Активная зона с быстрорезонансным спектром нейтронов со сверхкритическим давлением воды



Активная зона с быстрорезонансным спектром нейтронов со сверхкритическим давлением воды
Активная зона с быстрорезонансным спектром нейтронов со сверхкритическим давлением воды

 


Владельцы патента RU 2485612:

Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации-Физико-энергетический институт имени А.И. Лейпунского" (RU)

Изобретение относится к атомной энергетике и может быть использовано в ядерных реакторах. Активная зона с быстрорезонансным спектром нейтронов со сверхкритическим давлением воды размещена в шахте (11) и разделена по радиусу выгородкой (2) на периферийную и центральную подзоны. В периферийной и центральной подзонах обеспечивают движение теплоносителя соответственно сверху вниз и снизу вверх. В активной зоне используют безчехловые тепловыделяющие сборки. В периферийной подзоне шаг размещения тепловыделяющих сборок, по меньшей мере, в 1,02 раза больше шага размещения тепловыделяющих сборок в центральной подзоне. В центральной подзоне размещают тепловыделяющие сборки с твэлами с МОХ-топливом (7). В периферийной подзоне наряду с тепловыделяющими сборками с твэлами с МОХ-топливом (7) располагают тепловыделяющие сборки с твэлами с МОХ-топливом и младшими актинидами (8). Твэлы с младшими актинидами (6) устанавливают в периферийных рядах тепловыделяющих сборок. Тепловыделяющие сборки с твэлами с МОХ-топливом и младшими актинидами (8) устанавливают в периферийных рядах периферийной подзоны и выдерживают их в активной зоне, по меньшей мере, в течение двух кампаний. Технический результат изобретения состоит в замыкании топливного цикла и глубоком выжигании младших актинидов. 2 ил.

 

Изобретение относится к атомной энергетике и может быть использовано в ядерных реакторах с быстрорезонансным спектром нейтронов со сверхкритическим давлением воды.

Известен ядерный реактор с быстрым спектром нейтронов, охлаждаемый натрием БН-1200 [Поплавский В.М. и др. Активная зона и топливный цикл для перспективного быстрого натриевого реактора. Атомная энергия, 2010, т.108, вып.4, стр.206-211].

В известном ядерном реакторе предлагают использовать МОХ-топливо на основе ОЯТ и плутония и выжигание младших актинидов (Am, Cm). В части тепловыделяющих сборок (выжигательные сборки - ВС ~ 10% от общего количества) твэлы изготавливаются из смеси MgO+(Am+Cm)O2. В нее добавляется часть твэлов с МОХ-топливом из основного состава. Однако как показано расчетными исследованиями, в выжигательной сборке за кампанию топлива младшие актиниды выгорают только на ~ 45% и, следовательно, такие твэлы нужно включать в дальнейший рецикл. За проектируемый срок работы реактора (50 лет) при таком режиме выгорания топлива и младших актинидов количество последних уменьшается в ~ 2 раза по отношению к первым загрузкам.

Для более глубокого выгорания младших акинидов, чтобы их оставалось после выгорания около 10% и такие твэлы можно без дальнейшей переработки отправить на длительное хранение, предлагается «смягчить» спектр нейтронов в выжигательной сборке размещением в центральной части гидрида циркония. Твэлы в этом случае изготавливаются из смеси ZrO+(Am+Cm)O2 - такая композиция не растворяется в кислотах и воде при длительном захоронении. В таких тепловыделяющих сборках за кампанию (5 лет) младшие актиниды выгорают и остается их ~ 10÷12%. Однако введение гидрида циркония в выжигательные сборки приводит к смягчению спектра нейтронов в соседних тепловыделяющих сборках и к увеличению их мощности в 4-5 раз, что недопустимо по условиям эксплуатации. Для уменьшения влияния выжигающих сборок на тепловыделяющие сборки требуется уменьшение количества в них младших актинидов и чтобы выжигать накапливаемое количество младших актинидов требуется увеличить количество выжигательных сборок до 180 шт., чего не позволяет конструкция реактора.

