Система терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников. СТР включает в себя жидкостный контур, заправленный теплоносителем. В жидкостном контуре установлены теплообменники приборов, радиатор, гидроаккумулятор и электронасосный агрегат (ЭНА). Гидроаккумулятор содержит газовую полость и отделенную от нее сильфоном жидкостную полость, соединенную с жидкостным трактом вблизи входа в ЭНА. Газовая полость частично заполнена требуемым количеством двухфазной рабочей жидкости (фреоном 141в) и дополнительно заправлена минимально необходимым количеством газообразного азота. Указанное количество определяется из уравнения газового состояния, где использовано минимально допустимое давление на входе в ЭНА для обеспечения его бескавитационной работы. В качестве остальных параметров приняты максимально возможный объем и минимально возможная температура газовой полости в условиях эксплуатации КА. Эти параметры подчинены условию бескавитационной работы ЭНА без включения в работу электрообогревателя гидроаккумулятора на участке выведения или в режиме аппаратной солнечной ориентации КА на орбите. Техническим результатом изобретения является обеспечение работоспособности СТР во всех реально возможных условиях эксплуатации КА, практически без дополнительного увеличения его массы. 2 ил.

 

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников.

Известны СТР КА (см. патенты Российской Федерации (РФ) №2209750 [1], №2329920 [2]), содержащие жидкостные контуры, в которых, в частности, установлены электронасосный агрегат (ЭНА), гидроаккумулятор, герметизированная газовая полость которого частично заполнена требуемым количеством двухфазной рабочей жидкости, предназначенной для создания необходимого рабочего диапазона давления пара рабочей жидкости, обеспечивающего, с одной стороны, безкавитационную работу ЭНА (для чего минимально допустимое рабочее давление в газовой полости, например, должно быть равно ≈0,2 кгс/см2 (≈20 кПа) и, с другой стороны, для обеспечения минимально возможных утечек теплоносителя из жидкостного контура в течение длительного срока эксплуатации КА на орбите (≈15 лет) (чем меньше давление - тем меньше утечки теплоносителя) и исходя из подтвержденного при наземных испытаниях длительного ресурса ЭНА -оптимальное давление рабочей жидкости в газовой полости должно быть (70-115) кПа - близко к атмосферному давлению ≈1 кгс/см2 (≈100 кПа) при номинальных рабочих температурных условиях гидроаккумулятора на орбите, равных от 15°С до 30°С. В результате исследований установлено, что таким вышеуказанным требованиям, а также по требованиям радиационной стойкости, удовлетворяет жидкость-фреон 141 в (см. л. 169-170 в «Справочник. Промышленные фторорганические продукты. Ленинград. «Химия» 1990). При этом в условиях эксплуатации на орбите изменение температуры рабочей жидкости в диапазоне от 15°С до 30°С обеспечивается периодическим включением в работу электрообогревателя с мощностью, например, 15 Вт, установленного на корпусе гидроаккумулятора.

Анализ работы и конструкции КА показывает, что для обеспечения минимально возможной массы его (за счет минимально возможной массы аккумуляторных батарей системы электропитания (СЭП)) необходимо, чтобы энергопотребление КА на участке выведения и в случае реализации режима аппаратной солнечной ориентации (РАСО) (например, из-за того, что бортовой компьютер «завис») на орбите было минимально возможное - при этом ЭНА должен функционировать штатно (т.е. устойчиво - без кавитации).

Проведенный анализ показал, что в случае запуска КА, например, в зимнее время или в РАСО (если такой режим случится - как показывает опыт, его нельзя исключать) температура газовой полости гидроаккумулятора при неработающем электрообогревателе может опускаться до минус 25 - минус 35°С. В этом случае давление паров рабочей жидкости будет практически близко к нулю (ниже ≈0,05 кгс/см2 (≈5 кПа)), и, следовательно, наступает кавитационный режим работы ЭНА и в жидкостном тракте СТР прекращается циркуляция теплоносителя и отвод избыточного тепла от работающих (функционально необходимых) приборов КА, что недопустимо.

