Способ получения нанокомпозиций серебра на основе синтетических водорастворимых полимеров

Изобретение относится к способу получения композиций наночастиц серебра на основе водорастворимых синтетических сополимеров. Способ заключается в восстановлении ионов серебра в присутствии водорастворимого полимера. В качестве полимеров используют сочетающие одновременно свойства восстановителя ионов серебра и стабилизатора образующихся наночастиц, сополимеры 2-диокси-2-метакриламидо-D-глюкозы с 2-диметиламино-этилметакрилатом или 2-диэтиламиноэтилметакрилатом общей формулы

где R:

в случае R1 n, m=5-95 мол.%, а для R2 n=63-95 мол.%, m=5-37 мол.%, характеристическая вязкость [η]=0,06-0,30 дл/г. Способ реализуют взаимодействием указанных полимеров с AgNO3 в водном растворе при комнатной температуре и естественном освещении при концентрации полимера 0,010-0,100 г/мл, концентрации AgNO3 - 0,001-0,01 г/мл. Технический результат - получение наночастиц серебра при комнатной температуре при обычном освещении и без использования инертной атмосферы. 2 табл., 34 пр.

 

Изобретение относится к химии высокомолекулярных соединений, а именно к процессам получения композиций наночастиц серебра и водорастворимых синтетических сополимеров.

В нанокомпозитах серебра полимеры выполняют роль стабилизатора, образуя на поверхности наночастиц защитную оболочку. Известны нанокомпозиты на основе водорастворимых синтетических полимеров: поли-N-винилпирролидона, полиэтиленгликоля, поливинилового спирта, полиамидоаминовых дендримеров, поливинилтриазолов [Qin W., Tursen J. Anal. Sci. 2009. V.25. №3. P.333-337; Esumi K., Suzuki A., Yamahira A., Torigoe К. Langmuir. 2000. V.16. №6. P.2604-2608; Мячина Г.Ф., Коржова С.А., Ермакова Т.Г. и др. ДАН. 2008. Т.420. №3. С.344-345]. Наряду с синтетическими используются и природные полимеры - полисахариды: крахмал, арабиногалактан и др. [Valodkar M., Bhadoria A., Pohnerkar J. et al. Carbohydrate Res. 2010. V.34. №12. P.1767-1773; Huang, H.; Yuan, Q.; Yang, X. Colloids and Surfaces B: Biointerfaces. 2004. V.39. №1-2. P.31-37]. Традиционные методы синтеза наночастиц металлов предполагают использование восстанавливающих агентов: аскорбиновой кислоты, цитрата натрия, тетрабората натрия, моно- и дисахаридов, а также повышенной температуры и/или излучения [Bernabo M., Pucci A., Galembeck F. et al. Macromol. Mater. Eng. 2009. V.294. №4. P.256-264; Valodkar M., Bhadoria A., Pohnerkar J. et al. Carbohydrate Res. 2010. V.34. №12. P.1767-1773; Donati I., Travan A., Pelillo C. et al. Biomacromolecules. 2009. V.10. №2. P.210-213; Huang, H.; Yuan, Q.; Yang, X. Colloids and Surfaces B: Biointerfaces. 2004. V.39. №1-2. P.31-37; Panacek A., Kvitek L., Prucek R. et al. J. Phys. Chem. B. 2006. V.110. №33. P.16248-16253; Афиногенов Г.Е, Копейкин В.В, Панарин Е.Ф. РФ №2128047, A61K 31/79, 33/38, 27.03.1999].

Последнее из указанных технических решений является наиболее близким по сущности и достигаемому результату.

Существенным и очевидным недостатком прототипа является необходимость проведения восстановления ионов серебра при повышенной до 65-75°C температуре в темноте в инертной атмосфере.

Технической задачей и положительным результатом заявляемой композиции и способа ее получения является получение наночастиц Ag0 при комнатной температуре при обычном освещении и без использования инертной атмосферы.

