Способ получения оксида-дииодида диевропия eu2oi2

Изобретение относится к области получения бинарных соединений, а именно оксоиодидов европия(II), применяемых в качестве компонентов люминесцентных материалов, и касается способа получения оксида-дииодида диевропия Eu2OI2. Добавляют реагенты к исходному иодидному производному европия с последующим нагреванием смеси, выдерживают при повышенной температуре, затем охлаждают до комнатной температуры, в качестве исходного иодидного производного европия используется нонагидрат иодида европия(III), в качестве реагента используется тиокарбамид, а массовое соотношение исходное иодидное производное европия : реагент равно (5.10-5.30):1, нагревание смеси ведут со скоростью 8-12 град/мин до температуры 270-320°С с последующим выдерживанием в течение 1-2 часов и дальнейшим охлаждением до комнатной температуры со скоростью 3-5 град/мин. Изобретение дает возможность повысить выход оксида-дииодида диевропия до 95%, упростить процесс за счет исключения использования пожароопасных реагентов, наносящих ущерб экологической обстановке, снизить энергозатраты за счет снижения температуры процесса и уменьшения времени выдерживания при высокой температуры с 10 до 1-2 часов. 7 пр.

 

Изобретение относится к области получения бинарных соединений, а именно оксоиодидов, европия(II), применяемых в качестве компонентов люминесцентных материалов.

Известен способ получения оксоиодида европия путем обезвоживания гексагидрата иодида европия(III) в высоком вакууме до безводного иодида, который (без очистки сублимацией) выдерживают в потоке влажного воздуха до прекращения отщепления иода, а затем кратковременным нагреванием продукта в вакууме переводят его в оксоиодид европия(III) состава EuOI [Barnighausen H., J.Prakt. Chem. 14, 313 (1961); Руководство по неорганическому синтезу: в 6-ти томах. Т.4. Пер. с нем. / Под ред. Г.Брауэра. - М.: Мир, 1985, с.1176.]. Недостатком данного способа является невозможность получения оксоиодида европия(II).

Известен способ получения оксоиодида самария(II) путем взаимодействия безводного иодида самария(III), оксоиодида самария(III), иодида натрия и металлического натрия в запаянном танталовом реакторе [Stefanie Hammerich and Gerd Meyer, Acta Crystallogr. 2005, E61, i234-236]. В результате образуется оксоиодид самария(II) состава Eu4OI6. Данный способ неприменим для получения оксоиодида европия, поскольку исходный безводный иодид европия(III) не существует. Таким образом, недостатком данного способа является невозможность получения оксоиодида европия(II) состава Eu2OI2.

Известен также способ получения оксоиодида европия(II) как побочного продукта при попытке синтезе цианамидного соединения европия(II) [W.Liao, R.Dronskowski, Acta Crystallogr. 2004, C60, i23-i24]. Однако в результате применения данного способа образуется оксоиодид европия(II) иного состава, а именно: Eu4OI6.

Наиболее близким техническим решением к предлагаемому изобретению является способ получения оксида-дииодида диевропия Eu2OI6 путем добавления к исходному иодидному производному европия реагентов - металлического бария и иодида аммония с последующим нагреванием смеси в вакуумированном танталовом реакторе до 780°С, выдерживанием в течение 10 часов, охлаждением до 500°С со скоростью 1 град/мин и затем - до комнатной температуры. Массовое отношение исходное иодидное производное европия : смесь реагентов по известному способу равно 4,88:1. [Stefanie Hammerich and Gerd Meyer, Z.Anorg. Allg. Chem. 2006, 632, 1244-1246] (Прототип). Исходное иодидное производное европия представляет собой смесь дииодида европия EuI2 и оксида-гексаиодида тетраевропия Eu4OI6. Эту смесь предварительно получают путем иодирования металлического европия, а добавление реагентов ведут в аргоновой камере. Однако способ сложен, поскольку связан с применением высоких температур, вакуумного оборудования и пожароопасных реагентов (металлический барий, металлический европий), а выход оксида-дииодида диевропия не превышает 87%.

Технический результат заявляемого способа заключается в повышении выхода оксида-дииодида диевропия и упрощении процесса.

Указанный технический результат достигается способом получения оксида-дииодида диевропия Eu2OI2 путем добавления реагентов к исходному иодидному производному европия и нагревания смеси, с последующим выдерживанием и затем - охлаждением до комнатной температуры; в качестве исходного иодидного производного европия используется кристаллогидрат иодида европия(III), в качестве реагента используется тиокарбамид, а массовое соотношение исходное иодидное производное европия : реагент равно (5.10-5.30):1. Нагревание смеси ведут со скоростью 8-12 град/мин до температуры 270-320°С с последующим выдерживанием в течение 1-2 часов и дальнейшим охлаждением до комнатной температуры со скоростью 3-5 град/мин.

