Способ оценки состояния воды в тканях живых животных



Способ оценки состояния воды в тканях живых животных
Способ оценки состояния воды в тканях живых животных
Способ оценки состояния воды в тканях живых животных
Способ оценки состояния воды в тканях живых животных

 


Владельцы патента RU 2485490:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тюменский государственный университет" (RU)

Изобретение направлено на получение данных о свойствах воды в тканях живых животных, имеющих значение для различных областей физики, биофизики и экологии человека. Для оценки состояния воды в тканях живых животных в измерительные L-ячейки вводятся по очереди два идентичных диэлектрических сосуда, в один из которых наливается физиологический раствор, соответствующий объемному состоянию воды в клетках животных, а в другой - исследуемое живое животное, а за характеристику состояния воды в тканях животного принимаются значения двух параметров Kν и Kδ, характеризующие отличие усредненного по всему организму животного состояния воды в его тканях от ее объемного состояния в физиологическом растворе соли, при этом параметр Kν находится по отношению частот νmax, на которых наблюдаются максимумы tgδ у физраствора в объемном состоянии и исследуемом животном, а параметр Kδ находится по отношению значений tgδ исследуемого животного на частотах 50 кГц и 20 МГц, которым соответствуют состояние связанной воды в тканях позвоночных животных и физиологического раствора в объемном состоянии. 4 ил., 1 табл.

 

Изобретение относится к физическим методам исследования состояния воды в биообъектах, в том числе тканях живых животных, и представляет интерес для биофизики, биологии, медицины, решения ряда проблем «Экологии человека».

Все биообъекты на Земле содержат воду, без которой их жизнь невозможна. Причем согласно сложившимся к настоящему времени представлениям, вода служит не только специфической средой, в которой протекают биологические реакции, но и непосредственно воздействует на строение, свойства и функционирование макромолекул белков, биополимеров, биомембран, влияя тем самым и на ход биологических реакций [1].

Однако, несмотря на многочисленные исследования, вопрос о том, в каком состоянии находится вода в биообъектах, ее отличие от обычной «объемной» воды до сих пор является темой ожесточенных дискуссий физиков, химиков и биологов, что связано с отсутствием достаточно достоверной информации. Дефицит пригодных для количественного анализа экспериментальных данных обусловлен тем, что биообъекты оказались почти «непрозрачны» для большинства физико-химических методов. Поэтому в большинстве работ проводится лишь экстраполяция к живым системам всего того, что известно о воде в различных растворах. К недостаткам проведенных исследований состояния воды в биообъектах следует отнести и то, что в лучшем случае предпринимаются попытки изучения состояния воды в тканях, отделенных от организма животных, т.е. в «мертвых» тканях [1]. Получить сведения о специфических свойствах живых биообъектов по таким экспериментам невозможно.

Предлагаемый способ оценки состояния воды в тканях живых животных основывается на способе [2], разработанном для исследования водных растворов в объемном состоянии по их диэлектрическим параметрам в диапазоне частот 10 кГц - 100 МГц с помощью комплекта соленоидальных катушек индуктивности идентичного размера (L-ячеек), подключаемых к колебательному контуру куметра. Параметрами, характеризующими состояние воды и ее растворов в обычном объемном состоянии в способе [2], являются:

во-первых, значение тангенса угла диэлектрических потерь воды, рассчитываемое по соотношению

где Q1; C1; Q2; C2 - значения добротности и емкости колебательного контура куметра при резонансе до и после помещения жидкости в диэлектрическом сосуде внутрь L-ячейки на частоте измерения,

и, во-вторых, относительная величина диэлектрической проницаемости водного объекта εотн=ΔC/ΔC, где ΔC и ΔC - сдвиг резонансной емкости колебательного контура куметра после введения исследуемого объекта на частоте измерения и на частоте порядка 10 МГц.

Достоинство способа [2] для исследования биообъектов выявлено в [3] и обусловлено тем, что в слабых вихревых полях L-ячеек не способны переориентироваться ни биомакромолекулы, ни их группы или сегменты. Данный факт обосновывается, например тем, что ввод в L-ячейки обезвоженных семян или плодов растений практически не проявляется на параметрах L-ячеек и становится весьма существенным при малейшем их смачивании. Таким образом, способ [2] позволяет выделить вклад от эффекта поляризации молекул воды на фоне большого числа полярных биомакромолекул и исследовать состояние водных растворов вблизи таких макромолекул в тканях биообъектов [3].

