Электролизер для производства алюминия


 


Владельцы патента RU 2485216:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" (RU)

Изобретение относится к анодному устройству алюминиевых электролизеров. Электролизер содержит стальной кожух, теплоизоляционную кирпичную кладку, угольную футеровку, ошиновку, катодное и анодное устройства, при этом анодное устройство состоит из обожженных угольных блоков, в которых выполнены вертикальные отверстия в виде усеченных конусов, нижний диаметр которых больше верхнего в 1,9÷2,1 раза и составляет 80÷100 мм, а количество отверстий в анодном устройстве 8÷10 шт. Обеспечивается возможность более быстрого и качественного вывода анодных газов, уменьшения сопротивления и напряжения на ванне, снижения сопротивления в МПР до 9%, что уменьшит расход электроэнергии на 1200-1500 кВт·ч/т алюминия. 1 ил., 1 табл.

 

Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия, а именно к анодному устройству алюминиевых электролизеров.

Известен электролизер для получения алюминия электролизом расплава, содержащий систему непрерывных анодов с использованием предварительно обожженных анодных блоков (RU 2041975, кл. С25С 3/12, опубл. 20.08.1995), данная конструкция обеспечивает снижение удельного потребления электрической энергии.

Наиболее близким по технической сущности к предлагаемому изобретению является изобретение электролизера для производства алюминия, содержащего угольные аноды с каналами и катодное устройство, включающее слой жидкого алюминия на подине, катодные токоотводящие стержни выполнены из нерастворимых в алюминии материалов, причем их верхняя часть, выступающая из жидкого алюминия, выполнена формой, соответствующей форме противоположных каналов в аноде, и расположена в каналах анодов на расстоянии 1,0-6,0 см параллельно боковым поверхностям каналов. Каналы в угольных анодах и верхняя часть катодных токоотводящих стержней, выступающая над поверхностью жидкого алюминия, имеют треугольное сечение (RU 2282680 кл. С25С, опубл. 27.08.2006). Главным преимуществом таких анодов является уменьшение удельного расхода электроэнергии. Поскольку газопузырьковая прослойка уменьшается, то и сопротивление в электролите снижается и, как следствие, понижается напряжение на ванне.

Несмотря на это, у данных анодов есть существенный недостаток. Производство такого анода требует высокой точности и очень трудоемкой работы, так как:

- при извлечении его из вибропресса анод крошится и ломается по краям;

- при обжиге канавки слипаются друг с другом.

Серьезным недостатком является формирование неровностей на рабочей поверхности и более высокое пенообразование. Главным недостатком такого анодного блока является тот факт, который проявляется уже при эксплуатации анода. При электролизе анод погружен в электролит не полностью, т.е. вырезанные канавки торчат над электролитом, чтобы выпускать анодные газы. Со временем эти канавки забиваются угольной пеной. Далее, также со временем, анод сгорает снизу, соответственно высота канавок уменьшается, как и уменьшается высота анода, следовательно, канавки либо просто утопают полностью в электролите, либо надо извлекать аноды и каждый раз дотачивать высоту канавок, что нецелесообразно. Со временем все достоинства данных анодов пропадают.

Задачей предлагаемого изобретения является уменьшение расхода электроэнергии.

Достигается это тем, что в обожженном аноде алюминиевого электролизера предлагается делать не каналы, а отверстия в виде усеченного конуса, отношение верхнего диаметра к нижнему диаметру 1,9÷2,1, нижний диаметр конуса 80÷100 мм, количество отверстий в аноде 8÷10. Эти отверстия позволят сократить путь отходящих газов и уменьшить толщину газовой прослойки и, как следствие, снизить сопротивление в электролите и напряжение на ванне, что приведет к уменьшению расхода электроэнергии.

Для предотвращения заполнения отверстий угольной пеной, последние выполняются в виде конуса. Это приводит к росту скорости газа в отверстиях по направлению снизу вверх и удалению угольной пены на поверхность анода.