Таким образом, предложенный способ дает возможность повысить выход оксида-дииодида диевропия до 95%, а также упростить процесс за счет исключения использования пожароопасных реагентов (металлический барий, металлический европий), наносящих ущерб экологической обстановке, снизить энергозатраты за счет снижения температуры процесса (с 780 до 300°С) и уменьшения времени выдерживания при высокой температуры с 10 до 1-2 часов.

В качестве иодидного производного европия используется кристаллогидрат иодида европия(III), который легко получается при растворении оксида европия(III) в иодоводородной кислоте (без предварительной очистки последней от загрязняющего ее иода), с последующим выпариванием раствора, кристаллизацией EuI3·9H2O, отделением кристаллов от раствора фильтрованием и сушкой их в эксикаторе над плавленым хлоридом кальция. В качестве добавляемых реагентов используют тиокарбамид, который способен образовывать с кристаллогидратами иодидов лантаноидов аддукты - внешнесферные комплексы, которые являются вероятными промежуточными продуктами термического разложения. Максимальная устойчивость предполагаемых аддуктов и наибольшая степень превращения исходных веществ в указанные промежуточные продукты отвечает заявляемому интервалу массовых соотношений исходного иодидного производного европия и добавляемого реагента, равному (5.10-5.30):1.

Таким образом, связанные молекулы тиокарбамида, по-видимому, могут проявлять специфическую восстановительную способность по отношению к атомам европия в степени окисления +III. В данном случае свойства тиокарбамида как восстановителя выявляются уже при сравнительно низкой температуре (270-320°С), что служит показателем специфичности процесса в заявляемом интервале температуры и скорости нагревания, а также длительности выдерживания образцов при высокой температуре.

Примеры осуществления изобретения.

Пример 1.

Для получения иодида европия(III) мы растворяли 25 г Eu2(СО3)3·3Н2О в 80 мл 57%-ной иодоводородной кислоты. При этом кислоту вводили в реакционную смесь постепенно. Полученный раствор иодида европия(III) выпарили на электроплитке до образования пленки кристаллов, а затем охладили до выпадения осадка. Кристаллы отделили от маточного раствора вакуумным фильтрованием и поместили в эксикатор (осушитель - гидроксид натрия) с целью удаления избытка иодоводородной кислоты и примеси иода. В результате получили 28 г EuI3·9Н2О.

К 3.00 г полученного нонагидрата иодида европия(III) добавили 0.57 г тиокарбамида (массовое соотношение исходное иодидное производное европия: реагент равно 5.26:1), нагрели в тигле на водяной бане до 80°С со скоростью 2 град/мин; затем нагрели в муфельной печи от 22°С до 300°С за 30 мин (скорость нагрева - 10 град/мин) с последующей выдержкой при 300°С в течение 90 мин и охлаждением до комнатной температуры со скоростью 4 град/мин.

Потеря массы составила 69.5%.

Полученный продукт исследовали методом рентгенофазового анализа с использованием рентгеновского дифрактометра ДРОН-3М (съемка на отражение, CuKα - излучение, вращение образца, графитовый плоский монохроматор; непрерывный режим: 1 градус в минуту, шаг 0.02°). Сравнение рентгенограммы образца, содержащего европий, с базой ASTM показало, что образец содержит Eu2OI2, а также аморфные примеси.

Результаты анализа:

найдено Eu 50.42 мас.%;

вычислено для Eu2OI2 52.97 мас.%.

Выход Eu2OI2 равен 95%.

Пример 2.

К 4.00 г нонагидрата иодида европия(III), полученного так, как описано в примере 1, добавили 0.78 г тиокарбамида (массовое соотношение исходное иодидное производное европия : реагент равно 5.10:1), нагрели в тигле на водяной бане до 80°С со скоростью 2 град/мин; затем нагрели в муфельной печи от 22°С до 280°С за 20 мин (скорость нагрева - 8 град/мин) с последующей выдержкой при 280°С в течение 60 мин и охлаждением до комнатной температуры со скоростью 4 град/мин. Выход продукта составил 89%.

Пример 3.

К 4.50 г нонагидрата иодида европия(III), полученного так, как описано в примере 1, добавили 0.87 г тиокарбамида (массовое соотношение исходное иодидное производное европия : реагент равно 5.15:1), нагрели в тигле на водяной бане до 80°С со скоростью 2 град/мин; затем нагрели в муфельной печи от 22°С до 290°С за 20 мин (скорость нагрева - 8 град/мин) с последующей выдержкой при 290°С в течение 60 мин и охлаждением до комнатной температуры со скоростью 3 град/мин. Выход продукта составил 92%.

Пример 4.