В предлагаемом способе для оценки отличия состояния воды в тканях живых животных (например, мыши, лягушки и т.д.) от обычного объемного состояния, в измерительные соленоидальные катушки индуктивности (L-ячейки), подключаемые к колебательному контуру куметра, вводятся по очереди два идентичных диэлектрических сосуда, в один из которых наливается физиологический раствор, соответствующий объемному состоянию воды в клетках животных, а в другой - исследуемое живое животное. Затем по найденным значениям добротности и емкости колебательного контура куметра при резонансе до (Q1; C1) и после помещения внутрь L-ячейки сосуда с физраствором (Q2; C2) и животным по соотношению (1) рассчитываются значения tgδ физраствора и животного в диапазоне частот 10 кГц - 30 МГц. Примеры получаемых данным способом частотных зависимостей tgδ животных в диапазоне частот 10 кГц - 30 МГц приведены на фиг.1. (Частотные зависимости tgδ тканей некоторых живых животных: дождевых червей (1); лягушки (2); хомяка (3); мыши (4)).

Как видим, на частотных зависимостей tgδ водных растворов в тканях живых животных имеются ярко выраженные максимумы. Причем частотная зависимость tgδ водных растворов в тканях живых животных оказалась подобна физиологическому раствору в объемном состоянии лишь для животных низкого уровня эволюционного развития, у которых отсутствует как внешний, так и внутренний скелет, например, дождевых червей (фиг.2). (Частотные зависимости tgδ тканей живых дождевых червей (1) и физиологического раствора в объемном состоянии).

Следовательно, лишь у таких животных состояние воды в их тканях подобно объемному состоянию физиологического раствора. По мере повышения эволюционного уровня животного максимумы tgδ воды в их тканях смещаются в область более низких частот и растут по величине (фиг.1).

Поскольку согласно теории Дебая [3-4], частота νmax, на которой наблюдается максимум tgδ (tgδmax), определяется размером релаксирующего кластера, причем уменьшению νmax соответствует увеличение размеров кластера, то эволюционное развитие животных сопровождалось повышением структурированности воды в их тканях. Данное высокоструктурированное состояние воды в тканях животного наблюдается только у живых животных и становится идентичным обычному объемному состоянию физиологического раствора после его смерти. Особенно резкое различие состояния водных растворов в тканях живого и мертвого животного наблюдается в тканях млекопитающих, для которых частота νmax воды в их тканях после гибели животного повышается в 400 раз, а величина tgδmax уменьшается более чем на порядок (фиг.3).

На основании столь высокой чувствительности значений νmax и tgδmax к состоянию водных растворов в тканях животных в данном способе предлагается их оценивать и сопоставлять по величине двух параметров: Kν и Kδ. Оба эти параметра характеризуют отличие усредненного по всему организму животного состояния воды в его тканях от ее объемного состояния в физиологическом растворе соли. Параметр Kν находится по отношению частоты νmax, на которой наблюдается максимум tgδ у физраствора в объемном состоянии и исследуемого животного. А параметр Kδ находится по отношению значений tgδ на частотах 50 кГц и 20 МГц, на которых наблюдается максимум tgδ у позвоночных животных (фиг.1, кривые 2, 3, 4) и физиологического раствора в объемном состоянии. Отметим, что параметр Kδ является некоторым аналогом коэффициента поляризации K, который использовался ранее для характеристики тканей в практике биологической электроспектроскопии и определялся как отношение низкочастотного и высокочастотного сопротивления ткани чаще всего на частотах 10 кГц и 1 МГц [5]. Как видим, рекомендованные частоты определения параметров K и Kδ достаточно близки, но в данном способе частоты определения параметра Кδ более обоснованы.

Изображенная на фиг.4 диаграмма, а также данные таблицы показывают, что эволюция животного мира сопровождается увеличением как параметра Kν, так и Kδ, а следовательно, повышением степени связанности и структурированности воды в их тканях. Данный эффект в эволюционном учении животного мира ранее не учитывался. Таким образом, предлагаемый способ позволяет получить принципиально новые данные, имеющие особое значение для различных областей физики и биофизики.

Литература

1. Аксенов С.И. Вода и ее роль в регуляции биологических процессов. М.: Наука, 1990, 117 с.

2. Семихина Л.П. Способ определения диэлектрических параметров воды и ее растворов в низкочастотной области с помощью L-ячейки. Патент РФ №2234102 // БИПМ, №6, 2004.

3. Семихина Л.П. Низкочастотная диэлькометрия жидкостей в слабых вихревых электрических полях. Автореферат докторской дисс. на соискание степени д.ф.-м.н. Тюмень, 2006.

4. Дебай П. Избранные труды. Л.: Наука, 1987, С.264-316, (Debye P.Falkenhagen Н. // Phys. Ztschr. 1928. V.29. P.121).