Количество отверстий в аноде 8÷10 объясняется тем, что если отверстий будет более 10, то анод будет хрупким и может обрушиться, а если количество отверстий будет менее 8, то уменьшение газовой прослойки будет незначительным.

Также это изобретение полностью убирает еще одну проблему, возникшую при производстве анодов с каналами. Ввиду того, что отверстия в анодах имеют форму усеченного конуса, это обеспечивает беспрепятственное извлечение анодов из вибропресса. Отводимые газы будут осуществлять барботаж расплава, что приведет к повышению растворимости глинозема в электролите и снижению омического сопротивления пузырькового слоя газов, аккумулирующихся на подошве блоков.

Пример работы изобретения. Электролиз проводили на лабораторной установке при катодной плотности постоянного тока 0,62 А/см2. При проведении опытов использовались одинаковые электрохимические ячейки с различной конструкцией анода. Полученные результаты приведены на фигуре 1.

Таблица 1
Результаты, полученные после проведения опытов и расчетов
U, B ΔUн.р., В Δэл., В МПР, см Sан, см2 I, A ρуд., Ом·см
Опыт 1 2,88 1,53 1,35 6 12,56 6,2 0,456
Опыт 2 2,81 1,53 1,28 6 12,56 6,2 0,434
Опыт 3 2,76 1,53 1,23 6 12,56 6,2 0,415

Результаты лабораторных испытаний показали, что снижение сопротивления в МПР может составить 9%, что уменьшит расход электроэнергии на 1200-1500 кВт·ч/т алюминия.

Электролизер, содержащий стальной кожух, теплоизоляционную кирпичную кладку, угольную футеровку, ошиновку, катодное и анодное устройства, отличающийся тем, что анодное устройство состоит из обожженных угольных блоков, в которых выполнены вертикальные отверстия в виде усеченных конусов, нижний диаметр которых больше верхнего в 1,9÷2,1 раза и составляет 80÷100 мм, а количество отверстий в анодном устройстве 8÷10 шт.



 

Похожие патенты:

Изобретение относится к способу производства анодной массы для самообжигающихся анодов алюминиевых электролизеров и может быть использовано в производстве обожженных анодов.

Изобретение относится к конструкции анодного устройства алюминиевого электролизера с механизмом перемещения анодной ошиновки. .

Изобретение относится к конструкции анодного токоподвода электролизера для получения алюминия. .

Изобретение относится к изготовлению инертных анодов для электролитического получения алюминия в криолит-глиноземном расплаве. .

Изобретение относится к области производства алюминия электролизом расплавленных солей, в частности к производству анодной массы для формирования самообжигающегося анода алюминиевого электролизера, и может быть использовано при производстве обожженных анодов для тех же целей.

Изобретение относится к цветной металлургии, в частности к производству алюминия электролизом, а именно к конструкции инертных анодов электролизеров для производства алюминия.
Изобретение относится к обслуживанию анода электролизера с верхним токоподводом при электролитическом получении алюминия из расплавленных солей, а именно к способу управления формированием анода на электролизере с верхним токоподводом путем увеличения плотности тока в аноде.
Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия, а именно к герметизации электролизера. .

Изобретение относится к цветной металлургии, в частности к производству алюминия электролитическим способом в электролизерах с обожженными анодами. .

Изобретение относится к области цветной металлургии и электролитическому получению металлов и может быть использовано при получении алюминия электролизом криолит-глиноземного расплава с применением инертных анодов.
Изобретение относится к способу получения связующего для электродной массы