Недостатком известного технического решения является относительно малая доля выжигания младших актинидов и необходимость дальнейшего использования отработавших твэлов с младшими актинидами в рециклах.

Наиболее близким по технической сущности к заявленному техническому решению является водоохлаждаемый реактор 4-го поколения со сверхкритическим давлением теплоносителя (ВВЭР-СКД) [Глебов А.П., Клушин А.В. Реактор с быстрорезонансным спектром нейтронов, охлаждаемый водой сверхкритического давления при двухходовой схеме движения теплоносителя. Атомная энергия, 2006, т.100, вып.5, стр.349-356].

В указанном реакторе активная зона разделена для движения теплоносителя на две подзоны: периферийную подзону, которая охлаждается при опускном движении теплоносителя (tвх/tвых=290/385°С при Р=25 МПа) и имеющую резонансный спектр, и центральную подзону, охлаждаемую восходящим потоком теплоносителя (tвх/tвых=385/540°С, Р=24,5 МПа) с быстрым спектром нейтронов. Центральную и периферийную подзоны набирают из примерно равного количества тепловыделяющих сборок и разделяют выгородкой.

Недостатком указанного технического решения является наличие относительно "жесткого" спектра нейтронов в центральной и периферийной подзонах, что не позволяет осуществлять глубокое выжигание младших актинидов.

Для исключения указанного недостатка в активной зоне с быстрорезонансным спектром нейтронов со сверхкритическим давлением воды, размещенной в шахте и разделенной по радиусу выгородкой на периферийную и центральную подзоны, в которой в периферийной и центральной подзонах обеспечивают движение теплоносителя соответственно сверху вниз и снизу вверх, предлагается:

- в активной зоне использовать безчехловые тепловыделяющие сборки;

- в периферийной подзоне шаг размещения тепловыделяющих сборок обеспечить, по меньшей мере, в 1,02 раза большим, чем шаг размещения тепловыделяющих сборок в центральной подзоне;

- в центральной подзоне разместить тепловыделяющие сборки с твэлами с МОХ-топливом;

- в периферийной подзоне наряду с тепловыделяющими сборками с твэлами с МОХ-топливом расположить тепловыделяющие сборки с твэлами с МОХ-топливом и младшими актинидами;

- тепловыделяющие сборки с твэлами с МОХ-топливом и младшими актинидами установить в периферийных рядах периферийной подзоны и выдерживать их в активной зоне, по меньшей мере, в течение двух кампаний.

На фигурах 1 и 2 представлены соответственно продольное осевое сечение активной зоны и поперечное сечение тепловыделяющей сборки из периферийной подзоны. На фигурах приняты следующие обозначения: 1 - верхняя решетка; 2 - выгородка; 3 - днище шахты; 4 - направляющий канал; 5 - нижняя решетка; 6 и 7 - твэлы с МОХ-топливом и младшими актинидами и МОХ-топливом соответственно; 8 - тепловыделяющая сборка с твэлами с МОХ-топливом и младшими актинидами периферийной подзоны, 9 - тепловыделяющая сборка с твэлами с МОХ-топливом центральной подзоны, 10 - центральная трубка; 11 - шахта.

Сущность изобретения состоит в следующем.

Активная зона с быстрорезонансным спектром нейтронов со сверхкритическим давлением воды размещена в шахте 11 и разделена по радиусу выгородкой 2 на периферийную и центральную подзоны.

В периферийной и центральной подзонах обеспечивают движение теплоносителя соответственно сверху вниз и снизу вверх.

В активной зоне используют безчехловые тепловыделяющие сборки.

Использование безчехловых тепловыделяющих сборок по сравнению с чехловыми тепловыделяющими сборками при сохранении состава топлива и количества твэлов позволяет увеличить кампанию топлива примерно на 10%.

В указанном реакторе активная зона разделена для движения теплоносителя на две подзоны: периферийную, которая охлаждается при опускном движении теплоносителя (tвх/tвых=290/385°С при Р=25 МПа) и имеющую резонансный спектр, и центральную подзону, охлаждаемую восходящим потоком теплоносителя (tвх/tвых=385/540°С, Р=24,5 МПа) с быстрым спектром нейтронов. Центральную и периферийную подзоны набирают из примерно равного количества тепловыделяющих сборок и разделяют выгородкой 2.