5. Андреев B.C. Кондуктометрические методы и приборы в биологии и медицине. М.: Медицина, 1973, 336 с.

Биообъект Kν
1. Плоды растений и грибы 1
2. Живые животные без внешнего и внутреннего скелета (черви, личинки насекомых и т.п.) 1
3. Живые животные с внешним скелетом (моллюски, взрослые насекомые) 30-40
4. Живые позвоночные животные 400

Способ оценки состояния воды в тканях живых животных с помощью соленоидальной индуктивной L-ячейки, подключенной к колебательному контуру куметра, отличающийся тем, что для оценки состояния воды в тканях живых животных в измерительные L-ячейки вводятся по очереди два идентичных диэлектрических сосуда, в один из которых наливается физиологический раствор, соответствующий объемному состоянию воды в клетках животных, а в другой - исследуемое живое животное, а за характеристику состояния воды в тканях животного принимаются значения двух параметров Kν и Kδ, характеризующие отличие усредненного по всему организму животного состояния воды в его тканях от ее объемного состояния в физиологическом растворе соли, при этом параметр Kν находится по отношению частот νmax, на которых наблюдаются максимумы tgδ у физраствора в объемном состоянии и исследуемом животном, а параметр Kδ находится по отношению значений tgδ исследуемого животного на частотах 50 кГц и 20 МГц, которым соответствуют состояние связанной воды в тканях позвоночных животных и физиологического раствора в объемном состоянии.



 

Похожие патенты:

Изобретение относится к области черной металлургии, в частности к способам контроля окисленности шлака и металла при выплавке сплавов на основе железа в электродуговых печах переменного тока.

Изобретение относится к способам анализа двухкомпонентных структур на основе кремния и может использоваться в электронной промышленности. .
Изобретение относится к области биологии, а именно к физиологии растений, и может быть использовано для экспресс-способа ионометрического определения содержания калия в листьях и распределения его по физиологическим пулам.

Изобретение относится к фармацевтической химии и может быть использовано для количественного определения антиоксиданта коэнзима Q10 в субстанции. .
Изобретение относится к области биотехнологии и пищевой промышленности, в частности к способу получения аналитического устройства - биосенсорного электрода, который может быть использован для определения содержания моно- и полисахаридов в углеводсодержащем растительном сырье и промежуточных продуктах на разных стадиях технологического процесса.
Изобретение относится к медицине, онкологии и гематологии и может быть использовано для определения кардиотоксических осложнений у больных хроническим лимфолейкозом, получающих полихимиотерапию.

Изобретение относится к способу приготовления высокостабильного чувствительного элемента сенсора на пероксид водорода и может быть использовано в аналитической химии, в клинической диагностике, для контроля состояния окружающей среды, в различных областях промышленности.

Изобретение относится к медицине и описывает способ неинвазивного потенциометрического определения оксидант/антиоксидантной активности биологических тканей, включающий введение исследуемого объекта в контакт с электропроводящей средой, содержащей медиаторную систему и оценку оксидант/антиоксидантной активности по изменению разности потенциалов на электродах, введенных в электропроводящую среду, при этом электропроводящая среда представляет собой гель, содержащий в качестве медиаторной системы пару химических соединений, содержащих элемент в разных степенях окисления, при этом электроды через гель контактируют с исследуемым объектом, а оксидант/антиоксидантную активность определяют по формулам.
Изобретение относится к области аналитической химии, в частности к вольтамперометрическим способам количественного определения гормонов. .

Изобретение относится к способу определения оксидантной/антиоксидантной активности веществ

Изобретение относится к электрохимическим способам определения концентрации элементов в водных растворах, может быть использовано в промышленности при анализе растворов, в контроле объектов окружающей среды, пищевых продуктов и других объектов, особенно в непрерывных и автоматических измерениях, а также для амперометрического детектирования в жидкостной хроматографии

Изобретение относится к вольтамперометрическому анализу, а именно к способу удаления кислорода из фоновых растворов для вольтамперометрического анализа

Изобретение относится к измерительной технике и может быть использовано в строительных материалах и изделиях, а также в пищевой, химической и других отраслях промышленности
Изобретение относится к аналитической химии сахаров, в частности к способам определения глюкозы, сахарозы, фруктозы в сельскохозяйственном сырье и продукции переработки, и направлено на ускорение, совершенствование и повышение объективности количественного анализа сахаров