Изобретение относится к способу удаления за один этап чугунных заливок, закрепленных на ниппелях, связанных с ножками анодной штанги. Способ включает следующие этапы: а) размещают ножку анодной штанги между упорным устройством и устройством воздействия, причем устройство воздействия может быть перемещено при помощи приводного механизма в направлении упорного устройства, которое охватывает, по меньшей мере частично, каждый из n ниппелей анодной штанги и представляет собой упорную поверхность, блокирующую поступательное перемещение соответствующей чугунной заливки, b) перемещают устройство воздействия в направлении упорного устройства таким образом, чтобы устройство воздействия входило в контакт с ножкой анодной штанги и увлекало ее за собой вплоть до того момента, когда ножка анода войдет в контакт с упорным устройством, с) продолжают перемещения устройства воздействия таким образом, чтобы каждая чугунная заливка, заблокированная связанной с ней упорной поверхностью, была отсоединена от соответствующего ниппеля, d) останавливают и отводят назад устройство воздействия. При этом используют упорное устройство, содержащее по меньшей мере две упорные поверхности, отделенные одна от другой таким расстоянием в осевом направлении, чтобы чугунные заливки, заблокированные при помощи первой упорной поверхности, были отсоединены от круглых электродов до того, как другие чугунные заливки будут заблокированы другой упорной поверхностью. Обеспечивается возможность отделения чугунных заливок и ниппелей ножки анодной штанги за один этап с использованием одного устройства без повреждения анода. 4 н. и 18 з.п. ф-лы, 4 ил.

Изобретение относится к металлическому аноду выделения кислорода для электрохимического извлечения алюминия разложением глинозема, растворенного в расплавленном электролите на основе криолита. Анод выполнен из сплава, содержащего, предпочтительно, 64-66 вес.% Ni, 25-27 вес.% Fe, 7-9 вес.% Mn, 0-0,7 вес.% Cu и 0,4-0,6 вес.% Si. Весовое отношение Ni/Fe составляет в диапазоне от 2,1 до 2,89, предпочтительно от 2,3 до 2,6, весовое отношение Ni/(Ni+Cu) составляет более 0,98, весовое отношение Cu/Ni составляет менее 0,01, а весовое отношение Mn/Ni составляет от 0,09 до 0,15. Поверхность сплава может содержать феррит никеля, полученный предварительным окислением сплава. Сплав, необязательно с предварительно окисленной поверхностью, может быть покрыт наружным покрытием, содержащим оксид кобальта СоО. Описаны также электролизер и способ получения алюминия в электролизере. Обеспечивается возможность работы при анодных плотностях тока от 1,1 до 1,3 А/см2. 3 н. и 11 з.п. ф-лы, 4 ил., 1 табл., 5 пр.

Изобретение относится к анододержателю анодного устройства алюминиевых электролизеров. Анододержатель содержит кронштейн с двумя и более ниппелями, расположенными равномерно или с разным шагом вдоль продольной оси обожженного угольного блока и закрепленными в выполненных в нем ниппельных гнездах, при этом ниппели имеют сужения с площадью поперечного сечения, равными 0,3÷0,9 площади поперечного сечения ниппеля в заделке анодного блока, выполненные над поверхностью угольного блока на расстоянии от 0,01-0,2 до 0,21-0,9 расстояния от поверхности угольного анода до горизонтальной части кронштейна. Обеспечивается снижение теплового потока от электролизера через анододержатель и снижение падения напряжения в самом анододержателе, за счет чего снижаются тепловые потери и повышается энергоэффективность электролизера в целом. 1 ил.

Изобретение относится к способу обслуживания алюминиевого электролизера с самообжигающимся анодом в процессе его эксплуатации. Способ включает загрузку анодной массы в анодный кожух, перемещение анодного кожуха, перемещение анодной рамы относительно зеркала катодного металла и перестановку анодных штырей, при этом для перемещения анодной рамы определяют зависимость порога магнитогидродинамической (МГД) устойчивости электролизера от положения анодной рамы относительно зеркала катодного металла с построением графика, на котором определяют нижнее и верхнее положения анодной рамы относительно зеркала катодного металла, и при достижении анодной рамой позиции, соответствующей равенству упомянутых положений рамы относительно зеркала катодного металла, определяющему заданный порог МГД-устойчивости, осуществляют перемещение анодной рамы. Перемещение анодной рамы осуществляют при достижении нижней части анодной рамы относительно зеркала катодного металла от 245 см до 275 см. Обеспечивается более стабильная работа электролизера. 2 з.п. ф-лы, 1 ил.