Указанная задача и результат достигаются за счет того, что в качестве восстановителя ионов серебра и стабилизатора образующихся наночастиц Ag0 используются водорастворимые синтетические сополимеры 2-диокси-2-метакриламидо-D-глюкозы (МАГ) с 2-диметиламиноэтилметакрилатом (ДМАЭМ) или 2-диэтиламиноэтилметакрилатом (ДЭАЭМ) общей формулы

где R:

в случае R1 n, m=5-95 мол.%, а для R2 n=63-95 мол.%, m=5-37 мол.%, характеристическая вязкость [η]=0,06-0,30 дл/г, при этом способ реализуют взаимодействием указанных полимеров с AgNO3 в водном растворе при комнатной температуре и естественном освещении при концентрации полимера 0,010-0,100 г/мл, концентрации AgNO3 - 0,001-0,01 г/мл.

Далее приводятся Примеры получения композиций наночастиц серебра на основе водорастворимых полимеров.

Предварительно получают исходные (со)полимеры.

Пример 1. 8,0 г 2-диокси-2-метакриламидо-D-глюкозы (МАГ), 0,16 г динитрила азо-бис-изомасляной кислоты (ДИНИЗ) растворяли в 34 мл диметилформамида (ДМФА). Радикальную полимеризацию МАГ проводили в продутой аргоном запаянной ампуле при 60°C в течение 24 часов.

Полученный полимер осаждали в диэтиловый эфир, затем низкомолекулярные примеси удаляли диализом против воды в течение 24 часов. Выход полимера составил 7,1 г (89%), характеристическая вязкость [η]=0,20 дл/г, молекулярная масса (MM) - 73000 (Таблица 1).

Примеры 2-17 выполнены в условиях примера 1.

В случае оп. 2, 3 в качестве реакционной среды использовали воду и изопропиловый спирт соответственно. В оп.2 инициатором полимеризации служила смесь (NH4)2S2O8 + тетраметилэтилендиамин (ТМЕДА). В оп.2, 3 не проводилось высаждение полимеров, по окончании полимеризации реакционную смесь подвергали диализу против воды, а затем лиофильной сушке.

Условия синтеза и характеристики полученных (со)полимеров представлены в таблице 1.

Далее получают композиции наночастиц серебра на основе полученных водорастворимых (со)полимеров.

Результаты приведены в Таблице 2 (оп.18-34).

В качестве Примера приводится оп.24 (Таблица 2).

Пример 24. К раствору 0,24 г сополимера МАГ:ДМАЭМ (оп.7, Табл.1) в 11,5 мл дистиллированной воды при комнатной температуре и перемешивании добавляли 0,47 мл 0,3 М водного раствора AgNO3, концентрация полимера составила спол=0,020 г/мл, концентрация AgNO3 - сAgNO3=0,002 г/мл. В момент смешения компонентов появлялась красно-коричневая окраска раствора, а в спектре поглощения - полоса плазменного резонанса, характерная для наночастиц серебра, λмакс=417 нм, интенсивность которой возрастала во время реакции. Через 3 часа интенсивность полосы перестала изменяться, проба хлоридом натрия подтвердила отсутствие ионов серебра в растворе. Композицию подвергали диализу против воды в течение 24 часов, затем лиофильно сушили.

Примеры 18-23 и 25-34 выполнены в условиях примера 24.

Время начала реакции, тестируемое по появлению полосы плазменного резонанса и окраски раствора, и время окончания реакции (прекращение роста интенсивности полосы в области 400-440 нм, отрицательная проба на ионы серебра в присутствии хлорида натрия) зависели от структуры (со)полимера.

Растворы полученных нанокомпозитов стабильны по крайней мере в течение шести месяцев (время наблюдения).

Способ получения композиций наночастиц серебра на основе водорастворимых синтетических сополимеров путем восстановления ионов серебра в присутствии водорастворимого полимера, отличающийся тем, что в качестве полимеров используют сочетающие одновременно свойства восстановителя ионов серебра и стабилизатора образующихся наночастиц сополимеры 2-диокси-2-метакриламидо-D-глюкозы с 2-диметиламино-этилметакрилатом или 2-диэтиламиноэтилметакрилатом общей формулы:

где R:
в случае R1 n, m=5-95 мол.%, а для R2 n=63-95 мол.%, m=5-37 мол.%, характеристическая вязкость [η]=0,06-0,30 дл/г, при этом способ реализуют взаимодействием указанных полимеров с AgNO3 в водном растворе при комнатной температуре и естественном освещении при концентрации полимера 0,010-0,100 г/мл, концентрации AgNO3 - 0,001-0,01 г/мл.



