Способ приготовления катализаторов и катализатор для глубокой гидроочистки нефтяных фракций

Изобретение относится к области химии, а именно к области производства катализаторов, предназначенных для глубокой гидроочистки нефтяных фракций, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Описан способ приготовления катализатора, включающий пропитку носителя раствором соединений металлов V1 группы и нитрата кобальта, причем готовят совместный пропиточный раствор, содержащий фосфорномолибденовый гетерополикомплекс с мольным отношением Мо:Р, равным n=9 и 12, и уксусную кислоту при соотношении Мо/СН3СООН, равном 2-4. Описан катализатор гидроочистки нефтяных фракций, содержащий оксид кобальта и фосфорномолибденовый гетерополикомплекс с мольным отношением Мо:Р, равным 2-4, при следующем содержании компонентов, % масс.: СоО 4,0, МоО3 14,0-19,0, P2O5 0,6-1,0, оксид алюминия 76,0-81.4. Техническим результатом является способ создания катализатора гидроочистки с определенной степенью полимеризации частиц молибденовой фазы, модифицированной фосфором и промотированной кобальтом в строго заданном отношении к молибдену, и катализатор гидроочистки нефтяных фракций, содержащий оксид кобальта и фосфорномолибденовый гетерополикомплекс, при этом мольное отношение Мо:Р равно n=9 и 12. 2 н. и 2 з.п. ф-лы, 1 табл., 7 пр.

 

Изобретение относится к области химии, а именно к области производства катализаторов, предназначенных для глубокой гидроочистки нефтяных фракций, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

Известные катализаторы для гидроочистки дизельных фракций от соединений серы содержат молибден и/или вольфрам и кобальт и/или никель в оксидной форме, нанесенные на поверхность пористого термостойкого оксида металла. Известным способом получения катализаторов гидроочистки, содержащих диспергированные на Al2O3 оксиды Co(Ni)-Mo(W), является экструзия массы гидроксида алюминия, смешанной с солями Co и/или Ni и Mo и/или W. В этом случае активные компоненты добавляют в пептизированный какой-либо одноосновной кислотой гидроксид алюминия [RU 2189860, B01J 37/04, 23/882, 27.09.02]. Основным недостатком данного способа приготовления является низкая активность получаемых катализаторов, не позволяющая использовать их для глубокой гидроочистки нефтяных фракций (с остаточным содержанием серы менее 50 ppm). Это объясняется тем, что часть внесенных в массу гидрооксида алюминия активных компонентов не находится на активной поверхности катализатора, а заключена в объеме Al2O3.

Другим известным способом получения катализаторов гидроочистки типа CoO(NiO)MoO3(WO3)/Al2O3 является способ пропитки оксида алюминия растворами соединений активных компонентов, сушки и прокаливания. Нанесение активных компонентов осуществляют как последовательной пропиткой из отдельных растворов, так и одностадийной пропиткой из совместного раствора. Для стабилизации совместного раствора соединений Co(Ni) и Mo(W) в пропиточные растворы добавляют минеральные кислоты, в основном фосфорную кислоту. Основным недостатком совместных пропиточных растворов соединений Co(Ni) и Mo(W), стабилизированных неорганическими фосфорсодержащими кислотами, является их низкая устойчивость в присутствии избытка фосфорной кислоты и NH4+ иона из-за выпадения осадков фосфатов Co или Ni и фосформолибдатов аммония. Для создания устойчивых совместных пропиточных растворов используют также концентрированный раствор аммиака, который образует комплексные соединения с Co(Ni), что не позволяет образоваться осадкам молибдатов этих металлов. В случае аммиачной пропитки в недостаточно концентрированном растворе аммиака возможно выпадение осадков молибдатов Co или Ni.

Для стабилизации совместных растворов соединений Co(Ni) и Mo(W) можно использовать также комплексообразующие органические кислоты [АС СССР 1297899, B01J 23/88. №3954947/31-04; заявл. 01.08.85; опубл. 23.03.87, бюл. №11 - 3 с.]. Недостатком данного способа приготовления катализатора является высокая температура прокаливания катализатора (550°С) после нанесения активных компонентов пропиткой из совместного раствора солей молибдена и никеля или кобальта. Известно, что при температурах выше 500°С возможно образование шпинелей - соединений оксида алюминия и оксида никеля или кобальта. Если катализатор после нанесения солей Ni или Co на носитель, содержащий оксид алюминия, прокаливают при температурах выше 500°С, часть промотора (Ni или Co) связывается с носителем и не входит в состав активной фазы «CoMoS», которая образуется после сульфидирования, т.е. фактически становится неактивной в реакциях гидроочистки.

