Способ калибровки эмиссионных детекторов нейтронов

Изобретение относится к области ядерной техники, в частности к калибровке эмиссионных детекторов нейтронов для внутризонного контроля распределения энерговыделения в ядерных реакторах. Сущность изобретения заключается в том, что способ включает измерение на работающем реакторе чувствительности детекторов, которые, в дальнейшем, используют как эталонные детекторы, по чувствительности которых определяют чувствительность калибруемых детекторов, отличающийся тем, что у эталонных эмиссионных детекторов, состоящих из коллектора и эмиттера, изготовленного из порошкообразной двуокиси гафния (НfO2), заключенного в оболочку, измеряют вес эмиттера путем вычитания из общего веса оболочки и эмиттера веса оболочки, который определяют по формуле , (Н), где Rуд - удельное электрическое сопротивление материала оболочки эмиттера, (Ом·м); ρ -плотность материала оболочки эмиттера, (кг/м3); g - ускорение свободного падения, (м/с2); L - длина оболочки эмиттера, (м); R - электрическое сопротивление оболочки эмиттера, (Ом); затем определяют зависимость между чувствительностью эталонных детекторов и весом их эмиттеров, после чего определяют чувствительность калибруемых эмиссионных детекторов по формуле: η=APэмит+B, (А·с), где Рэмит - вес материала эмиттера, (Н); А - коэффициент, (А·с/Н); В - коэффициент, (А·С); причем вес эмиттеров калибруемых эмиссионных детекторов определяют также, как и вес эмиттеров эталонных детекторов, а значения коэффициентов А и В выбирают в диапазоне от 8,8·102 до 10,6-102 и от 7,6 до 9,2 соответственно. Технический результат - повышение надежности ядерных реакторов.

 

Изобретение относится к области ядерной техники, в частности к калибровке эмиссионных детекторов нейтронов для внутривенного контроля распределения энерговыделения в ядерных реакторах.

Наиболее близким по своей сущности к предлагаемому является способ калибровки эмиссионных детекторов нейтронов, включающий измерение на работающем реакторе чувствительности детекторов, которые, в дальнейшем, используют как эталонные детекторы, по чувствительности которых определяют чувствительность калибруемых детекторов (см. Е.В.Филипчук, П.Т.Потапенко, В.В.Постников Управление нейтронным полем ядерного реактора, М.: Энергоиздат, 1981 г., стр.179).

Указанный способ калибровки, как показала практика, имеет невысокую точность (ошибка может достигать 4%). Также к существенным недостаткам этого способа следует отнести то, что его проведение связано с затратами реакторного времени и дозовыми нагрузками на персонал атомной станции, т.к. для калибровки каждого нового эмиссионного детектора его вместе с эталонным детектором необходимо помещать в нейтронный поток в ядерном реакторе.

Задачей, на достижение которой направлено предлагаемое изобретение, заключается в повышении надежности и экономичности эксплуатации ядерных реакторов, снижении затрат на изготовление эмиссионных детекторов.

Техническим результатом, который будет получен при использовании заявленного способа, является повышение точности калибровки эмиссионных детекторов и, следовательно, точности, получаемых от них данных, снижение дозовых нагрузок на персонал при калибровке эмиссионных детекторов.

Указанный технический результат достигается тем, что согласно способа калибровки эмиссионных детекторов нейтронов, включающего измерение на работающем реакторе чувствительности детекторов, которые, в дальнейшем, используют как эталонные детекторы, по чувствительности которых определяют чувствительность калибруемых детектора, у эталонных эмиссионных детекторов, состоящих из коллектора и эмиттера, изготовленного из порошкообразной двуокиси гафния (HfO2), заключенного в оболочку, измеряют вес эмиттера путем вычитания из общего веса оболочки и эмиттера веса оболочки, который определяют по формуле

, (Н), где

Rуд - удельное электрическое сопротивление материала оболочки эмиттера, (Ом·м);

ρ - плотность материала оболочки эмиттера, (кг/м3);

g - ускорение свободного падения, (м/с2);

L - длина оболочки эмиттера, (м);