Следовательно, для обеспечения работоспособности СТР в вышеуказанных случаях необходимо предусмотреть дополнительное количество электроэнергии - дополнительную массу в части аккумуляторных батарей СЭП.

Таким образом, существенным недостатком известных СТР является то, что для обеспечения работоспособности СТР во всех возможных (рассматриваемых) условиях эксплуатации КА необходимо предусмотреть повышенную массу его СЭП (около 1 кг).

Анализ источников информации по патентной и научно-технической литературе показал, что наиболее близким по технической сути прототипом предлагаемого технического решения является СТР КА согласно [1].

Известная вышеуказанная СТР включает (см. фиг.1) в себя: 1 - жидкостный контур, заправленный теплоносителем; 1.1 - ЭНА; 1.2 - теплообменники приборов; 1.3 - радиатор; 1.4 - гидроаккумулятор; 1.4.1 - корпус; 1.4.2 - электрообогреватель; 1.4.3 - датчик температуры; 1.4.4 - газовая полость, частично заполненная двухфазной рабочей жидкостью 1.4.5 - фреоном 141в; 1.4.6 - сильфон; 1.4.7 - жидкостная полость гидроаккумулятора, соединенная с жидкостным контуром вблизи входа в ЭНА.

Как показано выше, существенным недостатком известной СТР являются недостаточные функциональные ее возможности при всех возможных (рассматриваемых) условиях эксплуатации КА без обеспечения необходимого существенного повышения массы его.

Целью предлагаемого авторами технического решения является устранение вышеуказанного существенного недостатка.

Поставленная цель достигается тем, что СТР КА включает в себя жидкостный контур, заправленный теплоносителем, в котором установлены электронасосный агрегат, теплообменники приборов, радиатор и гидроаккумулятор, содержащий герметизированную газовую полость, заполненную частично требуемым количеством рабочей жидкости, разделенную сильфоном от жидкостной полости гидроаккумулятора, соединенной с жидкостным контуром системы, корпус, на котором установлены электрообогреватели и датчики температуры, при этом герметизированная газовая полость гидроаккумулятора дополнительно к рабочей жидкости заправлена газом-азотом в минимально возможном количестве, удовлетворяющем следующему условию:

,

где m - заправленная в газовую полость гидроаккумулятора минимально возможная масса газа-азота, кг;

Pкав - минимально допустимое давление на входе в ЭНА для обеспечения его безкавитационной работы согласно техническим условиям на него при минимально возможной в условиях эксплуатации температуре теплоносителя, Па;

VГ.П.макс - максимально возможный объем газовой полости гидроаккумулятора по данным его изготовления, м3;

R=296,8 Дж/(кг·град) - газовая постоянная для азота;

Tмин - минимально возможная расчетная температура газовой полости гидроаккумулятора в условиях эксплуатации, К,

что и является, по мнению авторов, существенными отличительными признаками предлагаемого авторами технического решения.

В результате анализа, проведенного авторами известной патентной и научно-технической литературы, предложенное сочетание существенных отличительных признаков заявляемого технического решения в известных источниках информации не обнаружено и, следовательно, известные технические решения не проявляют тех же свойств, что в заявляемой СТР КЛ.

На фиг.2 изображена принципиальная схема предлагаемой авторами СТР КА, где: 1 - жидкостный контур, заправленный теплоносителем; 1.1 - ЭНА; 1.2 - теплообменники приборов; 1.3 - радиатор; 1.4 - гидроаккумулятор; 1.4.1 - корпус; 1.4.2 - электрообогреватель; 1.4.3 - датчик температуры; 1.4.4 - газовая полость, частично заполненная двухфазной рабочей жидкостью - фреоном 141в плюс дополнительно газом-азотом определенного (не более 0,01 кг) количества:

где m - заправленная в газовую полость гидроаккумулятора минимально возможная масса газа-азота, кг;