В периферийной подзоне шаг размещения тепловыделяющих сборок, по меньшей мере, в 1,02 раза больше шага размещения тепловыделяющих сборок в центральной подзоне.

Обеспечение указанного шага размещения тепловыделяющих сборок вместе с существенно большей плотностью теплоносителя позволяет еще более смягчить спектр нейтронов в периферийной подзоне. Для выравнивания энерговыделения по твэлам в тепловыделяющих сборках, установленных в перифериной подзоне, обогащение топлива в периферийном ряду твэлов можно уменьшить в ~ 2 раза.

В центральной подзоне размещают тепловыделяющие сборки 9 с твэлами с МОХ-топливом 7, а в периферийной подзоне кроме тепловыделяющих сборок 9 с твэлами с МОХ-топливом 7 располагают тепловыделяющие сборки 8 с твэлами с МОХ-топливом и младшими актинидами 6.

Твэлы с младшими актинидами 6 устанавливают в периферийных рядах тепловыделяющих сборок 8.

Тепловыделяющие сборки 8 с твэлами с МОХ-топливом 7 и младшими актинидами 6 устанавливают в периферийных рядах периферийной подзоны и выдерживают их в активной зоне, по меньшей мере, в течение двух кампаний.

В периферийных рядах периферийной подзоны твэлы 6 состоят из композиции 35% ZrO+65% (Am+Cm)O2 (фиг.2).

Активная зона работает следующим образом.

Водяной теплоноситель поступает в периферийную подзону активной зоны и охлаждает ее при движении сверху вниз, затем разворачивается и охлаждает центральную подзону при движении снизу вверх и выходит из нее уже в виде пара. В центральной подзоне формируется быстрый спектр нейтронов, а в периферийной подзоне резонансный спектр нейтронов.

В результате выполнения предварительных расчетов показано следующее.

За 10 лет работы в предлагаемой активной зоне накапливается ~ 1300 кг младших актинидов (из них 90% Am и 10% Cm) при стационарном режиме перегрузок при кампании 5 лет для тепловыделяющих сборок с твэлами с МОХ-топливом и 10 лет для тепловыделяющих сборок 8 с твэлами с МОХ-топливом 7 и младшими актинидами 6. Часть накопленных младших актинидов распадается за 3-4 года выдержки отработавшего ядерного топлива в пристанционных хранилищах до переработки и фабрикации нового топлива.

Проведены расчеты топливного цикла в 3-мерной гексагональной геометрии и 5-групповом приближении по программному комплексу WIMS-ACADEM.

Поскольку тепловыделяющие сборки 8 с твэлами с МОХ-топливом 7 и младшими актинидами 6 размещаются на периферии подзоны, то достигаемые параметры в твэлах с МОХ-топливом 7 за 10 лет составляют: повреждающая доза ~ 60 сна и максимальная энерговыработка ~ 90 МВт·сут/кг т.а. не превышают проектных параметров.

В твэлах с младшими актинидами 6 за 10 лет выгорания остается ~ 12% младших актинидов от начального значения и такие твэлы можно отправлять на длительное захоронение. Всего в 24 тепловыделяющие сборки 8 загружают 1230 кг младших актинидов. Таким образом, все младшие актиниды, которые накопились в ядерном реакторе за 10 лет работы, могут за это же время выгореть и для этого нужно ~ 24 тепловыделяющие сборки.

Можно увеличить количество тепловыделяющих сборок с твэлами с младшими актинидами 6 в активной зоне. Тогда можно выжигать младшие актиниды, накопленные в отработанном ядерном топливе других ядерных реакторов.