R - электрическое сопротивление оболочки эмиттера, (Ом);

затем определяют зависимость между чувствительностью эталонных детекторов и весом их эмиттеров, после чего определяют чувствительность калибруемых эмиссионных детекторов по формуле

η=APэмит+B, (A·c), где

Pэмит. - вес материала эмиттера, (Н);

А - коэффициент, (А·с/Н);

В - коэффициент, (А·С);

причем вес эмиттеров калибруемых эмиссионных детекторов определяют также, как и вес эмиттеров эталонных детекторов, а значения коэффициентов А и В выбирают в диапазоне от 8,8·102 до 10,6·102 и от 7,6 до 9,2 соответственно.

Заявляемый способ может быть раскрыт на примере калибровки эмиссионных детекторов нейтронов для реактора РБМК.

Эмиссионные детекторы нейтронов изготавливают из кабеля-датчика, который представляет собой металлический коллектор и эмиттер в виде порошка двуокиси гафния (HfO2), заключенного в оболочку из коррозионно-стойкой стали 12Х18Н10Т, отделенные друг от друга изоляционным материалом, например окисью магния. Обычно кабель-датчик поставляется в виде бухт длиной около 100 м. Для удобства осуществления калибровки длину заготовок эмиссионных датчиков из кабеля-датчика увеличивают на длину отрезка, который отрезают от каждой заготовки и используют в качестве образца-свидетеля.

Партию эмиссионных детекторов, которые в дальнейшем используют как эталонные детекторы, помещают на некоторое время в нейтронный поток ядерного реактора и измеряют их чувствительность.

Затем из эталонных детекторов механическим способом извлекают их эмиттеры в оболочке. Взвешивают эмиттеры вместе с оболочками. После этого определяют вес оболочки каждого эмиттера по формуле

, (H), где

Rуд - удельное электрическое сопротивление материала оболочки эмиттера образца-свидетеля, Ом·м;

ρ -плотность материала оболочки эмиттера образца-свидетеля, кг/м3;

g - ускорение свободного падения, м/с2;

L - длина образца-свидетеля, м;

R - электрическое сопротивление оболочки эмиттера образца-свидетеля, Ом.

Затем определяют вес эмиттера путем вычитания веса оболочки из значения, полученного после первоначального взвешивания эмиттера с оболочкой. После этого определяют зависимость между чувствительностью эталонных эмиссионных детекторов и весом их эмиттеров.

Потом аналогичным образом измеряют веса эмиттеров образцов-свидетелей калибруемых эмиссионных детекторов и определяют чувствительность калибруемых детекторов по формуле

η=APэмит+B, где

η - нейтронная чувствительность калибруемого эмиссионного детектора, (А·с);

Pэмит - вес материала эмиттера, Н;

А - коэффициент, (А·с/Н);

В - коэффициент, (А·С);

причем значение коэффициента А выбирают в диапазоне от 8,8·102 до 10,6·102, а значение коэффициента В - от 7.6 до 9,2, определяют чувствительность калибруемых эмиссионных детекторов.

Предлагаемый способ позволяет осуществить калибровку детекторов со среднеквадратичной погрешностью ≈1%, что обеспечивает повышение точности измерения нейтронного потока в реакторах, а значит и их надежность.

Кроме того, по предлагаемому способу только часть эмиссионных детекторов для калибровки необходимо помещать в нейтронный поток в реакторе. Остальные же эмиссионные детекторы уже калибруются без установки детекторов в нейтронный поток, что, безусловно, выгодно, как с экономической стороны (сокращение использования реакторного времени), так и для сохранения здоровья обслуживающего персонала.

