Электромагнитный насос

Изобретение относится к электротехнике, к насосам для перекачки электропроводных жидкостей, в частности, для обеспечения циркуляции жидкометаллических теплоносителей в контурах реакторных установок атомных электростанций. Технический результат состоит в повышении эффективности работы. Насос содержит трансформатор, в котором в качестве короткозамкнутой вторичной обмотки используется замкнутый контур перекачиваемой среды, охватывающий магнитопровод трансформатора и имеющий участки входа и выхода среды. По периметру контура расположены электромагниты переменного тока, создающие магнитное поле, направленное перпендикулярно токам в контуре. Питание первичной обмотки трансформатора и обмоток электромагнитов производится от одной сети переменного тока. В цепи питания обмоток трансформатора или электромагнитов включены фазосдвигающие устройства, обеспечивающие сдвиг по фазе магнитных потоков трансформатора и электромагнитов, равный или близкий 90°. В качестве таких фазосдвигающих устройств могут использоваться конденсаторы, включенные последовательно с обмотками электромагнитов и имеющие одинаковое с этими обмотками реактивные сопротивления на частоте питающей сети. 2 з.п. ф-лы, 3 ил.

 

Предлагаемое изобретение относится к устройствам для перекачки электропроводных жидкостей и может быть использовано преимущественно в атомной энергетике в качестве насосов для перекачки жидкометаллических теплоносителей: натрия, свинца, свинца-висмута.

В настоящее время электромагнитные насосы широко используются в экспериментальных установках с натриевым и свинцово-висмутовым теплоносителями для обеспечения циркуляции жидкого металла через трубопроводы и испытуемое оборудование.

К преимуществам указанных насосов относится высокая надежность и долговечность работы, связанная с отсутствием движущихся частей, кроме перекачиваемой среды, а также возможность полной герметизации. В России основным разработчиком и изготовителем насосов индукционного типа является институт ФГУП «НИИЭФА», г.Санкт-Петербург. Указанные насосы предназначены для перекачки теплоносителей с расходами от 2,5 м3/ч и выше при давлениях от 0,4 до 1,6 МПа и соответственно имеют достаточно сложную конструкцию, большой вес, значительное электропотребление и высокую стоимость. В то же время в реакторных установках требуются насосы небольшой производительности, порядка 0,1 м3/ч и менее для обеспечения циркуляции теплоносителя по байпасным петлям систем анализа химического состава теплоносителя. Такие насосы должны иметь несложную конструкцию, невысокое энергопотребление при сохранении высокой эксплуатационной надежности в течение всего ресурса работы реакторной установки.

Возможные варианты конструкции таких насосов описаны в книге «Жидкометаллические теплоносители ядерных реакторов» авторов Андреева П.А. и др., Ленинград, СУДПРОМГИЗ, 1959 г. (стр.245-265). В этом издании рассмотрены два типа электромагнитных насосов - кондукционные и индукционные.

В обоих типах насосов движущая сила создается за счет взаимодействия проводника, по которому течет ток, с магнитным полем, направленным перпендикулярно направлению тока - в физике эта сила называется силой Ампера.

В кондукционных насосах постоянного тока ток подводится от внешнего источника через шины, приваренные к каналу с перекачиваемой средой, находящемуся в магнитном поле. Недостатком таких насосов является необходимость в мощном источнике питания и внешних шинах большого поперечного сечения для подвода тока к каналу. Рабочие токи электромагнитных насосов имеют величину сотен ампер, и для уменьшения потерь энергии в подводящих шинах эти шины необходимо выполнять достаточно короткими, т.е. располагать источник питания рядом с насосом. Но в местах установки насосов в помещениях АЭС температура воздуха может достигать 90°C, в таких условиях источники питания, содержащие электрорадиоэлементы общепромышленного исполнения, работать не могут, а использование элементов, разработанных для военной техники, существенно увеличивает стоимость насосов.