Пример конкретного исполнения

Конструктивные характеристики элементов активной зоны и тепловыделяющих сборок: центральная трубка 10 размером ⌀ 10,7 мм × 1 мм; 18 направляющих каналов 4 под ПЭЛ размером ⌀ 10,7 мм × 0,55 мм; 138 твэлов с МОХ-топливом 7 (ОЯТ+PuO2, γPuO2=0,7 г/см3); 114 твэлов с младшими актинидами 6. Конструкционный материал всех элементов - сталь ЭП-172; количество твэлов в тепловыделяющей сборке - 252 шт, количество тепловыделяющих сборок в активной зоне - 241 шт.; высота/эквивалентный диаметр активной зоны - 3,76/3,38 м.

Теплогидравлические характеристики реакторной установки: тепловая/электрическая мощность - 3830/1700 МВт; давление теплоносителя - 25,0 МПа; температура теплоносителя, вход/выход - 290/540°С; расход теплоносителя через реактор - 6750 т/час; средняя энергонапряженность активной зоны - 115 Вт/см3; средний линейный тепловой поток с твэла - 170 Вт/см.

Шаг размещения тепловыделяющих сборок в центральной 9 и периферийной 8 подзонах составляет соответственно 205 мм и 210 мм.

В периферийной подзоне наряду с тепловыделяющими сборками с твэлами с МОХ-топливом 9 размещаются тепловыделяющие сборки 8 с твэлами с МОХ-топливом 7 и младшими актинидами 6, в которых в двух периферийных рядах твэлы 6 состоят из композиции 35% ZrO + 65% (Am+Cm)O2.

Кампания тепловыделяющих сборок центральной 9 и периферийной 8 подзон составляет 5 × 300 эфф. суток с использованием ежегодных частичных перегрузок. Тепловыделяющие сборки 8 с твэлами с МОХ-топливом 7 и младшими актинидами 6 размещаются в двух последних рядах периферийной подзоны и находятся там двойную кампанию (10 календарных лет) без перестановок, после чего выгружаются.

Технический результат изобретения состоит в замыкании топливного цикла и глубоком выжигании младших актинидов.

Активная зона с быстрорезонансным спектром нейтронов со сверхкритическим давлением воды, размещенная в шахте, разделена по радиусу выгородкой на периферийную и центральную подзоны, при этом в периферийной и центральной подзонах обеспечивают движение теплоносителя соответственно сверху вниз и снизу вверх, отличающаяся тем, что в активной зоне используют безчехловые тепловыделяющие сборки, в периферийной подзоне шаг размещения тепловыделяющих сборок, по меньшей мере, в 1,02 раза больше шага размещения тепловыделяющих сборок в центральной подзоне, в центральной подзоне размещают тепловыделяющие сборки с твэлами с МОХ-топливом, в периферийной подзоне наряду с тепловыделяющими сборками с твэлами с МОХ-топливом располагают тепловыделяющие сборки с твэлами с МОХ-топливом и младшими актинидами, причем твэлы с младшими актинидами установлены в периферийных рядах тепловыделяющих сборок, а тепловыделяющие сборки с твэлами с МОХ-топливом и младшими актинидами устанавливают в периферийных рядах периферийной подзоны и выдерживают их в активной зоне, по меньшей мере, в течение двух кампаний.



 

Похожие патенты:

Изобретение относится к ядерной энергетике, в частности к способу снаряжения фольгой оболочки тепловыделяющего элемента и устройству для его осуществления, и может быть использовано в процессе изготовления твэлов.

Изобретение относится к ядерной энергетике, в частности к активным зонам ядерного реактора с бегущей (дефлаграционной) волной деления ядер и их внутренним устройствам.

Изобретение относится к конструкциям ядерных реакторов. .

Изобретение относится к получению радиоактивных изотопов в ядерных реакторах. .
Изобретение относится к ядерной технике, в частности к конструкциям таблеток легководных реакторов (LWR), а также реакторов AGR и водно-графитовых. .

Изобретение относится к устройству удержания ядерных топливных элементов в виде пластин для ядерного реактора на быстрых нейтронах. .