Способ калибровки эмиссионных детекторов нейтронов, включающий измерение на работающем реакторе чувствительности детекторов, которые, в дальнейшем, используют как эталонные детекторы, по чувствительности которых определяют чувствительность калибруемых детекторов, отличающийся тем, что у эталонных эмиссионных детекторов, состоящих из коллектора и эмиттера, изготовленного из порошкообразной двуокиси гафния (HfO2), заключенного в оболочку, измеряют вес эмиттера путем вычитания из общего веса оболочки и эмиттера веса оболочки, который определяют по формуле:

где Rуд - удельное электрическое сопротивление материала оболочки эмиттера, (Ом·м);
ρ - плотность материала оболочки эмиттера, (кг/м3);
g - ускорение свободного падения, (м/с2);
L - длина оболочки эмиттера, (м);
R - электрическое сопротивление оболочки эмиттера, (Ом),
затем определяют зависимость между чувствительностью эталонных детекторов и весом их эмиттеров, после чего определяют чувствительность калибруемых эмиссионных детекторов по формуле:
η=АРэмит+В, (А·с),
где Pэмит - вес материала эмиттера, (Н);
А - коэффициент, (А·с/Н);
В - коэффициент, (А·С),
причем вес эмиттеров калибруемых эмиссионных детекторов определяют так же, как и вес эмиттеров эталонных детекторов, а значения коэффициентов А и В выбирают в диапазоне от 8,8·102 до 10,6·102 и от 7,6 до 9,2 соответственно.



 

Похожие патенты:

Изобретение относится к устройству измерения скорости счета камеры деления и устройству калибровки соответствующей камеры деления. .

Изобретение относится к области детекторов радиоактивного излучения сцинтилляционного типа для использования в скважинном каротажном инструменте. .

Изобретение относится к области радиационных технологий, а также к эксплуатации ядерных установок и ускорителей. .

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок.

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок.

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок.

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок.

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок.

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок.

Изобретение относится к углеводородной промышленности, более конкретно данное изобретение касается инструментов нейтронного каротажа, используемых при исследовании геологической формации

Изобретение может быть использовано в медицинских томографах, при неразрушающем контроле в промышленности, для обеспечения безопасности при осмотре личного имущества, в физике высоких энергий. Сцинтиллятор для детектирования нейтронов содержит кристалл фторида металла из ряда, включающего LiCaAlF6, LiSrAlF6, LiYF4, служащий в качестве матрицы, в котором содержание атомов 6Li в единице объема (атом/нм3) от 1,1 до 20. Кристалл имеет эффективный атомный номер от 10 до 40 и содержит, по меньшей мере, один вид лантаноида, выбранного из группы, состоящей из церия, празеодима и европия. Нейтронный детектор содержит указанный сцинтиллятор и фотодетектор. Для получения кристалла фторида металла расплавляют смесь, составленную из фторида лития, фторида указанного металла, имеющего валентность 2 или выше, и фторида лантаноида, и выращивают монокристалл из расплава. Сцинтиллятор по изобретению имеет высокую чувствительность к нейтронному излучению и пониженный фоновый шум, связанный с γ-лучами. 3 н. и 3 з.п. ф-лы, 4 ил., 3 табл.

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано для определения плотности потока быстрых нейтронов при работе ядерно-физических установок. Сущность изобретения заключается в том, что детектор мононаправленного нейтронного излучения состоит из корпуса, коллектора, выполненного в виде металлической пластины и диэлектрического слоя из водородсодержащего материала, при этом диэлектрический слой из водородсодержащего материала заключен в токопроводящую оболочку, коллектор в виде металлической пластины заключен в изолирующую оболочку, между этими оболочками размещен электростатический экран, линия связи от токопроводящей оболочки, охватывающей диэлектрический слой из водородсодержащего материала, подключена к инвертирующему каналу дифференциального усилителя, а линия связи от коллектора подключена к неинвертирующему каналу того же усилителя. Технический результат - устранение эффектов, связанных с накоплением отрицательного заряда в диэлектрике и возможным возникновением электрических пробоев, повышение чувствительности детектора к нейтронному излучению. 1 ил.

