Способ изготовления слоев p-типа проводимости на кристаллах insb



Способ изготовления слоев p-типа проводимости на кристаллах insb
Способ изготовления слоев p-типа проводимости на кристаллах insb

 


Владельцы патента RU 2485629:

Открытое акционерное общество "Московский завод "САПФИР" (RU)

Изобретение относится к технологии изготовления полупроводниковых приборов, чувствительных к инфракрасному излучению, и может быть использовано при изготовлении фотодиодов на кристаллах InSb n-типа проводимости (изготовление p-n-переходов), фототранзисторов (изготовление базовых областей на кристаллах n-типа проводимости и эмиттеров и омических контактов на кристаллах p-типа проводимости), фоторезисторов на основе кристаллов p-типа проводимости (омические контакты). В способе изготовления слоев p-типа проводимости на кристаллах InSb, включающем имплантацию ионов Be+ с энергией не более 40 кэВ и дозой не более 1014 см-2 и последующий импульсный отжиг излучением галогенных ламп через кремниевый фильтр в атмосфере осушенного аргона или азота с нагревом образца до температуры отжига со скоростью 15-350 град/с и охлаждением после отжига со скоростью не более 10 град/мин, при этом отжиг проводят в две стадии: первая - при температуре 300-320°C с длительностью отжига 40-120 с, вторая - при температуре 385-400°C с длительностью отжига 10-20 с. Изобретение обеспечивает улучшение структурных и электрофизических свойств получаемых слоев, так как в этом случае наиболее эффективно отжигаются как простые, при более низких температурах, так и сложные, при более высоких температурах, радиационные дефекты, отжиг в течение указанного времени необходим для завершения процессов диффузии к поверхности кристалла продуктов распада этих дефектов - точечных дефектов. 1 табл.

 

Предлагаемое изобретение относится к технологии изготовления полупроводниковых приборов, чувствительных к инфракрасному излучению, и может быть использовано при изготовлении фотодиодов на кристаллах InSb n-типа проводимости (изготовление p-n-переходов), фототранзисторов (изготовление базовых областей на кристаллах n-типа проводимости и эмиттеров и омических контактов на кристаллах p-типа проводимости), фоторезисторов на основе кристаллов p-типа проводимости (омические контакты).

Известно, что легированные слои p-типа проводимости в InSb могут быть изготовлены имплантацией ионов Cd+, Mg+ и Ве4+. При этом лучшими структурными и электрофизическими свойствами обладают слои, полученные имплантацией ионов Be+-самого легкого иона этой группы элементов, производящего меньше всего нарушений в кристаллической решетке InSb. Известно также (см. И.Г.Стоянова, Н.А.Скакун, А.С.Трохин. Журнал «Поверхность: Физика химия механика», 1988 г., №8, стр.144-146. «Локализация атомов бериллия в кристаллической решетке антимонида индия при ионной имплантации»), что атомы бериллия уже при имплантации занимают узлы подрешетки In и становятся электрически активными. Однако радиационные дефекты, имеющиеся в имплантированном слое, проявляют себя как доноры, компенсирующие дырочную проводимость и уменьшающие концентрацию дырок р. При последующем отжиге концентрация дефектов уменьшается, в результате чего улучшаются структурные и электрофизические свойства слоя и значение p возрастает. При этом чем более совершенным становится слой, тем больше будет значение p, стремясь к значению концентрации атомов бериллия в слое.

Из этого следует, что при фиксированных энергии и дозе имплантации ионов Ве+ достижение наибольшего значения p соответствует наилучшим структурным и электрофизическим свойствам легированного слоя. Таким образом, успех создания слоев p-типа проводимости в InSb при имплантации ионов Ве+ определяется эффективностью постимплантационного отжига. Наиболее технологичным и уже показавшим свои преимущества является импульсный отжиг излучением галогенных ламп.