Изобретение относится к ядерной энергетике и может быть использовано для изготовления твэлов преимущественно для ядерных водо-водяных энергетических реакторов (ВВЭР).
Изобретение относится к ядерному топливу, в частности к топливу энергетического реактора-размножителя на быстрых нейтронах с активной зоной в виде солевого расплава
Изобретение относится к области ядерной энергетики, в частности к способам получения смешанного уран-плутониевого ядерного топлива на базе диоксидов UO2 и PuO2, получившего название МОХ (Mixed-Oxide) топлива. Азотнокислый раствор нитратов актинидов смешивается с раствором муравьиной кислоты, полученный раствор высушивается в токе воздуха или инертной атмосфере при температуре до 140°С до твердой смеси формиатов указанных элементов, и затем полученная смесь прокаливается в инертной атмосфере при температурах 400-450°С для разложения формиатов. Изобретение позволяет снизить температуры термической обработки и исключить использование водорода, что приведет к увеличению безопасности и упрощению способа получения смешанных оксидов актинидов. 3 з.п. ф-лы.
Изобретение относится к области ядерной энергетики, в частности к способам получения смешанного уран-плутониевого ядерного топлива на базе диоксидов UO2 и PuO2, получившего название МОХ (Mixed-Oxide) топлива. Азотнокислый раствор нитратов актинидов смешивается с раствором муравьиной кислоты, полученный раствор высушивается в токе воздуха или инертной атмосфере при температуре до 140°С до твердой смеси формиатов указанных элементов, и затем полученная смесь прокаливается в инертной атмосфере при температурах 400-450°С для разложения формиатов. Изобретение позволяет снизить температуры термической обработки и исключить использование водорода, что приведет к увеличению безопасности и упрощению способа получения смешанных оксидов актинидов. 3 з.п. ф-лы.

Изобретение относится к способу и устройству для получения сферических частиц делящегося и/или воспроизводящего материала, используемого в ядерных реакторах. Способ включает формирование капель заливочного раствора в аммиачную осадительную ванну для образования микросфер, старение, промывку полученных микросфер в растворе аммиака, сушку и термообработку. При этом заливочный раствор содержит нитрат уранила и раствор с по меньшей мере одним вспомогательным веществом. Микросферы отделяют от осадительной ванны в первом сепараторе и подают в аммиачный раствор для старения. Микросферы передаются из раствора для старения через перегрузочное устройство в многоступенчатый каскадный промыватель, в котором микросферы промываются так, чтобы не содержать или по существу не содержать нитрат аммония и по меньшей мере одно содержавшееся в микросферах вспомогательное вещество. После сушки микросферы прокаливаются во время термообработки, будучи распределенными монослоем. Технический результат - непрерывность способа получения частиц, стабильность низкой дисперсии их сферичности. 2 н. и 51 з.п. ф-лы, 10 ил.

Изобретение относится к ядерной технике, а именно к технологии изготовления таблеток ядерного топлива из порошков на основе оксидов ядерных делящихся материалов, в частности к изготовлению таблеток с минимальными припусками на шлифование или в размер. Способ изготовления таблеток ядерного топлива включает подготовку исходного порошка, прессование порошка в конической матрице и спекание полученной таблетки. Прессование порошка осуществляют методом одностороннего сжатия в направлении раскрытия угла матрицы. При этом используют матрицу с величиной угла конусности, выбранной из условия обеспечения равенства диаметров по торцам таблетки после ее спекания с учетом диаметральной усадки торцов таблетки при спекании из-за потерь давления по высоте сырой таблетки в процессе прессования под воздействием сил трения. Технический результат - повышение коэффициента использования дорогостоящего материала, повышение качества топливных таблеток и увеличение ресурса работы пресс-инструмента. 1 ил., 3 табл.