Индукционные насосы переменного тока по принципу действия аналогичны асинхронным электродвигателям. Канал с перекачиваемой средой помещают между полюсами многополюсной магнитной системы, на обмотки которой подается напряжение от трехфазной цепи переменного тока. В канале создается бегущее магнитное поле, которое индуцирует в электропроводной среде вихревые токи. Их взаимодействие с полем заставляет перекачиваемую среду двигаться вдоль канала - спирального или линейного, недостатком этих насосов является достаточно сложная конструкция магнитной системы и канала и, соответственно, высокая стоимость, что делает неоправданным их использование для создания малых расходов в байпасных петлях систем контроля химического состава жидкометаллических теплоносителей. Кроме того, в связи с особенностями конструкции эти насосы имеют достаточно крупные габариты и высокое энергопотребление.

Наиболее близкими по конструкции и принципу действия к предлагаемому устройству являются кондукционные насосы, описанные в указанной книге. В таких насосах ток, подаваемый на рабочий участок канала с перекачиваемой средой, генерируется объединенной магнитной системой трансформатора и электромагнита, создающего магнитное поле рабочего участка. Эти насосы просты по конструкции, имеют небольшие габариты и массу, но обладают низкой эффективностью и, соответственно, малым КПД.

Для обоснования этих утверждений достаточно рассмотреть характеристики электромагнитных процессов, протекающих в таком насосе.

Если через сердечник трансформатора проходит переменный магнитный поток Ф, то величина ЭДС в витке вторичной обмотки трансформатора по закону электромагнитной индукции

где E - величина ЭДС.

Для синусоидальной формы напряжения питающей цепи трансформатора

где Фм - амплитудное значение потока;

ω - частота сети;

t - текущее время;

φ - фаза сети в текущий момент времени.

Из (1) и (2)

Тогда ток короткозамкнутого витка вторичной обмотки по закону Ома

где Rв - сопротивление короткозащитного витка.

В рассматриваемой конструкции насоса на создание магнитной индукции в канале рабочего участка используется часть основного потока трансформатора, т.е.

где к1 - постоянный коэффициент для данной конструкции магнитной системы, определяющий долю магнитной системы, определяющий долю магнитного потока на рабочий участок канала с жидкометаллической средой.

Величина индукции в этом случае

где Вру - индукция магнитного поля в зоне рабочего участка канала среды;

S - площадь рабочего участка в направлении, перпендикулярном вектору индукции магнитного поля (величина постоянная для заданной конструкции насоса).

По закону Ампера сила, действующая на проводник с током в магнитном поле с учетом (3), (4), (6):

где L - длина проводника с током, для насоса это ширина рабочего участка.

В формуле (7) все параметры, кроме cos ωt, не зависят от времени, т.е. в совокупности составляют постоянную во времени величину, а из математики известно, что произведение sin ωt·cos ωt в зависимости от момента времени принимает значения от до т.е направление силы, действующей на жидкий металл, периодически изменяется на противоположное с двойной частотой питающей сети, поэтому однонаправленного движения жидкого металла не происходит. При рассмотрении электромагнитных процессов, протекающих в насосе, было принято допущение, что магнитные потоки в магнитопроводе трансформатора и магнитопроводе электромагнита рабочего участка изменяются синфазно. В действительности из-за различий магнитных сопротивлений этих цепей небольшой сдвиг фаз этих потоков существует, что приводит к небольшой разнице сил, действующих на поток среды в направлениях «вперед» и «назад», т.е. появляется отличная от нуля результирующая сила небольшой величины и рассмотренное устройство может работать как насос, хотя и очень неэффективный. К недостаткам рассмотренного устройства следует отнести также относительно высокое сопротивление цепи витка вторичной обмотки -кроме сопротивления проводов витка это контактные сопротивления проводов с металлическими стенками канала, сопротивление самых стенок канала и сопротивление среды в рабочем участке канала - соответственно уменьшается ток через рабочий участок и движущая сила насоса в соответствии с формулой (7).

Для исключения недостатков известного устройства предлагается в качестве короткозамкнутой вторичной обмотки трансформатора, генерирующего рабочий ток насоса, использовать замкнутый контур перекачиваемой среды, охватывающий магнитопровод трансформатора и имеющий участки входа и выхода среды, а по периметру контура расположить электромагниты переменного тока, создающие магнитное поле, вектор индукции которого перпендикулярен направлению токов в контуре. При этом питание электромагнитов необходимо производить от той же сети, что и питание первичной обмотки трансформатора, а в цепь питания электромагнита или трансформатора включить фазосдвигающие устройства, обеспечивающие близкий или равный 90 градусов сдвиг по фазе между магнитными потоками в магнитопроводах трансформатора и электромагнитов. Для наиболее эффективной работы насоса целесообразно в предложенном устройстве использовать два электромагнита, расположенных соответственно в зонах входного и выходного участков контура.