Изобретение относится к устройству для детектирования нейтронного излучения, предпочтительно тепловых нейтронов, содержащему гамма-лучевой сцинтиллятор, упомянутый сцинтиллятор содержит неорганический материал с длиной ослабления Lg менее 10 см, предпочтительно, менее 5 см для гамма-лучей с энергией 5 МэВ для обеспечения высокой способностью торможения гамма-излучения для энергичных гамма-лучей в гамма-лучевом сцинтилляторе, причем гамма-лучевой сцинтиллятор дополнительно содержит компоненты, для которых умножение сечения захвата нейтрона на концентрацию дает длину поглощения Ln для тепловых нейтронов, которая больше 0,5 см, но меньше пятикратной длины ослабления Lg, предпочтительно, меньше двукратной длины ослабления Lg для гамма-лучей с энергией 5 МэВ в сцинтилляторе, причем нейтронпоглощающие компоненты гамма-лучевого сцинтиллятора высвобождают энергию, сообщенную возбужденным ядрам после захвата нейтрона, в основном посредством гамма-излучения, причем гамма-лучевой сцинтиллятор имеет диаметр или длину края по меньшей мере 50% Lg, предпочтительно, по меньшей мере Lg, для поглощения существенной части энергии гамма-лучей, выделяемой после захвата нейтрона в сцинтилляторе, устройство дополнительно содержит детектор света, оптически соединенный с гамма-лучевым сцинтиллятором для детектирования количества света в гамма-лучевом сцинтилляторе, устройство дополнительно содержит оценивающее приспособление, соединенное с детектором света, причем приспособление способно определять количество света, детектируемого детектором света для одного события сцинтилляции, причем это количество находится в известном соотношении с энергией, сообщаемой гамма-излучением в гамма-лучевом сцинтилляторе, причем оценивающее приспособление выполнено с возможностью классифицировать детектируемое излучение как нейтроны, когда измеренная полная гамма-энергия Esum выше 2,614 МэВ. Технический результат - повышение точности детектирования нейтронов. 4 н. и 16 з.п. ф-лы, 4 ил.

Изобретение относится к устройству для детектирования нейтронного излучения, предпочтительно, тепловых нейтронов, содержащему по меньшей мере одну первую секцию (102) с высокой способностью к поглощению нейтронов и по меньшей мере одну вторую секцию (101) с низкой способностью к поглощению нейтронов, причем вторая секция содержит гамма-лучевой сцинтиллятор, материал гамма-лучевого сцинтиллятора содержит неорганический материал с длиной ослабления менее 10 см, предпочтительно, менее 5 см для гамма-лучей с энергией 5 МэВ для обеспечения высокой способностью торможения гамма-лучей для энергичных гамма-лучей во второй секции, где материал первой секции выбран из группы материалов, высвобождающих энергию, сообщаемую первой секции за счет захвата нейтрона, в основном, посредством гамма-излучения, и где вторая секция окружает первую секцию таким образом, что существенный участок первой секции покрыт второй секцией, устройство дополнительно содержит детектор света (103) 1, оптически соединенный со второй секцией для детектирования количества света во второй секции, устройство дополнительно содержит оценивающее приспособление, соединенное с детектором света, причем это приспособление способно определять количество света, детектируемого детектором света для одного события сцинтилляции, причем это количество находится в известном соотношении с энергией, сообщаемой гамма-излучением второй секции, где оценивающее приспособление выполнено с возможностью классифицировать детектируемое излучение как нейтроны, когда измеренная полная энергия гамма-кванта E (sum) выше 2,614 МэВ. Технический результат - повышение точности детектирования нейтронов. 6 н. и 39 з.п. ф-лы, 6 ил.

Изобретение относится к области измерительной техники, а именно к метрологии нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок, и может быть использовано в системах управления и защиты ядерных реакторов, подкритических сборок, импульсных и других источников нейтронов, в научных исследованиях. Сущность изобретения заключается в том, что в нейтронном датчике, содержащем источник заряженных частиц, возникающих под действием нейтронного излучения, и упругодеформируемый элемент, установленные в корпусе, источник заряженных частиц выполнен из стабильного нерадиоактивного материала, напротив источника заряженных частиц установлен поглотитель заряженных частиц, а на поглотителе заряженных частиц установлена отражающая призма, связанная с оптической системой ввода и вывода светового луча, выполненная в виде оптического окна в корпусе датчика, напротив которого расположен узел отражателя из полупрозрачного зеркала и отражающих призм. Технический результат - повышение чувствительности датчика. 2 ил.

