 ил.

Изобретение относится к области электротехники и может быть использовано для преобразования трехфазного переменного напряжения в постоянное, многопульсное, с равными углами коммутации вентилей. Технический результат заключается в повышении качества преобразования за счет устранения неравенства углов коммутации разных вентилей цепей и более рационального использования трансформирующих элементов, позволяющего повысить периодичность выпрямления до m = 18 или m = 24. Преобразователь в первом варианте содержит уравнительное устройство с тремя обмотками, каждая с дополнительным выводом, трансформатор с двумя обмотками, одноименные крайние выводы первой из которых подключены к фазным входным выводам, а второй - к входным выводам вентильного моста, первая обмотка содержит промежуточный вывод в каждой фазе, между каждой парой крайних выводов смежных фаз первой обмотки включен управляемый вентиль, образующий с двумя другими аналогично включенными управляемыми вентилями последовательное замкнутое соединение, каждый промежуточный вывод соединен с общей точкой пары обмоток уравнительного устройства, дополнительные выводы которых подключены к электродам управляемых вентилей, свободные электроды которых подключены к промежуточным выводам разноименных фазных обмоток, обмотки уравнительного устройства, реактанс которого выбран управляющим, индуктивно связаны, каждая общая точка пары обмоток уравнительного устройства делит число витков между смежными с ней дополнительными выводами на неравные части, а реактанс уравнительного устройства дополняет разность реактансов вентильных цепей разного уровня подключения к первой обмотке до нуля. Второй вариант преобразователя отличается от первого тем, что содержит дополнительные вентили и три дополнительные индуктивно связанные обмотки уравнительного устройства, каждая с дополнительным выводом, которые соединены между собой и крайними выводами первой обмотки аналогично соединению трех основных обмоток уравнительного устройства с вентилями и промежуточными выводами первой обмотки, каждая общая точка, одна - пары основных обмоток, а другая - пары дополнительных обмоток уравнительного устройства, делит число витков между смежными с ней дополнительными выводами на попарно неравные друг с другом неравные части, а реактанс основных обмоток уравнительного устройства, выбранный управляющим, дополняет разность реактансов вентильных цепей разного уровня подключения к первой обмотке до нуля. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области электротехники и может быть использовано для преобразования трехфазного переменного напряжения в постоянное с периодичностью выпрямления 12N (где N=1, 2, 3, 4, …). Технический результат - повышение использования обмоток трансформатора по току и напряжению. Преобразователь содержит нулевой входной вывод, N (где N=1, 2, 3, 4, …) трехфазных управляемых вентильных мостов, подключенных входными выводами к одной и той же группе выводов первой группы фазных обмоток основного трехфазного трансформатора; одну пару магнитопроводов уравнительных реакторов (УР) с N парами их обмоток, одна пара крайних выводов которых подключена к одной паре разноименных электродов N пар дополнительных диодов, другая - к полюсам указанных мостов. Выходные выводы мостов образованы промежуточными выводами обмоток УР, делящими число витков каждой обмотки на неравные части. Вторая группа фазных обмоток трехфазного трансформатора подключена одноименными выводами к трем входным выводам дополнительного моста с управляемыми (неуправляемыми) вентилями при N≥2 (при N=1). Четвертый входной вывод дополнительного моста соединен с первым крайним выводом третьей группы фазных обмоток основного трехфазного трансформатора, соединенной в разомкнутый треугольник. Вентили управляемых мостов открыты на неравные углы. Межфазный распределитель тока выполнен на дополнительном трансформаторе, фазные обмотки которого подключены одними выводами и общей точкой других выводов соответственно к одноименным выводам первой группы фазных обмоток и к нулевому входному выводу. Каждая пара одноименных фазных обмоток первой и второй групп основного трехфазного трансформатора образует согласно последовательное соединение, подключенное свободным выводом к фазному входному выводу. Второй крайний вывод третьей группы фазных обмоток основного трехфазного трансформатора соединен с нулевым входным выводом, а ее первый крайний вывод, одноименный с выводом фазной обмотки, подключенным к фазному входному выводу, - с общей точкой электродов каждой пары дополнительных диодов. Согласно второму варианту упомянутый второй крайний вывод, одноименный с выводом фазной обмотки, подключенным к фазному входному выводу, соединен с нулевым входным выводом и с общей точкой электродов каждой пары дополнительных диодов. 2 н. и 4 з.п. ф-лы, 4 ил.

Использование: в области электротехники. Технический результат – повышение эффективности подачи питания. Источник электропитания содержит модули питания, каждый из которых содержит входной каскад и выходной каскад. Входной каскад генерирует промежуточное напряжение, а выходной каскад выдает напряжение питания постоянного тока по указанному промежуточному напряжению. Входные каскады управляются, по меньшей мере, одним первым общим управляющим сигналом с общим коэффициентом заполнения, а выходные каскады управляются, по меньшей мере, одним вторым общим управляющим сигналом с общим коэффициентом заполнения. 2 н. и 18 з.п. ф-лы, 6 ил.

Изобретение относится к области электротехники и может быть использовано для повышения энергетической эффективности однофазных потребителей, путем рекуперации большей части потребляемой энергии в сеть за счет межфазного распределения тока (МРТ). Техническим результатом является расширение диапазона рекуперации потребляемой энергии в случае использования для однофазных потребителей. Первый вариант устройства для межфазного распределения тока содержит два однофазных трансформатора, промежуточный вывод обмотки каждого из которых подключен к первой клемме потребителя, а крайние выводы - к фазным входным выводам. Вторая клемма потребителя подключена к общей точке двух крайних выводов упомянутых обмоток, число витков каждой из которых разделено промежуточным выводом на два неравных участка. К фазным входным выводам подключены участки обмоток с большим числом витков. Второй вариант устройства отличается от первого варианта тем, что промежуточный вывод каждой обмотки трансформатора делит ее число витков на равные участки. Согласно первому варианту диапазон рекуперации расширяется от величины, превышающей половину потребляемой энергии до величины, ограниченной только конструктивным усложнением трансформаторов МРТ, связанным с сильно выраженным неравенством сечений участков каждой фазной обмотки. Согласно второму варианту рекуперация равна половине потребляемой энергии. При этом сечения участков каждой фазной обмотки равны, что упрощает их изготовление. Магнитопроводы трансформаторов МРТ могут иметь различную конфигурацию, в том числе витую ленточную кольцевидной формы. 2 н.п. ф-лы, 1 ил.
Наверх