Изобретение относится к способу подготовки анодной массы для формирования сырых анодов электролизера производства алюминия электролизом расплавленных солей. Способ включает приготовление шихты зерновых и пылевых фракций кокса, регулирование гранулометрического состава фракций кокса, нагрев шихты и смешивание шихты с пеком-связующим, охлаждение полученной анодной массы, формирование полученных сырых анодов. При приготовлении шихты регулируют гранулометрический состав пылевых фракций кокса путем определения суммарной удельной поверхности пылевых фракций кокса, производят расчет отклонений о заданного значения суммарной удельной поверхности, расчет величины поправки и времени внесения поправок, проводят корректировку относительно заданного значения суммарной удельной поверхности и корректировку дозирования пылевых фракций кокса, после формирования сырого анода определяют кажущуюся плотность сырого анода и корректируют дозирование пека-связующего в зависимости от величины и знака отклонения кажущейся плотности сырого анода от заданного значения кажущейся плотности. Все корректировки осуществляют в онлайновом режиме. Обеспечивается повышение качества сырых анодов и срока службы обожженных анодов. 1 з.п. ф-лы, 3 ил.

Изобретение относится к способу производства анодной массы для анодов алюминиевого электролизера, включающий регулирование процесса производства анодной массы путем изменения соотношения компонентов в коксопековой композиции. Способ характеризуется тем, что определяют содержание примесей натрия и серы в пеке и коксе и ведут процесс производства анодной массы при соотношении компонентов, удовлетворяющих условию C N a C S в  пеке C N a C S в  коксе < 4, где C N a C S в  пеке - отношение содержания натрия и серы в связующем пеке, C N a C S в  коксе - отношение содержания натрия и серы в коксе. Использование предлагаемого способа получения анодной массы позволяет снизить реакционную способность в воздухе в среднем на 23%, реакционную способность в CO2 на 19%. 3 табл., 5 пр.
Изобретение относится к способам формирования вторичного анода алюминиевого электролизера с самообжигающимся анодом. Способ включает использование связующего нефтекаменноугольного пека с удельной плотностью 1,25-1,30 г/см3, преимущественно 1,27-1,29 г/см3, и содержанием бенз(а)пирена не более 7 мг/г пека, приготовление подштыревой анодной массы с содержанием связующего 30-40%, преимущественно 32-36%, формирование вторичного анода из приготовленной подштыревой анодной массы. Обеспечивается снижение выбросов бенз(а)пирена на 48% при производстве алюминия.

Изобретение может быть использовано при изготовлении композиционного оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности, алюминия. Состав шихты для изготовления указанного анода включает смесь оксидной и металлической составляющих, взятых в следующем соотношении, мас.%: металлическая - 10-30, оксидная - остальное. Оксидная составляющая включает смесь двух или более микроразмерных порошков оксидов, выбранных из ряда: оксид никеля, оксид железа, оксид меди, оксид хрома. Металлическая составляющая включает микроразмерные порошки меди или сплава на основе меди, а также содержит 2-10 мас.% наноразмерного порошка меди или сплава на основе меди с размером частиц до 100 нм. Изобретение позволяет увеличить удельную электропроводность анода при температуре 750-850 °C и снизить скорость его коррозии при низкотемпературном электролитическом получении алюминия из оксидно-фторидного расплава. 4 ил., 2 табл., 1 пр.

Изобретение относится к электролизеру с обожженными анодами для производства алюминия. Электролизер содержит угольные аноды с вертикальными отверстиями и катодное устройство со слоем жидкого алюминия на подине, при этом внутренняя поверхность каждого отверстия анода защищена корундовой трубкой, высота которой превышает высоту анода, отношение этих высот удовлетворяет условию h:H=(1,05÷l,15):1, где: h - высота корундовой трубки; H - высота анода и количество отверстий в аноде составляет не менее одного. Обеспечивается уменьшение удельного потребления электроэнергии электролизером с обожженным анодом на 300-400 кВт·ч/т Al и исключение риска загрязнения производимого электролизером алюминия примесями при растворении корундовой трубки в электролите. 1 з.п. ф-лы, 1 ил.
Наверх