 

Похожие патенты:

Изобретение относится к керамической промышленности, в частности к производству термостойких алюмоникелевых пигментов для декорирования различных изделий из фарфора, фаянса, стекла, пластмасс.
Изобретение относится к области получения соединений платиновых металлов, в частности к способу получения оксида палладия(II) на поверхности носителя. .

Изобретение относится к магнитной системе, которая имеет структуру, содержащую магнитные нанометровые частицы формулы , где MII=Fe, Со, Ni, Zn, Mn; MIII =Fe, Cr, или маггемита, которые функционализированы бифункциональными соединениями формулы R1-(CH2)n -R2.(где n=2-20, R1 выбран из: CONHOH, CONHOR, РО(ОН)2, PO(OH)(OR), СООН, COOR, SH, SR; R 2 является внешней группой и выбран из: ОН, NH2 , СООН, COOR; R является алкильной группой или щелочным металлом, выбранным из С1-6-алкила и K, Na или Li соответственно).
Изобретение относится к области химии комплексных соединений платиновых металлов, а именно к способу синтеза комплексов рутения, родия, палладия, осмия, иридия и платины с трифторидом фосфора, которые могут быть использованы при нанесении покрытий, глубокой очистке и в процессах изотопного обогащения этих металлов.

Изобретение относится к неорганическим литий-кобальт-оксидным материалам и способам их приготовления. .
Изобретение относится к области переработки и обезвреживания высокоактивных пульп и может быть использовано на радиохимических производствах. .

Изобретение относится к лакокрасочной промышленности. .

Изобретение относится к способу получения раствора ионного серебра. .

Изобретение относится к технике и технологии подготовки углеводородного газа и может быть использовано в газовой, нефтяной и других отраслях промышленности на существующих и вновь проектируемых установках подготовки и переработки углеводородных газов.

Изобретение относится к способам получения новых форм углерода, а именно к способам получения модификаций углерода с луковичной структурой, содержащих азот, и может быть использовано для изготовления демпфирующих элементов, амортизаторов, пар трения и износостойких деталей микромеханизмов.

Изобретение относится к способу получения покрытого стабилизирующей оболочкой нанокристаллического диоксида церия, который характеризуется антиоксидантной активностью.

Изобретение относится к способу получения бета-лактамных антибиотиков в виде гелей полимерных комплексов с ионами серебра, включающему приготовление растворов натриевых солей антибиотиков концентрации 0,1÷1,0 моль/л, раствора нитрата серебра концентрации 0,1÷1,0 моль/л, смешивание, соблюдая соотношение антибиотик: серебро не менее 1 и не более 9, полученных растворов при температуре 10÷40°С с образованием дисперсии белого цвета, выдерживание дисперсии без перемешивания до ее обесцвечивания с образованием бесцветных прозрачных гелей, отличающемуся тем, что в качестве антибиотика используются производные оксациллина, растворы натриевых солей антибиотика содержат 50-90 объемных процентов воды и 10-50 объемных процентов органического растворителя.

Изобретение относится к области измерительной техники, в частности к средствам измерения линейных ускорений, угловых скоростей и тепловых полей малой интенсивности в инфракрасной и терагерцовой области.

Изобретение относится к измерительной технике и может быть использовано при измерении давления жидких и газообразных средств. .

Изобретение относится к области полупроводникового материаловедения и может быть использовано для получения отдельных кристаллов и массивов оксида цинка для применения в качестве активных элементов, материала для фотокаталитической очистки сред, пьезоэлектрических датчиков, а также для фундаментальных физических исследований кинетики роста кристаллов.

Изобретение относится к технологии получения оптических поликристаллических материалов, а именно фторидной керамики, имеющей наноразмерную структуру и усовершенствованные оптические, лазерные и генерационные характеристики.

Изобретение относится к области молекулярной биотехнологии и химии и предназначено для выделения и очистки ДНК и РНК из биологических образцов - проб с чистотой, пригодной для их последующего анализа методом полимеразной цепной реакции в реальном времени (Real Time PCR).
Изобретение относится к неорганической химии и может быть использовано при изготовлении носителей катализаторов, фильтров, материалов для электроники. .
Изобретение относится к способу получения наночастиц оксида переходного металла, покрытых аморфным углеродом

Изобретение относится к способу получения композиций наночастиц серебра на основе водорастворимых синтетических сополимеров

Наверх