Изобретение относится к ядерной технике, а именно к конструкции сборок (ТВС) тепловыделяющих элементов (твэлов), в частности для высокоэнергонапряженных активных зон исследовательских реакторов, и может быть использовано как в водоводяных реакторах, так и в парогенерирующих установках с ядерным топливом. В тепловыделяющей сборке слоями уложены тороидальные твэлы, расположенные в слоях таким образом, чтобы они вписывались в шестигранник поперечного сечения сборки. При этом вертикальные оси симметрии тороидальных твэлов предыдущего и последующих слоев смещены относительно осей симметрии тороидальных твэлов среднего слоя. Каждый тороидальный твэл имеет пазы на верхней и нижней поверхностях в местах пересечения проекций твэлов предыдущего и последующего слоев, и в столбе тороидальных твэлов пазы на верхней поверхности тороидального твэла совмещаются с пазами на нижней поверхности тороидального твэла последующего слоя, образуя жесткое соединение слоев. Высота тороидального твэла в сборке уменьшается снизу вверх пропорционально скорости движения теплоносителя. Технический результат заключается в улучшении теплоотдачи твэлов за счет турбулизации потока теплоносителя и выравнивании поля температур в поперечном сечении ТВС за счет поперечного перемешивания теплоносителя, исключении режимов пленочного кипения. 3 з.п.флы, 5 ил.
Изобретение относится к атомной промышленности, в частности к изготовлению таблетированного топлива из диоксида урана для тепловыделяющих элементов (твэлов) ядерных реакторов. Способ изготовления таблетированного топлива для тепловыделяющих элементов включает приготовление легирующей композиции, содержащей 5…10% Al(ОН)3+30…40% Gd(OH)3, остальное UO2, смешение порошка диоксида урана с пластификатором и легирующей композиции в количествах, обеспечивающих в конечной смеси (пресс-порошке) содержание Al(ОН)3 и Gd(OH)3 соответственно от 0,5 до 2,0 мас.% и от 3,0 до 8,0 мас.%, прессование таблеток из полученного пресс-порошка и их спекание. Технический результат - получение таблетированного топлива с размером зерна диоксида урана 30-50 мкм и с долей открытых пор менее 0,3%. 2 н.п. ф-лы.

Изобретение относится к ядерной технике, в частности к технологии изготовления оксидного ядерного топлива для тепловыделяющих элементов, и может быть использовано для изготовления таблетированного ядерного топлива на основе диоксида урана для АЭС. Таблетку ядерного топлива из диоксида урана с гомогенно распределенными оксидами алюминия и кремния и требуемым содержанием алюминия от 0,005 до 0,03 мас.% и кремния от 0,003 до 0,02 мас.% изготавливают путем введения на стадии подготовки пресс-порошка до 30 мас.% мастер-порошка закиси-окиси урана U3O8. При этом мастер-порошок приготовлен по ADU-процессу из раствора уранилнитрата, содержащего алюминий и кремний в количествах от 0,05-0,3 мас.%. Техническим результатом является повышение глубины выгорания топлива при его эксплуатации до 70-100 МВт·сут/кг U. 1 ил.

Данное изобретение относится к оболочкам микротвэлов ядерного реактора. Оболочка полностью или частично изготовлена из композиционного материала с керамической матрицей, содержащей волокна карбида кремния (SiC) в качестве армирования матрицы и межфазный слой между матрицей и волокнами. Матрица содержит, по меньшей, мере один карбид, выбранный из карбида титана (TiC), карбида циркония (ZrC) или тройного карбида титана-кремния (Ti3SiC2). Способ изготовления оболочки ядерного топлива включает, в частности, изготовление волоконной предварительной формы, нанесение на нее химической паровой инфильтрацией межфазового слоя, нанесение матрицы. Технический результат - надежное механическое удержание продуктов деления ядерного топлива внутри оболочки при облучении и температурах между 800°C и 1200°C, при этом обеспечивается оптимальный перенос тепловой энергии к теплоносителю. 2 н. и 13 з.п. ф-лы, 2 ил.

Изобретение относится к способу приготовления оксалатов актиноидов. Способ включает осаждение одного актиноида или соосаждение большего числа актиноидов в форме частиц оксалата в псевдоожиженном слое приведением в контакт водного раствора, содержащего актиноид или актиноиды, с водным раствором щавелевой кислоты или соли щавелевой кислоты и сбор частиц оксалата. Изобретение обеспечивает получение оксалатов актиноидов в форме порошков с высокими гранулометрическими и морфологическими характеристиками. 2 н. и 14 з. п. ф-лы, 9 ил., 2 пр.
Наверх