Известен способ изготовления слоев p-типа проводимости при создании p-n-переходов на кристаллах InSb n-типа проводимости, включающий имплантацию ионов Be+ с энергией 20÷100 кэВ и дозой (5·1011÷6·1014) см-2 и последующий отжиг импульсами излучения галогенных ламп с длительностью (0,8÷10)с при плотности мощности излучения (50÷100) Вт/см2 (см. патент РФ №2056671, МПК H01L 21/265 опубл. 20.06.1996 г.). Недостатком способа является наличие остаточных радиационных дефектов n-типа, ухудшающих структурные и электрофизические свойства слоя и уменьшающих концентрацию дырок, обусловленную электрически активными атомами Be.

Известен наиболее близкий по технической сущности к предлагаемому и принятый за прототип способ изготовления слоев p-типа проводимости на кристаллах InSb, включающий имплантацию ионов Be+ с энергией не более 40 кэВ и дозой не более 1014 см-2 и последующий импульсный отжиг излучением галогенных ламп через кремниевый фильтр в атмосфере осушенного аргона или азота с длительностью импульса (1-10)с и температурой образца Т=(350÷370)°С со скоростью нарастания температуры (15÷350) град/с и скоростью охлаждения после отжига не более 10 град/мин (см. Астахов В.П. и др. «Применение импульсного лампового отжига в технологии изготовления фотодиодов из антимонида индия». Научно-технический сборник «Вопросы оборонной техники», серия 11, вып.1-2 /136-237/, стр.18-22, 1993 г.). Недостатком прототипа является также наличие остаточных радиационных дефектов, ухудшающих структурные и электрофизические свойства слоя и уменьшающих концентрацию дырок в слое.

Предлагаемый способ изготовления решает задачу уменьшения остаточных радиационных дефектов в получаемом слое.

Техническим результатом при использовании предлагаемого способа является улучшение структурных и электрофизических свойств слоев p-типа проводимости, получаемых на кристаллах InSb.

Технический результат достигается тем, что в способе изготовления слоев p-типа проводимости на кристаллах InSb, включающем имплантацию ионов Be+ с энергией не более 40 кэВ и дозой не более 1014 см-2 и последующий импульсный отжиг излучением галогенных ламп через кремниевый фильтр в атмосфере осушенного аргона или азота с нагревом образца до температуры отжига со скоростью (15÷350) град/с и охлаждением после отжига со скоростью не более 10 град/мин, отжиг проводят в две стадии: первая - при температуре T1=(300-320)°C с длительностью отжига τ1=(40÷120) с, вторая - при температуре Т2=(385÷400)°C с длительностью отжига τ2=(10÷20) с.

Отжиг дефектов в две стадии объясняется наличием в имплантированном слое двух типов радиационных дефектов - простых, отжигающихся при температурах T1 и более сложных, отжигающихся при температурах Т2>T1. Выдержки при температурах T1 и Т2 в течение соответствующих значений τ1 и τ2 необходимы для завершения процессов диффузии к поверхности кристалла продуктов распада этих дефектов - точечных дефектов. Необходимость проведения сначала первой стадии отжига при температурах T1, а затем второй стадии при температурах T2>T1, вызвана тем, что переход ко второй стадии, минуя первую, вызывает одновременный распад сразу 2-х типов дефектов. Это резко увеличивает концентрацию точечных дефектов и повышает вероятность их взаимодействия с образованием новых сложных дефектов. При постадийном повышении температуры, когда отжигается сначала один тип дефектов, а затем - другой, образование новых сложных дефектов менее вероятно благодаря меньшим концентрациям точечных дефектов при температурах отжига. Нижние значения указанных интервалов температур T1 и Т2 определяются началом распада своего вида дефектов, а верхние - завершением этого процесса. Превышение верхнего значения интервала T2 приводит к активации процессов разложения более сложных дефектов, взаимодействию всех типов имеющихся дефектов и образованию новых сложных дефектов. Превышение верхнего значения интервала Т1 приводит к активации испарения атомов Sb из кристалла и связанному с этим образованию также новых сложных дефектов. Уменьшение нижних значений указанных интервалов τ1 и τ2 приводит к тому, что точечные дефекты, образующиеся при распаде соответствующих типов дефектов, не успевают стечь к поверхности, а превышение верхних значений - к проявлению диффузионных процессов, связанных с испарением атомов Sb и приводящих к формированию новых дефектов.