Ркав - минимально допустимое давление на входе в ЭНА для обеспечения его безкавитационной работы согласно техническим условиям на него при минимально возможной в условиях эксплуатации температуре теплоносителя, Па;

VГ.П.макс - максимально возможный объем газовой полости гидроаккумулятора по данным его изготовления, м3;

R=296,8 Дж/(кг·град) - газовая постоянная для азота;

Tмин - минимально возможная расчетная температура газовой полости гидроаккумулятора в условиях эксплуатации, К;

1.4.6 - сильфон; 1.4.7 - жидкостная полость гидроаккумулятора, соединенная с жидкостным контуром вблизи входа в ЭНА 1.1.

Работа предложенной СТР в условиях эксплуатации КА происходит следующим образом.

На участке выведения КА, например, в зимнее время или в случае реализации режима аварийной солнечной ориентации КА в работу включены минимально возможное (необходимое) количество приборов, в том числе ЭНА (ретранслятор, электрообогреватель гидроаккумулятора (с целью экономии электроэнергии) - отключены), и температура теплоносителя в жидкостном контуре и в газовой полости гидроаккумулятора опускается до минус 25°С - минус 35°С. В этом случае сильфон гидроаккумулятора почти полностью растянут - (объем газовой полости равен приблизительно максимально возможному значению) и рабочее давление газа в газовой полости величиной не менее 0,2 кгс/см2 (20 кПа) практически полностью создает только дополнительно в нее заправленный газ-азот (рабочее тело - фреон 141в в этом случае практически полностью находится в жидкой фазе), достаточное для обеспечения безкавитационной работы ЭНА, и тем самым обеспечивается циркуляция теплоносителя в жидкостном контуре и, следовательно, обеспечивается требуемый тепловой режим работающих приборов КА.

После вывода КА на заданную орбиту или устранения режима РАСО (в результате отработки КА специальной программы) КА работает в штатном режиме: включены в работу приборы ретранслятора и другие необходимые приборы, работают ЭНА и периодически электрообогреватель гидроаккумулятора и необходимое рабочее давление (в диапазоне (0,7 - 1,15) кгс/см2 (70 кПа - 115 кПа) в газовой полости обеспечивают совместно пары двухфазной рабочей жидкости (фреона 141в) и газа (азота), что достаточно для безкавитационной работы ЭНА в течение требуемого длительного времени эксплуатации.

Таким образом, как видно из вышеизложенного, в результате выполнения СТР КА согласно предложенному авторами техническому решению обеспечивается работоспособность СТР во всех условиях эксплуатации КА, в т.ч., например, при запуске его в зимнее время или в случае реализации режима РАСО практически без дополнительного увеличения массы КА за счет отключения в этих случаях электрообогревателя гидроаккумулятора, т.е. тем самым достигается цель изобретения.

Система терморегулирования космического аппарата, включающая в себя жидкостный контур, заправленный теплоносителем, в котором установлены электронасосный агрегат, теплообменники приборов, радиатор и гидроаккумулятор, содержащий герметизированную газовую полость, заполненную частично требуемым количеством рабочей жидкости, отделенную сильфоном от жидкостной полости гидроаккумулятора, соединенной с жидкостным контуром системы, корпус, на котором установлены электрообогреватели и датчики температуры, отличающаяся тем, что герметизированная газовая полость гидроаккумулятора дополнительно к рабочей жидкости заправлена газом азотом в минимально возможном количестве, удовлетворяющем следующему условию:
,
где m - заправленная в газовую полость гидроаккумулятора минимально возможная масса газа азота, кг;
Ркав - минимально допустимое давление на входе в электронасосный агрегат для обеспечения его бескавитационной работы согласно техническим условиям на него при минимально возможной в условиях эксплуатации температуре теплоносителя, Па;
VГ.П.макс - максимально возможный объем газовой полости гидроаккумулятора по данным его изготовления, м3;
R=296,8 Дж/(кг·град) - газовая постоянная для азота;
Тмин - минимально возможная расчетная температура газовой полости гидроаккумулятора в условиях эксплуатации, К.