В качестве фазосдвигающих устройств могут использоваться, например, конденсаторы, включенные последовательно в цепи питания обмоток электромагнитов, а емкости конденсаторов должны быть такой величины, чтобы их емкостные сопротивления на частоте сети были равными или близкими индуктивным сопротивлениям обмоток электромагнитов.

Сущность предложенного устройства поясняется рисунками 1, 2 и 3, на которых приняты следующие условные обозначения:

1 - герметичный корпус проточной части насоса;

2 - сквозное отверстие в центральной части корпуса, образованное внутренней обечайкой корпуса;

3 - перекачиваемая электропроводная среда, протекающая внутри корпуса;

4, 5 - соответственно входной и выходной штуцеры герметичного корпуса;

6 - магнитопровод трансформатора возбуждения, генерирующего рабочий ток в замкнутом контуре перекачиваемой среды внутри корпуса;

7 - катушка первичной обмотки трансформатора возбуждения;

8 - магнитопроводы электромагнитов, создающих переменное магнитное поле на рабочих участках замкнутого контура перекачиваемой среды;

9 - катушки обмоток электромагнитов;

10 - воздушные зазоры в магнитопроводах электромагнитов для размещения в этих зазорах рабочих участков корпуса с перекачиваемой средой;

Тп - понижающий трансформатор для питания цепей обмоток электромагнитов;

С1, С2 - конденсаторы в цепях питания электромагнитов;

Un - напряжение питающей сети переменного тока;

Фв - магнитный поток сердечника трансформатора;

Вэ - индукция магнитного поля на рабочих участках корпуса со средой;

Iкз - ток короткого замыкания, создаваемый трансформатором в замкнутом контуре среды внутри корпуса;

F1, F2 - движущие силы, действующие на среду с протекающим в ней током короткого замыкания в магнитном поле, создаваемом электромагнитами соответственно на входном и выходном рабочих участках контура;

Lру - ширина рабочих участков контура.

Предложенное устройство работает следующим образом.

Корпус насоса 1 выполнен в виде плоскоовальной герметичной камеры с центральным овальным отверстием 2, образованным обечайкой соответствующей формы, вваренной в корпус. Внутри корпуса протекает перекачиваемая электропроводная среда, в частности жидкий металл 3. Таким образом, жидкий металл 3 внутри корпуса 1 принимает форму эллиптического тора, сжатого в направлении, перпендикулярном плоскости расположения тора. В корпус 1 герметично вварены штуцеры 4 и 5, предназначенные соответственно для входа и выхода жидкого металла 3.

Через отверстие 2 в корпусе 1 проходит замкнутый магнитопровод 6 трансформатора возбуждения. Катушка с первичной обмоткой 7 этого трансформатора подключена к питающей сети переменного тока U~, а в качестве вторичной обмотки трансформатора служит замкнутый контур жидкого металла 3, охватывающий магнитопровод 6. Электродвижущая сила, которая возникает в замкнутом контуре среды 3, вызывает в этом контуре ток Iкз, величина которого зависит от сопротивления контура в направлении протекания тока Iкз в соответствии с формулой (4).

Ток Iкз, протекая по замкнутому контуру среды 3, проходит через входной и выходной рабочие участки контура, расположенные между центральным отверстием 2 и, соответственно, входным штуцером 4 и выходным штуцером 5. Входной и выходной рабочие участки контура расположены в зазорах 10 магнитопроводов 8, образующих вместе с размещенными на них обмотками 9 электромагниты для создания магнитного поля на входном и выходном рабочих участках.