Для определения оптимальных значений режимов отжига был проведен ряд экспериментов на кристаллах InSb n-типа проводимости с исходной концентрацией доноров ~1015 см-3. Для создания слоев p-типа проводимости в пластины проведена имплантация ионов Be+ с энергией 30 кэВ и дозой 6*1013 см-2. Отжиг проводился на установке с галогенными лампами типа «Оникс» через кремниевый фильтр в одно-, двух- и трехстадийном режимах при различных температурах и длительностях стадий в атмосфере осушенного аргона. Скорость нагрева до температуры отжига составляла (60÷70) град/с, скорость охлаждения - (8÷10) град/мин. Оценочным параметром структурных и электрофизических свойств слоя являлось значение напряжения термо-э.д.с и, пэдс, измеренное с точностью 1 мВ, и концентрация дырок в легированном слое, рассчитанная подстановкой значения Uтэдс в формулу

,

где k - постоянная Больцмана, е - элементарный заряд, Nν - плотность состояний в валентной зоне, ΔT - разность температур нагреваемого и ненагреваемого зондов.

Uтэдс измерялось с помощью прижимных нагреваемого и ненагреваемого зондов на пластинах, залитых жидким азотом, при постоянной температуре нагреваемого зонда. По знаку Uтэдс определялся тип основных носителей заряда в слое. Аналогичные измерения произведены на слоях, изготовленных по способу-прототипу.

Результаты экспериментов представлены в таблице и они сводятся к следующему.

Выполнение всех условий предложения (в таблице выделено жирным шрифтом), включая значения интервалов параметров T1=(300÷320)°С, T2=(385÷400)°С, τ1=(40÷120)с, τ2=(10÷20) с, приводит к получению наибольших значений Uтэдс=(45÷46) мВ и p=(2,1÷2,24)*10 см18 м-3, причем p соответствует среднему значению, определяемому дозой имплантации (по расчету р~2,1·1018 см-3). Уход хотя бы одного параметра за пределы значений указанных интервалов на 10°С для T1 и Т2 и (5-10) с для τ1 и τ2, приводит к уменьшению Uтэдс на (2÷5) мВ и p - на (20-30)%. Увеличение ухода параметров приводит к дальнейшему уменьшению значений Uтэдс и р.

Все эти результаты не зависят от того, в какой момент времени после окончания импульса первой стадии длительностью τ1 начинается нагрев для проведения второй стадии.

Увеличение числа стадий ни при каких условиях не позволяет улучшить результат, получаемый по предложению.

Совокупность полученных результатов свидетельствует о том, что наилучшие структурные и электрофизические свойства легированных слоев получаются при реализации предложения. При этом значения Uтэдс в ~2,5 раза, а p - в 7 раз превосходят значения, полученные по способу-прототипу (Uтэдс=18 мВ, p=2,5·1017 см-3), что свидетельствует о значительном преимуществе предложения перед прототипом.

Способ изготовления слоев p-типа проводимости на кристаллах InSb, включающий имплантацию ионов Be+ с энергией не более 40 кэВ и дозой не более 1014 см-2 и последующий импульсный отжиг излучением галогенных ламп через кремниевый фильтр в атмосфере осушенного аргона или азота с нагревом образца до температуры отжига со скоростью 15-350°/с и охлаждением после отжига со скоростью не более 10°/мин, отличающийся тем, что отжиг проводят в две стадии: первую - при температуре 300-320°C с длительностью отжига 40-120 с, вторую - при температуре 385-400°C с длительностью отжига 10-20 с.



 

Похожие патенты:

Изобретение относится к созданию высокоэффективных солнечных элементов на основе полупроводниковых многослойных наногетероструктур для прямого преобразования энергии солнечного излучения в электрическую энергию с использованием солнечных батарей.