Изобретение относится к метрологии излучений, а именно к способу измерения интенсивности радиационного излучения, и может быть использовано в мониторных и радиографических сцинтилляционных детекторах рентгеновского и гамма-излучений, а также быстрых нейтронов. Техническим результатом изобретения является измерение вклада фонового излучения в сигнал детектора, повышение точности измерений, обеспечение измерений в сложных радиационных условиях, уменьшение ограничений на размеры детектирующего элемента. Технический результат достигается тем, что для измерения интенсивности излучения источника измеряют пространственное распределение полного сигнала Iполн(х) вдоль направления распространения первичного излучения, нормируют методом наименьших квадратов измеренное и теоретическое распределения до совпадения их значений на начальном участке, находят пространственное распределение фонового сигнала из условия: Iфон(х)=Iполн(х)-Iтеор(х), а пространственное распределение полезного сигнала находят как разность между распределениями полного и фонового сигналов, где: Iтеор(х)=А·ехр[-µ(E)·x] - теоретическое распределение полезного сигнала вдоль направления распространения первичного излучения, Iполн(х) - пространственное распределение полного сигнала, µ(Е) - коэффициент линейного ослабления первичного излучения в веществе сцинтиллятора, x - направление первичного излучения, Е - энергия первичного излучения. 1 ил.

Изобретение касается способа определения спектрального и пространственного распределения потока фотонов тормозного излучения, по меньшей мере, в одном пространственном направлении (х, у, z). Способ осуществляют путем измерения нейтронов, получаемых при попадании фотонов (ph) тормозного излучения по меньшей мере на одну конверсионную мишень (5), которую перемещают в указанном направлении (х, у, z). Технический результат - сокращение времени измерений. 2 н. и 5 з.п. ф-лы, 5 ил.

Изобретение может быть использовано при изготовлении систем визуализации в компьютерных томографах. Сцинтилляционный материал содержит модифицированный оксисульфид гадолиния (GOS), в котором приблизительно от 25% до 75% гадолиния (Gd) замещено лантаном (La) или приблизительно не более 50% гадолиния (Gd) замещено лютецием (Lu). Часть гадолиния (Gd) дополнительно может быть замещена по меньшей мере одним элементом, выбранным из группы, состоящей из иттрия (Y) и лютеция (Lu). GOS дополнительно содержит цериий (Се) и/или празеодим (Pr) в качестве примеси. Керамический GOS является кристаллическим. Устройство визуализации содержит по меньшей мере, один радиационный источник и радиационный детектор, содержащий указанный сцинтилляционный материал, а также оптически связанный с ним фотодетектор. Между сцинтилляционным материалом и фотодетектором расположен спектральный фильтр для блокирования света с длиной волны, превышающей примерно 900 нм, или инфракрасный свет, испускаемый сцинтилляционным материалом. Изобретение позволяет уменьшить послесвечение сцинтилляционного материала. 6 н. и 20 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к способам детектирования нейтронного потока в зоне облучения. Способ регистрации нейтронного потока ядерной установки в широком диапазоне измерений, заключающийся в том, что детектируют нейтронный поток ядерной установки посредством регистрации токового режима камеры деления с последующим измерением и обработкой тока камеры деления вне зоны облучения, при этом одновременно с токовым режимом используют режим счета единичных нейтронов, при этом в диапазоне линейной зависимости скорости счета от нейтронного потока осуществляют прямые измерения актов регистрации нейтронов, причем сигнал, обусловленный единичными нейтронами без предварительного усиления, передают по кабельной линии для регистрации и обработки вне зоны облучения, после чего зависимости плотности потока нейтронов от времени, измеренные камерой деления в счетном и токовом режимах, объединяются. Технический результат - повышение достоверности измерения нейтронного потока при значениях регистрируемого тока с камеры меньших, чем десять фоновых токов камеры в условиях сохранения надежности и стабильности рабочих характеристик регистрирующей аппаратуры. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области ядерной техники, в частности к калибровке эмиссионных детекторов нейтронов для внутризонного контроля распределения энерговыделения в ядерных реакторах

Наверх