 

Похожие патенты:

Изобретение относится к устройству для отвода тепловых потерь, а также к системе ионного ускорителя с таким устройством. .

Изобретение относится к созданию и эксплуатации систем терморегулирования космических аппаратов, преимущественно телекоммуникационных спутников. .

Изобретение относится к созданию и отработке систем терморегулирования космических аппаратов (КА), преимущественно телекоммуникационных спутников. .

Изобретение относится к системам терморегулирования (СТР), преимущественно телекоммуникационных спутников. .

Изобретение относится к области создания и эксплуатации систем терморегулирования космических объектов и их элементов. .

Изобретение относится к космической технике, в частности к системам терморегулирования объектов, расположенных на космических аппаратах, и может быть использовано на предприятиях, занимающихся разработкой и эксплуатацией космической техники.

Изобретение относится к области космонавтики и касается устройств для изменения теплопередачи, а именно микроструктурных систем, содержащих упругие гибкие деформируемые исполнительные элементы.

Изобретение относится к космической технике и касается обеспечения требуемого температурного режима в герметичных отсеках космических аппаратов и станций. .

Изобретение относится к космической технике и касается проектирования автоматических космических аппаратов (КА) для эксплуатации на околоземных орбитах с приборными контейнерами, выполненными из сотопанелей с применением тепловых труб (ТТ).

Изобретение относится к наземному моделированию работы систем терморегулирования, преимущественно телекоммуникационных спутников, снабженных дублированными жидкостными контурами.

Изобретение относится к системам терморегулирования космических аппаратов, преимущественно телекоммуникационных спутников

Изобретение относится к космической технике, в частности к посадочным и перелетным межпланетным космическим аппаратам, и может быть использовано для обеспечения теплового режима электронного и другого оборудования, предназначенного для длительного, автономного функционирования на Луне, на Марсе, а также на Земле в суровых климатических условиях

Изобретение относится к области испытательной техники и направлено на создание простого и безопасного для операторов, работающих в герметично изолированных от внешних сред обитаемых помещениях, оперативного способа определения местонахождения негерметичного участка гидравлической магистрали системы терморегулирования объекта после установления факта негерметичности, что обеспечивается за счет того, что при осуществлении способа определения местоположения негерметичного участка замкнутой гидравлической магистрали, снабженной побудителем расхода и гидропневматическим компенсатором температурного изменения объема рабочего тела, снижают давление среды в газовой полости гидропневматического компенсатора до уровня стабилизации этого давления в пределах погрешности измерения

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников

Изобретение относится к конструкции космического аппарата (КЛ) и его бортовым, главным образом, терморегулирующим системам. КЛ конструктивно объединяет модули целевой аппаратуры и служебных систем и снабжен термостабилизирующим кожухом, выполненным в виде прямоугольного параллелепипеда. На боковых его сторонах закреплены трехслойные сотовые термопанели (ТП) с металлическими обшивками, между которыми встроены тепловые трубы (ТТ). На оболочке кожуха выполнен канал для жидкого теплоносителя с шагом, равным шагу расположения ТТ. Теплоноситель имеет тепловой и механический контакт с соответствующими ТТ. Протяженность канала, длина ТТ и шаг между ТТ выбраны так, чтобы перепады температуры кожуха вдоль двух взаимно перпендикулярных направлений не превышали допустимых. Одна из ТП стенок кожуха, в виде пятислойной сотовой панели, обеспечивает механический контакт модулей целевой аппаратуры и служебных систем. На внешних обшивках этой ТП уложены трубопроводы гидромагистрали. Другая торцевая ТП выполнена в виде металлической пластины с отверстиями под крышки целевой аппаратуры. Каждое отверстие соосно оптической оси соответствующей аппаратуры. На внутренней поверхности торцевой ТП расположены трубопроводы гидромагистрали. Внутри кожуха вдоль продольной оси КА параллельно боковым стенкам закреплена размерно-стабильная несущая конструкция (например, из углепластика) для целевой аппаратуры. Обеспечивающие приборы модуля целевой аппаратуры установлены на верхней торцевой стенке кожуха. Кожух с внешней стороны изолирован от космического пространства экранно-вакуумной теплоизоляцией. Техническим результатом изобретения является повышение качества, в т.ч. точности получаемой КА целевой информации при сохранении его ресурсных характеристик. 4 ил.

