Применение шлама, образующегося на водоподготовительной установке, в качестве сорбента при очистке газовых выбросов тэс

Изобретение относится к области производства сорбентов. В качестве сорбента для очистки газов предложен шлам, образующийся при совместной коагуляции и известковании сырой воды на водоподготовительной установке тепловых электрических станций. Шлам имеет химический состав: CaCO3+MgO+Mg(OH)2+SiO2+Fe(OH)3+Al(OH)3. Используют высушенный шлам (влажность 20%). Фракцию шлама с диаметром частиц 0,9-1,4 мм используют для очистки от оксидов азота, а фракцию с диаметром частиц 0,1-0,2 мм - от оксидов серы. Изобретение обеспечивает очистку до достижения предельно допустимых концентраций диоксида азота и сернистого ангидрида в газовых выбросах ТЭС. 2 ил., 1 табл.

 

Изобретение относится к области производства новых газовых сорбентов и может быть использовано при очистке газовых выбросов на тепловых электрических станциях (ТЭС).

В качестве сорбентов для очистки технологических газовых выбросов известно применение множества материалов естественного и искусственного происхождения, в частности активированные угли [Проектирование аппаратов пылегазоочистки./Зиганшин М.Г., Колесник А.А., Посохин В.Н. М.: «Экспресс - ЗМ», 1998. - 505 с.- С.384-385]. Однако активированные угли являются дорогостоящими сорбентами и требуют последующей регенерации, что приводит к удорожанию процесса сорбционной очистки в целом.

Задачей изобретения является удешевление процесса сорбционной очистки газовых выбросов тепловых электрических станций (ТЭС) для достижения предельно допустимой концентрации оксидов азота и оксидов серы в очищенных газовых выбросах и расширение номенклатуры газовых сорбентов.

Технический результат достигается за счет применения шлама, образующегося при известковании и коагуляции сырой воды на водоподготовительной установке тепловых электрических станций (ТЭС) в качестве сорбента для очистки газовых выбросов ТЭС от оксидов азота и оксидов серы, причем при очистке газовых выбросов от оксидов азота используют фракцию шлама с размером частиц 0,9-1,4 мм, а при очистке от оксидов серы фракцию шлама с размером частиц 0,1-0,2 мм.

Химический состав шлама:

СаСО3+MgO+Mg(OH)2+SiO2+Fe(OH)3+Al(OH)3

На фиг.1 представлена зависимость изменения сорбционной емкости шлама от времени.

На фиг.2 представлена зависимость изменения сорбционной емкости шлама по отношению к оксидам азота и диоксиду серы от размера фракции шлама.

Пример конкретного выполнения

Шлам образуется на стадии предварительной очистки воды при совместной коагуляции семиводным сульфатом железа и известковании насыщенным раствором известкового молока сырой воды на водоподготовительной установке тепловых электрических станций.

Предварительная очистка осуществляется на основе методов, в результате реализации которых при дозировке специальных реагентов некоторые примеси выделяются из воды в виде шлама.

Основными технологическими процессами предварительной очистки воды являются коагуляция коллоидных примесей и известкование, которые обычно проводятся одновременно в одном аппарате - осветлителе в целях улучшения суммарного технологического эффекта и снижения денежных затрат.

Коагуляция семиводным сульфатом железа (FeSO42О) - физико-химический процесс слипания коллоидных частиц под действием сил молекулярного притяжения с образованием шлама и последующим выделением его из воды. При этом снижается содержание взвешенных веществ и коллоидных примесей, окисляемость.

Известкование реализуется при обработке исходной воды в осветлителях суспензией гашеной извести Са(ОН)2, называемой известковым молоком.

При известковании снижается щелочность обрабатываемой воды, жесткость, солесодержание, кремнийсодержание, железосодержание и одновременно из воды удаляются грубодисперсные примеси.