К 2.00 г нонагидрата иодида европия(III), полученного так, как описано в примере 1, добавили 0,39 г тиокарбамида (массовое соотношение исходное иодидное производное европия : реагент равно 5.20:1), нагрели в тигле на водяной бане до 80°С со скоростью 2 град/мин; затем нагрели в муфельной печи от 22°С до 310°С за 20 мин (скорость нагрева - 11 град/мин) с последующей выдержкой при 310°С в течение 120 мин и охлаждением до комнатной температуры со скоростью 5 град/мин. Выход продукта составил 91%.

Пример 5.

К 2.50 г нонагидрата иодида европия(III), полученного так, как описано в примере 1, добавили 0,47 г тиокарбамида (массовое соотношение исходное иодидное производное европия : реагент равно 5.30:1), нагрели в тигле на водяной бане до 80°С со скоростью 2 град/мин; затем нагрели в муфельной печи от 22°С до 320°С за 20 мин (скорость нагрева - 12 град/мин) с последующей выдержкой при 320°С в течение 120 мин и охлаждением до комнатной температуры со скоростью 5 град/мин. Выход продукта составил 89%.

Пример 6.

К 5.00 г нонагидрата иодида европия(III), полученного так, как описано в примере 1, добавили 0,97 г тиокарбамида (массовое соотношение исходное иодидное производное европия : реагент равно 5.18:1), нагрели в тигле на водяной бане до 80°С со скоростью 2 град/мин; затем нагрели в муфельной печи от 22°С до 270°С за 20 мин (скорость нагрева - 8 град/мин) с последующей выдержкой при 270°С в течение 60 мин и охлаждением до комнатной температуры со скоростью 3 град/мин. Выход продукта составил 86%.

Пример 7.

К 3.50 г нонагидрата иодида европия(III), полученного так, как описано в примере 1, добавили 0,67 г тиокарбамида (массовое соотношение исходное иодидное производное европия : реагент равно 5.25:1), нагрели в тигле на водяной бане до 80°С со скоростью 2 град/мин; затем нагрели в муфельной печи от 22°С до 275°С за 20 мин (скорость нагрева - 9 град/мин) с последующей выдержкой при 275°С в течение 60 мин и охлаждением до комнатной температуры со скоростью 4 град/мин. Выход продукта составил 87%.

Способ получения оксида-дииодида диевропия Eu2OI2 путем добавления к исходному иодидному производному европия реагентов с последующим нагреванием смеси, выдерживанием при повышенной температуре и охлаждением, отличающийся тем, что в качестве исходного иодидного производного европия используется кристаллогидрат иодида европия(III), в качестве реагента используется тиокарбамид, массовое соотношение исходное иодидное производное европия: реагент равно (5,10-5,30):1, а нагревание смеси ведут со скоростью 8-12°С/мин до температуры 270-320°С с последующим выдерживанием в течение 1-2 ч и дальнейшим охлаждением до комнатной температуры со скоростью 3-5°С/мин.



 

Похожие патенты:

Изобретение относится к гидрометаллургической переработке минерального сырья, в частности к скандийсодержащим «хвостам», полученным при обогащении титаномагнетитовых руд методом мокрой магнитной сепарации.
Изобретение относится к гидрометаллургии редких металлов, в частности к области извлечения редкоземельных элементов при комплексной переработке технологических и продуктивных растворов.

Изобретение относится к способам выделения дезактивированных редкоземельных элементов (РЗЭ) при азотно-кислотной переработке апатитового концентрата из азотно-фосфорнокислых растворов.
Изобретение относится к металлургии цветных металлов, а именно к получению оксида скандия из красного шлама производства глинозема. .

Изобретение относится к области координационной химии, конкретно к приготовлению исходных реагентов для синтезов, исключающих присутствие молекул воды. .

Изобретение относится к гидрометаллургии, в частности к способу извлечения европия (III) из растворов солей флотоэкстракцией. .

Изобретение относится к области извлечения веществ органическими экстрагентами из водных растворов, в частности к способу получения катионов самария (III) из бедного или техногенного сырья с помощью метода жидкостной экстракции.

Изобретение относится к цветной металлургии, а именно к извлечению оксида скандия из бедного скандиевого концентрата. .

Изобретение относится к люминесцентным в видимой области спектра комплексным соединениям лантаноидов с органическими лигандами, применяемым в электролюминесцентных устройствах, средствах защиты ценных бумаг и документов от фальсификации и др.