Изобретение относится к способу измерения редокс потенциала биологических сред и может быть использовано для мониторинга с целью получения диагностической информации о состоянии пациента. Способ измерения редокс потенциала биологических сред предусматривает определение потенциала рабочего электрода при разомкнутой цепи относительно хлорсеребряного электрода сравнения в тестируемой среде. Стандартизация состояния поверхности рабочего электрода позволяет получить точные и воспроизводимые результаты измерений редокс потенциала, кроме того, способ позволяет непрерывно фиксировать изменения значения редокс потенциала для получения дополнительной информации о тестируемой среде в ходе измерения. 3 ил., 2 табл.
Использование: в материаловедении, криминалистике, ювелирном деле, а также гальванотехнике для определения состава изделий, выполненных из металлов или металлических сплавов, в том числе и имеющих металлические покрытия. Сущность: заключается в том, что при реализации способа приводят в соприкосновение с исследуемым объектом заполненного электролитом зонда. В зонде размещены катод и электрод сравнения. Подают между исследуемым объектом (анодом) и катодом кратковременный анодный поляризующий импульс. Измеряют потенциал на исследуемом изделии с последующей идентификацией состава исследуемого объекта по результатам измерения. Технический результат: повышение достоверности тестирования и идентификации состава образца, выполненного из металла или металлического сплава, в том числе и металлического образца, содержащего металлическое покрытие. 2 н. и 5 з.п. ф-лы.

Изобретение относится к аналитической химии фосфора, в частности к способу определения общего фосфора в сельскохозяйственном сырье и продукции переработки, и направлено на ускорение, совершенствование и повышение объективности количественного анализа. Указанный способ предусматривает термическое кислотное разложение пробы растительного образца, кратное разбавление пробы до содержания общего фосфора не более 500 мг/дм3, центрифугирование и выполнение анализа на системе капиллярного электрофореза в кварцевом капилляре, эффективной длиной 0,5 м, внутренним диаметром 75 мкм, при этом для проведения анализа используют водный раствор ведущего электролита, содержащий 0,2% хромата калия и 0,6% уротропина при отрицательной полярности напряжения и длине волны детектирования - 254 нм. 1 ил., 1 табл., 6 пр.

Использование: для анализа химических или физических свойств, элементного и фазового состава, марки, характера термической обработки металлов и сплавов в машиностроении, металлообработке и металлургической промышленности. Сущность: в предлагаемом способе идентификации металлов и сплавов осуществляют формирование электрохимической системы электроды электролит, при этом пробу испытуемого металла или сплава используют в качестве одного из электродов, затем воздействуют на сформированную электрохимическую систему электрическим током, а именно, по меньшей мере, одним информационным импульсом напряжения, осуществляемым со строго заданным, по меньшей, одним значением скорости нарастания/спада напряжения, проводят измерение электрических параметров в зависимости от скорости нарастания/спада напряжения: значений тока и падения напряжения одновременно с упомянутым воздействием с сохранением массива полученных данных и его математической обработкой, дополнительно перед воздействием информационного импульса на упомянутую электрохимическую систему воздействуют электрическим током с заданным значением количества электричества. Также в изобретении предложено устройство для идентификации металлов и сплавов, содержащее генератор информационных электрических импульсов напряжения, содержащий элементы управления скоростью нарастания и спада выходного напряжения, измерительный модуль, пригодный для измерения электрических параметров сильнотоковых процессов в растворе электролита, и компьютер. Технический результат: возможность контроля и идентификации металлов и их сплавов с высокой точностью, повышение информативности и достоверности способа. 2 н. и 24 з.п.ф-лы, 11 ил.

Использование: для разработки методик анализа никеля в различных типах вод, эко- и биологических объектах, пищевых продуктах, продовольственном сырье, кормах и кормовых добавках. Сущность: заключается в сочетании кислотной минерализации образца на этапе подготовки проб с последующим вольтамперометрическим определением Ni2+ в трехэлектродной ячейке: индикаторный электрод - серебряная подложка, модифицированная арилдиазоний тозилатом с аминогруппой в качестве заместителя, вспомогательный и сравнения - хлоридсеребряные электроды. При этом накопление Ni2+ в перемешиваемом растворе проводят в течение 30 с при потенциале электролиза минус 0,7±0,05 В на фоне хлоридно-аммиачного буферного раствора с добавкой 0,03 см3 0,1 моль/дм диметилглиоксима, без удаления из электролита растворенного кислорода, с последующей регистрацией катодных пиков в дифференциально-импульсном режиме при скорости развертки потенциала 20 мВ/с. Концентрацию никеля определяют по высоте пика в диапазоне потенциалов от минус (1,00±0,05) В методом добавок аттестованных смесей. Технический результат: использование нетоксичных органо-модифицированных электродов (ОМЭ) для определения никеля методом катодной инверсионной вольтамперометрии в присутствии растворенного кислорода. 1 ил., 1 табл.
Наверх