Изобретение относится к системам термостатирования (СТС) энергоемкого оборудования космических объектов (КО). СТС содержит две двухполостные жидкостные термоплаты (22), на которые устанавливается оборудование. Термоплаты размещены в приборной зоне обитаемого отсека (1). Внешний радиатор (12) выполнен в виде четырех попарно диаметрально противоположных радиаторных панелей (14). Панель (14) снабжена контурной тепловой трубой с конденсатором (15), размещенным внутри панели (14), и испарителем (19) в составе конструкции автономного теплопередающего элемента (16), установленного на внешней поверхности корпуса КО рядом с панелью (14). Элемент (16) содержит также две однополостные жидкостные термоплаты (18). Испаритель (19) снабжен регулятором температуры пара (17), перекрывающим или открывающим магистраль контурной тепловой трубы в зависимости от температуры настройки. Термоплаты (22) связаны гидравлическими контурами (13, 21) с соответствующими однополостными жидкостными термоплатами (18) элементов (16). образуя замкнутые магистрали с однофазным рабочим телом. Каждый из контуров (13, 21) содержит электронасос (3), дренажно-заправочные клапаны (5), гидропневматический компенсатор (8), датчики давления (4, 7) и расхода (10), регулятор расхода (11) и электронагреватели (23). Каждый из контуров (13, 21) имеет датчики температуры рабочего тела (20). Заменяемые элементы контуров включены в магистрали через гидравлические разъемы (2). Ввод магистралей в обитаемый отсек (1) организован через гермовводы (6). СТС также содержит двухполостной газожидкостный теплообменный агрегат (24) с двумя заменяемыми вентиляторами, включенный в оба контура (13, 21). Техническим результатом изобретения является расширение области применения СТС, повышение ее надежности и снижение инерционности, а также улучшение ремонтопригодности системы. 1 ил.

Изобретения относятся к эксплуатации систем терморегулирования (СТР), преимущественно пилотируемых космических объектов, а также могут быть использованы в ряде областей наземной научно-технической и хозяйственной деятельности. Устройство предназначено для дозаправки в полете гидравлической магистрали СТР (системы термостатирования), снабженной гидропневматическим компенсатором (ГПК) расширения рабочего тела (РТ). Это устройство содержит двухполостную емкость для РТ и пневмоарматуру, позволяющую контролировать текущий объем газовой полости ГПК. Контроль основан на вытеснении РТ в гидравлическую магистраль СТР из емкости с РТ под действием перепада давлений между газовой полостью указанной емкости и данной магистралью. При этом исходный объем газовой полости ГПК измеряют при давлении воздуха P1, равном давлению в герметичном обитаемом помещении. Перепад создают путем наддува газовой полости емкости с РТ до максимально допустимого рабочего давления в гидравлической магистрали. При вытеснении РТ в магистраль контролируют давление в газовой полости ГПК. Вытеснение РТ прекращают при достижении указанным давлением определенной величины, зависящей от , P1 и расчетного объема ΔV дозаправляемой дозы РТ. Проводят повторное измерение объема газовой полости ГПК и при выполнении соотношения делают заключение о завершении операции контроля. Технический результат изобретений состоит в расширении функциональных возможностей и многократности использования устройства, уменьшении его массы и габаритов, повышении надежности процесса контроля и дозаправки. 2 н.п. ф-лы, 1 ил.