Величина индукции Вэ этого поля при заданной конструкции электромагнитов будет пропорциональна току обмоток 9 электромагнитов. Величины движущих сил, действующих на жидкий металл в каждом из рабочих участков, по аналогии с формулой 7 будут соответственно равны

где Lру - длина рабочих участков в направлении протекания по ним тока Iкз, т.е. фактически это ширина короткозамкнутого контура среды 3.

Так как индуктивное сопротивление обмотки 7 возбуждающего трансформатора во много раз больше ее активного сопротивления, то ток этой обмотки будет отставать по фазе от напряжения сети на величину, близкую к 90°, т.е. π/2 (это следует из основ электротехники). Соответственно по величине тока будет изменяться магнитный поток в магнитопроводе 6. Таким образом, если напряжение питающей сети изменяется по закону

где U0 - амплитуда напряжения,

магнитный поток Фв в магнитопроводе 6 трансформатора будет изменяться по закону

где k2 - постоянная величина для данной конструкции трансформатора и частоты сети.

Из формул (1) и (11) следует, что величина ЭДС в короткозамкнутом контуре среды 3 будет равна

а с учетом (4) ток в контуре Iкз будет равен:

где Rкз - сопротивление замкнутого контура среды протекающему току.

Если теперь рассмотреть фазовые соотношения напряжения сети и U~ индукции Вэ в зазоре магнитопровода 8, то при равенстве емкостного сопротивления конденсаторов C1 и C2, соответствующего индуктивным сопротивлениям обмоток 9 в этих цепях, наступает резонанс напряжений и сопротивление последовательно соединенных конденсатора и обмотки 9 становится чисто активным, равным сопротивлению обмотки 9 постоянному току, соответственно токи через эти обмотки, магнитные потоки магнитопроводов 8 и индукция Вэ в зазорах 10 магнитопроводов 8 в зоне рабочих участков будут изменяться в фазе с напряжением сети U~, что можно записать в виде:

где k3 - постоянный для заданной конструкции электромагнита коэффициент.

Если подставить значения Iкз из (13), Вэ из (14) в (9), то получим для движущей силы

где - не зависящий от времени коэффициент.

Очевидно, что sin2ωt всегда будет положительным числом независимо от момента времени, его величина будет изменяться от 0 до +1 с двойной частотой сети.

Движущая сила, создающая напор насоса в предложенном устройстве, пульсирует от нуля до максимального значения в одном направлении с двойной частотой сети, что с учетом инерции движущейся массы металла равноценно постоянной величине силы.

Таким образом, для достижения максимальной эффективности работы насоса необходимо использование фазосдвигающих устройств в цепях питания обмоток 7 трансформатора возбуждения или обмоток 9 электромагнитов, обеспечивающих сдвиг по фазе между магнитными потоками магнитопроводов 6 и 8, близкий или равный 90°, т.е.

Наиболее простыми фазосдвигающими устройствами являются конденсаторы, включенные последовательно с соответствующими обмотками электромагнитов или трансформатора, но возможны и другие типы фазосдвигающих устройств, например фазорегулятор на основе заторможенной асинхронной машины. Рассмотренные фазосдвигающие устройства на основе конденсаторов при условии равных или близких реактивных сопротивлений конденсаторов C1, C2 и обмоток 9 электромагнитов создают резонанс напряжений, при котором напряжение на конденсаторе и обмотке может в 10 и более раз превышать питающее напряжение, поэтому в рассмотренном устройстве питание цепей электромагнитов производится не непосредственно от сети U~, а через понижающий трансформатор Тп.

Для проверки работоспособности предложенного насоса был изготовлен его макет, где в роли замкнутого контура жидкого металла использовалась рамка из алюминиевого сплава Д16 с наружными размерами 100×40×5 мм и отверстием в центре 41×21 мм, а трансформатор и электромагниты были изготовлены на основе серийно выпускаемых магнитопроводов из витых сердечников типа ПЛ 20×40×25. Испытания показали, что при включении цепей питания на рамку действует движущая сила 400-500 г, что при поперечном сечении канала в зоне рабочего участка, равном примерно 2 см2, обеспечит давление , в то время как для практических целей достаточен напор насоса величиной т.е. имеется достаточный запас на регулирование. Мощность, потребляемая макетом от сети, составила 50-60 Вт.