Изобретение относится к солнечной энергетике, а именно к технологическому оборудованию для производства фотоэлектрических панелей, и, в частности, технологической таре для хрупких пластин фотопреобразователей (ФП) при позиционировании, фиксации, обработке, транспортировании, контроле, испытаниях и хранении.

Изобретение относится к способу изготовления солнечных элементов (СЭ). .

Изобретение относится к изготовлению солнечных батарей

Способ изготовления чипов каскадных фотоэлементов относится к солнечной энергетике. Способ включает выращивание фоточувствительной многослойной полупроводниковой структуры на германиевой подложке, последовательное выращивание на поверхности фоточувствительной многослойной структуры пассивирующего слоя и контактного слоя, создание сплошных омических контактов на тыльной и фронтальной поверхностях фоточувствительной многослойной полупроводниковой структуры. Формирование контактной сетки на фотоэлементах осуществляют локальным травлением химическим и ионно-лучевым методами омического контакта и контактного слоя для открытия части нижележащего пассивирующего слоя и создают многослойное просветляющее покрытие на открытой части пассивирующего слоя. Далее проводят разделение многослойной структуры на чипы и пассивируют боковую поверхность чипов диэлектриком. Способ позволяет уменьшить затенение фоточувствительной поверхности фотоэлементов и одновременно упростить технологию. 1 з.п. ф-лы, 7 пр., 5 ил.

Задний лист для модуля солнечных элементов содержит лист подложки и отвержденный слой пленки покрытия из материала покрытия, сформированного на одной стороне или на каждой стороне листа подложки, причем указанный материал покрытия содержит фторполимер (А), имеющий повторяющиеся звенья на основе фторолефина (а), повторяющиеся звенья на основе мономера (b), содержащего группы для поперечного сшивания и повторяющиеся звенья на основе мономера (с), содержащего алкильные группы, где C2-20 линейная или разветвленная алкильная группа не имеет четвертичного атома углерода, а ненасыщенные группы, способные к полимеризации, связаны друг с другом посредством эфирной связи или сложноэфирной связи. Также предложен модуль солнечных элементов с использованием такого заднего листа и варианты способа изготовления заднего листа для модуля солнечных элементов. Предложенное изобретение обеспечивает возможность создания отвержденного слоя гибкого с хорошей адгезией за счет исключения растрескивания, разламывания, замутнения и расслоения. 5 н. и 10 з.п. ф-лы, 3 ил., 2 табл.

Изобретение относится к области микроэлектроники, фотовольтаики, к не литографическим технологиям структурирования кремниевых подложек, в частности к способам структурирования поверхности монокристаллического кремния с помощью лазера. Способ согласно изобретению включает обработку поверхности монокристаллического кремния ориентации (111) с помощью импульсного излучения лазера, сфокусированного перпендикулярно поверхности обработки с длительностью импульса 15 нс, при этом предварительно монокристаллический кремний ориентации (111) помещают в ультразвуковую ванну и обрабатывают в спирте в течение 30 минут, а обработку лазером ведут импульсами с длиной волны 266 нм и частотой 6 Гц, при этом число импульсов составляет 5500-7000 с плотностью энергии на обрабатываемой поверхности 0,3 Дж/см2. Изобретение обеспечивает формирование периодических пирамидальных структур на поверхности монокристаллического кремния, имеющих монокристаллическую структуру и три кристаллографические грани ориентации (111). 1 табл., 5 ил.

Настоящее изобретение относится к области кремниевых многопереходных фотоэлектрических преобразователей (ФЭП) солнечных батарей. Согласно изобретению предложено создание «гребенчатой» конструкции фотоэлектрического преобразователя, которая позволяет реализовать в его диодных ячейках максимально возможный объем области пространственного заряда p-n переходов, в котором сбор неосновных носителей заряда происходит наиболее эффективно. Предложены конструкция и способ изготовления этой конструкции гребенчатого кремниевого монокристаллического многопереходного фотоэлектрического преобразователя. Данное изобретение позволяет повысить коэффициент полезного действия фотоэлектрических преобразователей до 32%. 2 н.п. ф-лы, 7 ил.