Изобретение относится к электролитическим способам получения чистого гексаборида лантана. .
Изобретение относится к технологии комплексной переработки фосфогипса, получаемого в сернокислотном производстве минеральных удобрений из апатитового концентрата, и может быть использовано для производства концентрата редкоземельных элементов (РЗЭ), а также фосфогипса, пригодного для производства гипсовых строительных материалов и цемента
Изобретение относится к области утилизации отходов производства и охраны окружающей среды и может быть использовано в химической промышленности, в производстве строительных материалов, а также в других отраслях производства, связанных с применением гипсового вяжущего и редкоземельных элементов

Изобретение относится к области получения нано- и микрочастиц оксидов металлов, а именно оксида церия, в сверхкритической воде и может найти применение в получении материалов и соединений высокой чистоты и с уникальными свойствами
Изобретение относится к области неорганической химии, в частности к разработке синтеза сверхпроводников на основе купратов редкоземельного элемента и бария (LnBa2Cu3 O7-б, где Ln - редкоземельные элементы)

Изобретение относится к неорганическим красителям, а именно к неорганическим пигментам, в частности, к составам для окрашивания на основе молибдата кальция, допированного редкоземельным элементом церием с окраской от оранжево-желтого до желтого цвета, которые могут быть использованы в лакокрасочной промышленности, производстве пластмасс, керамики, строительных материалов

Изобретение относится к области неорганической химии, а именно к способу получения порошков твердых растворов оксисульфидов редкоземельных элементов, для изготовления керамических изделий, люминофоров и лазерных материалов. Способ получения порошков твердых растворов оксисульфидов лантана, неодима, праозеодима и самария включает приготовление шихты из заданных масс весовых форм оксидов редкоземельных элементов, растворенных в азотной кислоте, осаждение концентрированной серной кислотой из полученного раствора сульфатов редкоземельных элементов, выпаривание образовавшейся суспензии на воздухе при 70-90°С до сухого состояния, ее растирание и прокаливание при температуре 600°С в течение 1,5 часа, далее растирание до мелкодисперсного состояния и обработку в потоке водорода при скорости подачи газа 6 экв/час по отношению к массе навески сульфатов редкоземельных элементов при следующих температурах и продолжительностях термических обработок 600°С - 10 часов, 700°С - 5 часов и 850°С - 1 час. Изобретение обеспечивает эффективное получение порошков твердых растворов оксисульфидов редкоземельных элементов высокой фазовой однородности и сокращение продолжительности высокотемпературной обработки. 2 пр.
Изобретение относится к неорганической химии и касается способа получения комплексного хлорида скандия и щелочного металла. Металлический скандий смешивают с дихлоридом свинца и солью щелочного металла. Полученную шихту помещают в тигель с инертной атмосферой и нагревают до температуры реакции в присутствии металлического свинца и выдерживают при температуре, превышающей температуру плавления смеси солей на 50-100°С, в течение 10-30 минут. Металлический скандий используют в компактном виде в форме кусков. В качестве соли щелочного металла используют хлориды металлов. В исходной шихте используют смесь хлоридных солей щелочных металлов. Изобретение обеспечивает упрощение способа получения и повышение качества получаемого комплексного хлорида скандия и щелочного металла за счет рафинирования скандия от примесей. 3 з.п. ф-лы, 2 пр.
Изобретение относится к области неорганической химии, а именно к получению порошков, которые могут применяться в лазерной технике и оптическом приборостроении. Способ получения порошков фторсульфидов редкоземельных элементов (РЗЭ) включает приготовление шихты и последующую ее термическую обработку. Готовят шихту из порошка полуторных сульфидов редкоземельных элементов с размерами частиц от 1 до 30 мкм и порошка трифторидов редкоземельных элементов с размерами частиц 10-70 нм при мольном соотношении 1:1. Термическую обработку шихты проводят при температуре 650-800°C в течение 20-30 минут в атмосфере аргона, сульфидирующих газов - H2S+CS2 и фторирующих газов - C2F4, CF4, полученных при пиролизе тефлона. Обеспечивается получение фазово-однородных порошков фторсульфидов РЗЭ. 2 пр.

Изобретение относится к области переработки отходов, в частности золошлаковых отходов ТЭЦ. Золу от сжигания углей помещают в реакционную зону, добавляют углеродный сорбент в количестве 10-25 кг на тонну золы. Затем производят обработку смесью фторида аммония и серной кислоты, нагревают до 120-125°C, выдерживают в течение 30-40 минут. Образующийся в результате обработки тетрафторсилан поглощают фторидом аммония. В полученный раствор тетрафторсиликата аммония вводят раствор гидроокиси аммония до осаждения диоксида кремния. Затем добавляют концентрированную серную кислоту в двукратном избытке к содержащемуся в остатке алюминию, выдерживают при температуре 250°C в течение 1,5 часа и обрабатывают водой. Твердый остаток прокаливают при температуре 800°C. Способ обеспечивает получение из отходов ряда продуктов: высокодисперсного диоксида кремния, сульфата алюминия, концентрата редких и редкоземельных элементов. 1 з.п. ф-лы, 6 табл., 2 пр.
Наверх