Наиболее близким к предлагаемому решению (прототипом) является способ приготовления катализатора для глубокой гидроочистки нефтяных фракций, включающий пропитку алюмооксидного носителя раствором соединений молибдена (додекамолибдодикобальтата (III) аммония, 6-молибдоникелата аммония (II) и 6-молибдокобальтата аммония (II)) и кобальта (нитрат кобальта или ацетат кобальта). Совместный пропиточный раствор стабилизирован H2O2. Завершающее прокаливание готового катализатора проводится при температурах не выше 400°С в окислительной или инертной среде [RU 2385764, B01J 23/882; B01J 37/02, 10.04.10]. Недостатками данного способа приготовления катализатора является следующее. Перечисленные аммонийные соли имеют низкую растворимость, что делает необходимым применение перекиси водорода H2O2 в качестве комплексообразователя. Вследствие разложения перекиси водорода при контакте с материалами на основе железа (например, сталями) раствор не является стабильным, что делает применение этого метода стабилизации раствора неприменимым в промышленных условиях. Термическая стабильность перечисленных солей полиоксомолибдатов 6 ряда не высока, и при температуре прокаливания катализатора 400°С они разлагаются с образованием оксидов молибдена MoO3 и кобальта CoO или никеля NiO. Это снижает вероятность образования на стадии сульфидирования промотированных Co(Ni) сульфидов молибдена. Кроме того, показано [Максимовская Р.И. // Кинетика и катализ. - 1995. - Т.36. - №6. - С.910-917], что при контакте пропиточного раствора, содержащего полиоксометаллаты, с Аl2O3 протекает химическая реакция гетерополианиона с поверхностными гидроксильными группами -ОН, что приводит к замещению центрального иона в структуре гетерополианиона на ион Al3+ и образованию алюмомолибденовой гетерополикислоты, приводящей к образованию малоактивной сульфидной фазы [Томина Н.Н., Никульшин П.А., Пимерзин А.А. // Нефтехимия. - 2008. - Т.48. - №2. - С.92-99; Томина Н.Н., Никульшин П.А., Цветков B.C. и др. // Кинетика и и катализ. - 2009. - Т.50. - №2. - С.233-241]. Указанное взаимодействие нарушает заданное изначально соотношение между основным активным компонентом (молибденом) и промотором (кобальтом).

Катализаторы гидроочистки готовят с использованием трудно растворимых солей молибдена и вольфрама, в основном аммония молибденовокислого (NH4)6Mo7O24·4H2O, и соли кобальта и никеля, в основном нитрата [RU 2137541, B01J 23/88, 20.09.99].

Использование данных предшественников сопряжено с рядом трудностей: совместные растворы требуют стабилизации (введения сильнокислого или сильноосновного компонента), а прочное связывание аниона ПМА с поверхностью носителя приводит к формированию CoMoS фазы I типа, что не позволяет приготовить высокоактивный катализатор гидроочистки [Старцев А.Н. Сульфидные катализаторы гидроочистки: синтез, структура, свойства. - Новосибирск: Академическое издательство «ГЕО», 2007. - 206 с.].

Катализаторы гидроочистки также готовят путем внесения активных компонентов в гидрооксид алюминия при пептизации [RU 2414963, B01J 23/00, 20.01.2010], что делает часть введенного компонента в объеме прокаленного носителя недоступной для молекул реактанта. Это обуславливает получение менее активных катализаторов, чем в случае пропитки.

Наиболее близким к предлагаемому решению (прототипом) является катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления [RU 2386476, B01J 23/88, B01J 23/882, B01J 27/199, B01J 37/02, 20.01.2010]. Катализатор глубокой гидроочистки нефтяных фракций содержит оксид алюминия, оксид кобальта и фосфорномолибденовый гетерополикомплекс, или ванадиймолибденовый гетерополикомплекс, или фосфорванадиймолибденовый гетерополикомплекс Способ приготовления катализатора включает пропитку алюмооксидного носителя раствором соединений металлов VIII и VI групп, причем готовится совместный пропиточный раствор, содержащий гетерополисоединение молибдена, выбранное из (NH4)3[PMo12O40]·10H2O, (NH4)3[PVMo11O40]·8H2O или (NH4)3[VMo12O4010H2O, и нитрат кобальта Co(NO3)2·6H2O при мольном соотношении Мо/Со, равном 1,7-2,3, стабилизированный 25-35 мл 30%-ного H2O2 на 100 мл пропиточного раствора при рН среды 1,5-5,0, и производится однократная пропитка оксида алюминия с последующей сушкой и прокаливанием при температурах не выше 400°С.