Изобретение относится к технологии тонкопленочных фотоэлектрических преобразователей с текстурированным слоем прозрачного проводящего оксида. Способ получения слоя прозрачного проводящего оксида на стеклянной подложке включает нанесение на стеклянную подложку слоя оксида цинка ZnO химическим газофазным осаждением при пониженном давлении и последующее текстурирование поверхности слоя ZnO высокочастотным магнетронным травлением в среде рабочего газа с одновременным перемещением электромагнитов магнетрона по площади поверхности слоя ZnO в течение определенных времени и мощности магнетрона. Способ имеет повышенную производительность и позволяет уменьшить себестоимость слоев прозрачных проводящих оксидов за счет уменьшения времени и энергозатрат на их выращивание и модификацию поверхности. 2 з.п. ф-лы, 4 ил.

Изобретение касается способа изготовления электродов для солнечных батарей, в котором электрод выполнен в виде электропроводящего слоя на основе (1) для солнечных батарей, на первом этапе с носителя (7) на основу (1) переносят дисперсию, содержащую электропроводящие частицы, посредством облучения дисперсии лазером (9), а на втором этапе сушат и/или отверждают перенесенную на основу (1) дисперсию в целях образования электропроводящего слоя. Способ изготовления электродов для солнечных батарей согласно изобретению позволяет формировать электропроводящий слой с очень тонкой структурой, реализуется простым образом, без использования больших количеств экологически вредных веществ. 16 з.п. ф-лы, 1 ил.

Изобретение относится к области фотоэлектрического преобразования солнечной энергии. Согласно изобретению предложен способ изготовления структуры фотоэлектрического элемента, имеющей два электрода и содержащей по меньшей мере один слой соединения кремния, который включает осаждение слоя соединения кремния на несущую структуру, в результате чего одна поверхность слоя соединения кремния расположена на несущей структуре, а вторая поверхность слоя соединения кремния является непокрытой, обработку второй поверхности слоя соединения кремния в заданной кислородсодержащей атмосфере с обогащением тем самым второй поверхности слоя соединения кремния кислородом и воздействие на обогащенную вторую поверхность окружающим воздухом. Изобретение обеспечивает улучшение технологической гибкости при сохранении хорошей воспроизводимости процесса и воспроизводимости готового продукта. 14 з.п. ф-лы, 2 ил.

Настоящее изобретение относится к области кремниевых многопереходных фотоэлектрических преобразователей (ФЭП) солнечных батарей. Конструкция «наклонного» кремниевого монокристаллического многопереходного (МП) фотоэлектрического преобразователя (ФЭП) согласно изобретению содержит диодные ячейки (ДЯ) с n+-p--p+ (р+-n--n+) переходами, параллельными горизонтальной светопринимающей поверхности, диодные ячейки содержат n+(p+) и р+(n+) области n+-p--p+(p+-n--n+) переходов, через которые они соединены в единую конструкцию металлическими катодными и анодными электродами, расположенными на поверхности n+(p+) и p+(n+) областей с образованием соответствующих омических контактов - соединений, при этом, что n+(p+) и p+(n+) области и соответствующие им катодные и анодные электроды расположены под углом в диапазоне 30-60 градусов к светопринимающей поверхности, металлические катодные и анодные электроды расположены на их поверхности частично, а частично расположены на поверхности оптически прозрачного диэлектрика, расположенного на поверхности n+(p+) и p+(n+) областей, при этом они с металлическими электродами и оптически прозрачным диэлектриком образуют оптический рефлектор. Также предложен способ изготовления описанной выше конструкции «наклонного» кремниевого монокристаллического многопереходного (МП) фотоэлектрического преобразователя (ФЭП). Техническим результатом изобретения является повышение коэффициента полезного действия фотопреобразователей. 2 н.п. ф-лы, 3 ил.
Наверх