Изобретение относится к системам энергоснабжения и терморегулирования космических аппаратов (КА). Система терморегулирования КА содержит приборы для отбора, подвода и сброса тепла. Система энергоснабжения КА содержит солнечную батарею, комплекс автоматики и стабилизации напряжения, аккумуляторные батареи (АБ), устройства контроля АБ. В составе КА имеется также бортовой комплекс управления с бортовой вычислительной машиной (БВМ). При этом устройства контроля АБ включены в канал обмена информацией между указанными комплексом автоматики и стабилизации напряжения и БВМ. Последняя снабжена программой контроля тока нагрузки КА и перераспределения токов разряда каждой АБ. Ток разряда каждой АБ устанавливают по току нагрузки КА, текущей емкости данной АБ и суммарной емкости АБ, с учетом разницы напряжения нагрузки и среднего разрядного напряжения АБ. Дополнительно БВМ может быть снабжена программой контроля величины избыточной мощности солнечной батареи и управления токами заряда каждой АБ. Эти токи вычисляются по указанной избыточной мощности, среднему зарядному напряжению АБ и указанным текущей и суммарной емкостям АБ. Техническим результатом изобретения является повышение эффективности использования комплекта аккумуляторных батарей и улучшение эксплуатационных возможностей системы электропитания и КА в целом. 3 з.п. ф-лы, 1 ил.

Группа изобретений относится к системам терморегулирования (СТР), преимущественно, космических аппаратов, может быть использована при их подготовке к летной эксплуатации, а также в других областях. В предлагаемом способе перед заполнением отвакуумированной гидравлической магистрали рабочим телом измеряют максимальный объем ( V Г П К и з м ) газовой полости гидропневматического компенсатора (ГПК). Заполняют эту полость газом с давлением, большим, чем давление вытесняющего газа над зеркалом рабочего тела в баке заправщика. После заполнения магистрали рабочим телом измеряют его среднемассовую температуру. Устанавливают в газовой полости ГПК исходное давление газа, определенное по измеренному ( V Г П К и з м ) и расчетному рабочему ( V Г П К р а б ) объемам газовой полости, расчетному рабочему давлению (Pраб) в ней и высоте столба рабочего тела от точки подключения жидкостной полости ГПК к магистрали до верхней точки этой магистрали. Затем заполняют рабочим телом жидкостную полость ГПК, контролируя текущее давление газа в газовой полости ГПК, и при достижении им величины Pраб прекращают заполнение данной полости. Устройство для осуществления способа включает в себя заправщик с заправочным и дренажным баками, вакуумный агрегат, источник давления газа, необходимые заправочное, дренажное и управляющее оборудование с соответствующей арматурой. Группа изобретений позволяет исключить операцию тарированного слива и связанных с ней дальнейших операций по нейтрализации и утилизации слитого рабочего тела. Техническим результатом группы изобретений является повышение надежности и безопасности технологического процесса заправки СТР, а также сокращение времени этого процесса. 2 н.п. ф-лы, 1 ил.

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), в частности телекоммуникационных спутников. СТР включает в себя замкнутый жидкостный контур с циркулирующим теплоносителем. Контур содержит такие элементы, как электронасосный агрегат, гидроаккумулятор, коллекторы приборных панелей и панелей радиаторов. Указанные элементы сообщены между собой участками соединительных трубопроводов, проходные входные и выходные сечения которых те же, что и соответствующие им сечения данных элементов. Часть участков соединительных трубопроводов выполнена с одинаковым номинальным эквивалентным внутренним диаметром, меньшим, чем диаметры остальных частей, и с суммарной длиной, удовлетворяющей определенному соотношению. Технический результат изобретения состоит в уменьшении нескомпенсированного кинетического момента от работающей СТР и, следовательно, в снижении массовых затрат рабочего тела системы ориентации и стабилизации КА. 1 ил.

Изобретение относится к системам терморегулирования космических аппаратов, преимущественно телекоммуникационных спутников

Наверх