К недостатку данного способа приготовления катализатора следует отнести использование перекиси водорода. Показано [Максимовская Р.И. // Кинетика и катализ. - 1995. - Т.36. - №6. - С.910-917], что при контакте пропиточного раствора, содержащего полиоксометаллаты, с Al2O3 протекает химическая реакция гетерополианиона с поверхностными гидроксильными группами -ОН, что приводит к замещению центрального иона в структуре гетерополианиона на ион Al3+ и образованию алюмомолибденовой гетерополикислоты, приводящей к образованию малоактивной сульфидной фазы [Томина Н.Н., Никульшин П.А., Пимерзин А.А. // Нефтехимия. - 2008. - Т.48. - №2. - С.92-99; Томина Н.Н., Никульшин П.А., Цветков B.C. и др. // Кинетика и и катализ. - 2009. - Т.50. - №2. - С.233-241]. Указанное взаимодействие нарушает заданное изначально соотношение между основным активным компонентом (молибденом) и промотором (кобальтом).

Техническим результатом настоящего изобретения является способ создания катализатора гидроочистки с определенной степенью полимеризации частиц молибденовой фазы, модифицированной фосфором и промотированной кобальтом в строго заданном отношении к молибдену, при этом на стадии приготовления оксидной формы катализатора сохраняется структура фосфорномолибденового гетерополианиона и исключается его разрушение за счет взаимодействия с Al2O3. Условия пропитки носителя, сушки и сульфидирования готового катализатора обеспечивают промотирование молибдена Co и исключают переход Co в отдельную фазу сульфида кобальта Co9S8. После сульфидирования оксидного предшественника катализатор Con/2-PMon(S)/Al2O3 имеет регулярную слоистую структуру и большее число слоев дисульфида молибдена в упаковках, что позволяет проводить глубокую гидроочистку нефтяных фракций.

Технический результат достигается тем, что:

- способ приготовления катализатора включает пропитку носителя совместным пропиточным раствором соединений металлов VI группы и нитрата кобальта, содержащим фосфорномолибденовый гегерополикомплекс с мольным отношением Мо:Р, равным n=9 и 12, и уксусную кислоту при соотношении Mo/CH3COOH, равном 2-4;

- в качестве носителя используется оксид алюминия, предварительно пропитанный 5-10%-ным раствором уксусной кислоты, объем которого равен объему пор носителя, и высушенный при температурах 100-200°С;

- завершающая термическая обработка готового катализатора проводится при температурах 120-200°С;

- готовят катализатор гидроочистки нефтяных фракций, содержащий оксид кобальта в количестве 4,0% масс. и фосфорномолибденовый гетерополикомплекс при мольном отношении Мо:Р, равном n=9 и 12, и при следующем содержании компонентов, % масс.:

CoO 4,0
MoO3 14,0-19,0
P2O5 0,6-1,0
оксид алюминия 76,0-81,4

Испытания активности катализаторов проводили на лабораторной проточной установке под давлением водорода. Катализаторы испытывали в виде гранул, смешанных с инертным материалом (фарфором) для создания в реакторе необходимых гидродинамических условий. Катализаторы сульфидировали при атмосферном давлении и температуре 400°С в смеси 20% об. H2S и H2 в течение 2 часов. Загрузка сульфидированного катализатора 20 см3. Сырье для проведения испытаний представляло собой прямогонную дизельную фракцию и имело следующие характеристики: содержание серы 1,05% мас. (10500 млн-1); температура начала кипения 205°С; температура выкипания 96% объема 365°С. Условия испытания: парциальное давление водорода 4,0 МПа, кратность циркуляции водорода 300 нл/л сырья, объемная скорость подачи сырья 2,0 ч-1, температура в реакторе 360°С. Продолжительность испытания 10 часов. Содержание серы определяли в пробе гидрогенизата, отобранной за последние 2 часа. Гидрогенизаты отделяли от водорода в сепараторе при давлении, практически равном давлению в реакторе, и температуре 20°С, затем подвергали обработке 10%-ным раствором NaOH в течение 10 мин, отмывали дистиллированной водой до нейтральной реакции промывных вод. Содержание серы определяли с помощью рентгенофлюоресцентного анализатора. Брали среднее значение из трех параллельных измерений. Результаты испытания катализаторов представлены в таблице.

Пример 1

81,4 г оксида алюминия γ-Al2O3 (Vпор=0,8 см3/г) обрабатывают 65,1 мл 5%-ного раствора уксусной кислоты CH3COOH и сушат при 120°С. Полученный носитель, массой 84,7 г, выдерживают в вакууме 30 мин, затем заливают двухкратным избытком совместного водного раствора H3[PMo12O40]·14H2O, нитрата кобальта и уксусной кислоты (16,84, 15,50 и 2,92 г соответственно), имеющего отношение Mo/CH3COOH=2 и температуру 70°С. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 120°С.