Процесс известкования основан на том, что при вводе гашеной извести Са(ОН)2, получаемой на водоподготовительной установке при взаимодействии СаО и Н2О, достигается повышение рН обрабатываемой воды до 10,1÷10,3, при котором НСО3- и СО2 переходят в СО32-. С учетом присутствия в обрабатываемой воде Са2+, Mg2+ и образовавшихся СО32-, избытка ОН- из воды выделяется шлам.

Образующийся осадок, содержащий 97-99% влаги, предварительно обезвоживается в цехе термической сушки, проходя по транспортной ленте через секции с установленными вентиляторами и систему регулирования расхода пара. Высушиваемый продукт засыпается в закрепленные на транспортной ленте перфорированные лотки и затем подается в бункер запаса, рассчитанный на сменный объем выработки.

Из бункера запаса винтовым конвейером высушенный гранулированный шлам подается в установку тонкого растирания, где размалывается до размеров не более 1,4 мм и подается на фасовку. Получение определенных фракций частиц шлама происходит на виброгрохоте ПЭ-6800.

Компонентный состав шлама, образующегося при известковании и коагуляции сырой воды на водоподготовительной установке тепловых электрических станций (ТЭС), представлен в таблице 1.

Таблица 1
Концентрация веществ, мас.%
Катионы
Са2+ Fe3+ Mg2+ Cu2+ Ni2+ Zn2+ Mn2+ Cr3+ Pb2+ Al3+ Hg2+
87±11,3 0,44±0,15 11±2,2 0,05±0,014 0,009±0,003 0,038±0,013 1,2±0,407 0,001±0,0003 0,002±0,0003 0,26±0,08 Следы
Анионы
CO32- SO42- ОН- SiO32- PO43-
81,5±10,6 6,5±0,85 11,4±3,61 0,6±0,11 Отсутствуют

Высушенный шлам применяют в качестве неподвижного слоя газового сорбента в адсорберах периодического действия при очистке газовых выбросов ТЭС от оксидов азота и оксидов серы, причем при очистке газовых выбросов от оксидов азота используют фракцию шлама с размером частиц 0,9-1,4 мм, а при очистке от оксидов серы - фракцию шлама с размером частиц 0,1-0,2 мм.

Сорбционные свойства шлама объясняются наличием сильнополярных функциональных групп гуминовых веществ природной воды. Анализ образца шлама методом газовой хромато-масс-спектроскопии выявил наличие функциональных групп гуминовых веществ: -ОН, -NH, -СН3, -СН2, ароматических С=С связей, С-О карбоксильных групп и ОН-спиртовых групп.

Результаты исследования сорбционных свойств шлама по отношению к оксидам азота и серы (фиг.1) показали, что сорбционная способность шлама реализуется в течение первых минут контакта и через 25 минут достигает 1,5 г/г по SO2 и 0,9 г/г по (NO)X), что составляет 150% и 90% соответственно.

Для исследования сорбционных свойств высушенного шлама в газовых средах с неподвижным слоем сорбента использовали лабораторный адсорбер. Газовая среда в течение экспериментов имела следующий процентный состав:

- в опытах по сорбции оксидов азота: О2 - 8-20%, N2 - 60-67%, оставшуюся часть объема составляет оксид углерода СО2, концентрация (NO)x в течение опыта изменялась в диапазоне 0…1750 мг/м3;

- в опытах по сорбции диоксидов серы: О2 - 4-5,7%, N2 - 75-78%, Н2О - 3%, концентрация SO2 в течение опыта изменялась в диапазоне 0…5500 мг/м.

Изучена зависимость сорбционных свойств шлама от фракционного состава (фиг.2).

Увеличение размера фракции шлама приводит к возрастанию сорбционной емкости оксидов азота, а по отношению к диоксиду серы - к уменьшению сорбционной емкости.

Эти результаты свидетельствуют о том, что при сорбции оксидов азота и диоксида серы шламом действуют различные механизмы сорбционного процесса.

Для сорбции диоксида серы наиболее важно увеличение удельной поверхности сорбента, достигаемое уменьшением размеров частиц шлама, что свидетельствует о химической природе взаимодействия или хемосорбции.