В настоящее время электромагнитные насосы малой производительности являются одной из проблем при создании систем контроля примесей в жидкометаллическом теплоносителе создаваемых АЭС нового поколения. Так, например, для строящегося в настоящее время реактора БН 800 Белоярской АЭС-2 необходимо около 150 систем с герметичными циркуляционными петлями для отбора натрия из основных трубопроводов и последующего сброса после анализа в точки приема натриевого теплоносителя. В каждой из таких петель должен быть насос, обеспечивающий прокачку теплоносителя с расходом до 0,1 м3/ч. На решение этой задачи и направлена разработка предложенного устройства.

1. Электромагнитный насос электропроводных сред, содержащий трансформатор с короткозамкнутой вторичной обмоткой и проточный канал с перекачиваемой средой, отличающийся тем, что в качестве короткозамкнутой вторичной обмотки используется замкнутый контур перекачиваемой среды, охватывающий магнитопровод трансформатора и имеющий участки входа и выхода среды, а по периметру контура расположены электромагниты переменного тока, создающие магнитное поле, направление вектора индукции которого перпендикулярно направлению токов в контуре, причем питание первичной обмотки трансформатора и обмоток электромагнитов производится от одной сети переменного тока, в цепи питания обмоток электромагнитов или трансформатора включены фазосдвигающие устройства, обеспечивающие сдвиг по фазе между магнитными потоками в магнитопроводах трансформатора и электромагнитов, близкий или равный 90°.

2. Электромагнитный насос по п.1, отличающийся тем, что он содержит два электромагнита, расположенные соответственно на участках входа и выхода среды.

3. Электромагнитный насос по п.1 или 2, отличающийся тем, что в качестве фазосдвигающих устройств используются конденсаторы, включенные последовательно с обмотками электромагнитов, причем емкости конденсаторов выбраны такой величины, чтобы их емкостные сопротивления на частоте сети были равными или близкими индуктивным сопротивлениям электромагнитов.



 

Похожие патенты:

Изобретение относится к электротехнике и может быть использовано для перекачивания газов. .

Изобретение относится к электротехнике, к индукционным машинам с естественным охлаждением и может использоваться для перекачивания и перемешивания жидких металлов и сплавов в миксерах, печах, ковшах, слитках.

Изобретение относится к электротехнике и может быть использовано в установках атомной энергетики, металлургии и других областях техники. .

Изобретение относится к области электротехники и может быть использовано в области атомной энергетики, металлургии и других областях техники. .

Изобретение относится к области электротехники, в частности к способу создания реактивного импульсного потока газа или жидкости. .

Изобретение относится к машиностроению и может быть использовано в металлургии для перекачивания жидких металлов и сплавов. .

Изобретение относится к машиностроению и может быть использовано в металлургии для перекачивания жидких металлов и сплавов. .

Изобретение относится к электротехнике и может быть использовано в металлургии для перекачивания жидких металлов и сплавов. Технический результат состоит в повышении производительности насоса. Электромагнитный насос содержит: входной и выходной патрубки, четыре П-образных магнитопровода, два замкнутых магнитопровода с обмотками, подключенными к источнику переменного тока. Канал насоса выполнен в узле соединения с входным патрубком с разветвлением на три рукава, соединяющихся в узле соединения с выходным патрубком. Причем центральный рукав выполнен прямым. Узел разъединения П-образные магнитопроводы охватывают симметрично относительно прямого рукава. На узле соединения П-образные магнитопроводы расположены под углом не более 90 градусов друг к другу. Замкнутые магнитопроводы охватывают боковые рукава канала. 3 ил.

Изобретение относится к бессальниковому экранированному электронасосу, в частности, стойкому к коррозии и содержащему устройство контроля подшипника. Технический результат заключается в повышении жесткости неподвижного вала экранированного электронасоса с двигателем на постоянных магнитах, своевременном обнаружении износа подшипника, повышении срока службы. Конструктивное усовершенствование экранированного электронасоса заключается в повышении жесткости неподвижного вала и, при необходимости, установке устройства контроля. Способ повышения жесткости неподвижного вала включает следующие стадии: стадию, на которой во внутреннюю сторону ярма ротора внутреннего ротора экранированного электродвигателя в аксиальном направлении вставляют металлическую заднюю опору вала металлической конструкции заднего корпуса экранированного электродвигателя, стадию, на которой металлическую заднюю опору вала плотно прикрепляют к заднему гнезду вала для повышения жесткости неподвижного вала за счет большей длины удерживания и для укорачивания длины плеча равнодействующей силы. Устройство контроля, предназначенное для обнаружения износа подшипника, в целях повышения надежности и выполнения требований в части привода установлено в кольцевом пазу, которое будет защищено задним гнездом вала. 6 н. и 17 з.п. ф-лы, 18 ил.