Для поглощения оксидов азота, наоборот, сорбция возрастает при увеличении размера частиц шлама. Это означает, что процесс происходит за счет взаимодействия в порах.

В области теплоэнергетики шлам, образующийся при известковании и коагуляции сырой воды на водоподготовительной установке тепловых электрических станций, в качестве сорбента при очистке газовых выбросов ТЭС не использовался, но учитывая его значительное количество, шлам является доступным и дешевым газовым сорбентом.

Таким образом, использование предлагаемого изобретения позволит удешевить процесс сорбционной очистки газовых выбросов тепловых электрических станций (ТЭС) для достижения предельно допустимой концентрации оксидов азота и оксидов серы в очищенных газовых выбросах (0,085 мг/м3 - диоксида азота, сернистого ангидрида - 0,5 мг/м3) и расширить номенклатуру газовых сорбентов.

Применение шлама, образующегося при известковании и коагуляции сырой воды на водоподготовительной установке тепловых электрических станций (ТЭС) химического состава
СаСО3+MgO+Mg(OH)2+SiO2+Fe(OH)3+Al(OH)3,
в качестве сорбента для очистки газовых выбросов ТЭС от оксидов азота и оксидов серы, причем при очистке газовых выбросов от оксидов азота используют фракцию шлама с размером частиц 0,9-1,4 мм, а при очистке от оксидов серы фракцию шлама с размером частиц 0,1-0,2 мм.



 

Похожие патенты:
Изобретение относится к биотехнологии и может быть использовано при безотходной очистке от аварийных разливов нефти и нефтепродуктов водных и твердых поверхностей.

Изобретение относится к способам сорбционной очистки вод от нефтепродуктов и может быть использовано при охране окружающей среды. .

Изобретение относится к материалам фильтрующего типа, предназначенным для очистки воздуха от паров и газов вредных химических веществ. .

Изобретение относится к нефтехимии, в частности к процессу глубокой десульфуризации дизельных углеводородных топлив. .

Изобретение относится к способам получения гранулированных адсорбентов. .
Изобретение относится к производству сорбентов для улавливания летучих форм радиоактивного йода и может быть использовано при изготовлении сорбентов для предотвращения радиоактивного выброса в окружающую среду при эксплуатационных режимах работы и при авариях на атомных электростанциях (АЭС), а также для очистки паровоздушных потоков от летучих соединений радиоактивного йода в технологических схемах по переработке отработавшего ядерного топлива.

Изобретение относится к удалению воды их корпусов различных устройств, чувствительных к присутствию влаги. .

Изобретение относится к области промышленной экологии. .

Изобретение относится к области химической технологии, а именно к получению очищенного от примесей бензола. .

Изобретение относится к адсорбционным газовым фильтрам для очистки воздуха в помещениях. .

Изобретение относится к технологическим процессам получения инертных газов и может быть использовано для получения криптоноксеноновой смеси из потока кислорода, отбираемого из воздухоразделительных установок (ВРУ) с содержанием в нем криптона и ксенона в объеме 0,05 0,5%.

Изобретение относится к технологическим процессам получения инертных газов и может быть использовано для получения ксенонового концентрата из потока ксеноносодержащего кислорода.
Изобретение относится к производству сорбентов для улавливания летучих форм радиоактивного йода и может быть использовано при изготовлении сорбентов для предотвращения радиоактивного выброса в окружающую среду при эксплуатационных режимах работы и при авариях на атомных электростанциях (АЭС), а также для очистки паровоздушных потоков от летучих соединений радиоактивного йода в технологических схемах по переработке отработавшего ядерного топлива.

Изобретение относится к модульным газоразделительным адсорберам. .

Изобретение относится к сорбентам для очистки воздуха в салонах (кабинах) транспортных средств, а также в жилых помещениях от кислых газов, паров воды и микроорганизмов.

Изобретение относится к адсорбционным газовым фильтрам для очистки воздуха в помещениях. .

Изобретение относится к технологическим процессам получения инертных газов
Наверх