Изобретение относится к области электротехники и может быть использовано в электронасосах с приводом на постоянных магнитах. Технический результат - предотвращение коррозии, вызываемой химической жидкостью, на компонентах герметичного электронасоса. Герметичный электронасос с приводом на постоянных магнитах характеризуется наличием корпуса, защищенного от коррозии, содержащего армированный кронштейн, кожух электродвигателя и задний кожух электродвигателя. Армированный кронштейн изготовлен из устойчивой к коррозии пластмассы, кожух электродвигателя и задний кожух электродвигателя изготовлены из алюминиевого сплава. Соответственно корпус, защищенный от коррозии, способен предотвратить коррозию компонентов из алюминиевого сплава, вызываемую химической жидкостью. Кроме того, герметичный электронасос с приводом на постоянных магнитах предоставляет механизм рассеивания тепла при одновременном обеспечении конструктивных нужд корпуса, защищенного от коррозии, такой что электродвигатель может рассеивать тепло с достаточной скоростью. 2 н. и 10 з.п. ф-лы, 6 ил.

Изобретение относится к области электротехники и может быть использовано для регулирования частоты вращения электродвигателей насосов, работающих на длинные трубопроводы, например магистральных насосов нефтепроводов. Технический результат - снижение перепада давления в двух установившихся режимах трубопровода до безопасных значений для трубопровода и не приводящих к появлению усталостных дефектов в теле трубы. Устройство управления частотно-регулируемым электроприводом магистральных насосов содержит преобразователь частоты, электродвигатель, насос, датчик давления, два блока сравнения, два ключа и таймер. Выход датчика давления соединен с первым входом первого блока сравнения, на второй вход которого подается сигнал задающего давления. Выход первого блока сравнения соединен с первым входом второго блока сравнения и силовым входом первого ключа, управляющий вход которого соединен с первым выходом второго блока сравнения, второй выход которого соединен с управляющим входом второго ключа, выход которого через таймер соединен с управляющим входом преобразователя частоты. На второй вход второго блока сравнения и силовой вход второго ключа подается сигнал допустимого перепада давления. 1 ил.

Изобретение относится к электротехнике, а именно к прямому преобразованию потоков жидкостей и газов в трубопроводах в электрическую энергию, и может быть использовано для питания датчиков и приборов, установленных на трубопроводах в труднодоступных для централизованного энергоснабжения и удаленных районах нефтедобычи и нефте-газоперекачки и передачи информации по измеряемым параметрам. Электрическая машина радиального движения вырабатывает электроэнергию на основе использования магнитогидродинамического эффекта, возникающего при взаимодействии потока воды, электролитов, проводящей жидкости с внешним магнитным полем. Техническим результатом является повышение эффективности. Электрическая машина радиального движения содержит корпус, постоянные магниты и рабочие каналы с электропроводящей подвижной массой с числом каналов более двух, в которых электромагнитные и электродвижущие силы создаются при взаимодействии с постоянным магнитным полем. Рабочие каналы радиально расположены между постоянными магнитами, выполнены сужающимися по направлению к центральной оси и снабжены внешними перемычками, соединяющими их последовательно. В качестве корпуса используют цилиндрический магнитопровод с входным и выходным отверстиями для электропроводной подвижной массы. Два кольцевых и один дисковый постоянные магниты расположены внутри корпуса с возможностью размещения между ними рабочих каналов. Электроды наклонно расположены с внутренней стороны каждого рабочего канала и изолированы между собой изолирующими вставками из полимерного материала с высокой трибоэлектрической способностью и внутренним переменным сечением. 3 ил.
Наверх