Состав готового катализатора, % масс.: 4,0 - CoO, 14,0 - MoO3, 0,6 - P2O5, 81,4 - Al2O3.

Пример 2

80,1 г оксида алюминия γ-Al2O3 (Vпор=0,8 см3/г) обрабатывают 64,1 мл 6%-ного раствора уксусной кислоты CH3COOH и сушат при 200°С. Полученный носитель, массой 84,0 г, выдерживают в вакууме 30 мин, затем заливают двухкратным избытком совместного водного раствора H3[PMo12O40]·14H2O, нитрата кобальта и уксусной кислоты (18,40, 15,50 и 2,13 г соответственно), имеющего отношение Mo/CH3COOH=3 и температуру 70°С. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 150°С.

Состав готового катализатора, % масс.: 4,0 - CoO, 15,3 - MoO3, 0,6 - P2O5, 80,1 - Al2O3.

Пример 3

78,4 г оксида алюминия γ-Al2O3 (Vпор=0,8 см3/г) обрабатывают 62,7 мл 7%-ного раствора уксусной кислоты CH3COOH и сушат при 140°С. Полученный носитель, массой 82,8 г, выдерживают в вакууме 30 мин, затем заливают двухкратным избытком совместного водного раствора H6[P2Mo18O62]·6H2O, нитрата кобальта и уксусной кислоты (18,66, 15,50 и 1,74 г соответственно), имеющего отношение Mo/CH3COOH=4 и температуру 70°С. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 200°С.

Состав готового катализатора, % масс.: 4,0 - CoO, 16,7 - MoO3, 0,9 - P2O5, 78,4 - Al2O3.

Пример 4

77,9 г оксида алюминия γ-Al2O3 (Vпор=0,8 см3/г) обрабатывают 62,3 мл 8%-ного раствора уксусной кислоты CH3COOH и сушат при 180°С. Полученный носитель, массой 82,9 г, выдерживают в вакууме 30 мин, затем заливают двухкратным избытком совместного водного раствора H6[P2Mo18O62]·6H2O, нитрата кобальта и уксусной кислоты (19,22, 15,50 и 2,39 г соответственно), имеющего отношение Mo/CH3COOH=3 и температуру 70°С. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 120°С.

Состав готового катализатора, % масс.: 4,0 - CoO, 17,2 - MoO3, 0,9 - P2O5, 77,9 - Al2O3.

Пример 5

76,7 г оксида алюминия γ-Al2O3 (Vпор=0,8 см3/г) обрабатывают 61,4 мл 9%-ного раствора уксусной кислоты CH3COOH и сушат при 100°С. Полученный носитель, массой 82,3 г, выдерживают в вакууме 30 мин, затем заливают двухкратным избытком совместного водного раствора H3[PMo12O40]·14H2O, нитрата кобальта и уксусной кислоты (22,25, 15,50 и 1,93 г соответственно), имеющего отношение Mo/CH3COOH=4 и температуру 70°С. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 150°С.

Состав готового катализатора, % масс.: 4,0 - CoO, 18,5 - MoO3, 0,8 - P2O5, 76,7 - Al2O3.

Пример 6

76,0 г оксида алюминия γ-Al2O3 (Vпор=0,8 см3/г) обрабатывают 60,8 мл 10%-ного раствора уксусной кислоты CH3COOH и сушат при 160°С. Полученный носитель, массой 82,2 г, выдерживают в вакууме 30 мин, затем заливают двухкратным избытком совместного водного раствора H6[P2Mo18O62]·6H2O, нитрата кобальта и уксусной кислоты (21,23, 15,50 и 3,96 г соответственно), имеющего отношение Mo/CH3COOH=2 и температуру 70°С. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 200°С.

Состав готового катализатора, % масс.: 4,0 - CoO, 19,0 - MoO3, 1,0 - P2O5 , 76,0 - Al2O3 .

Пример 7

По прототипу, пример 1

Таблица 1
Условия обработки носителя, фосфорномолибденовая гетерополикислота (ГПК), используемая для приготовления катализатора, отношение Mo/CH3COOH в совместном пропиточном растворе, условия термообработки катализатора и результаты определения каталитической активности
N Условия обработки Al2O3 ГПК [P(MoO3)n] Отношение Mo/CH3COOH в совместном пропиточном растворе Температура термической обработки катализатора, °С Содержание, % масс. Остаточное содержание серы в гидрогенизате, ppm
Концентрация раствора уксусной кислоты, % масс. Температура сушки обработанного Al2O3, °С
MoO3 CoO
1 5 120 [P(MoO3)12] 2 120 14,0 4,0 39
2 6 200 [P(MoO3)12] 3 150 15,3 4,0 40
3 7 140 [P2(MoO3)18] 4 200 16,7 4,0 45
4 8 180 [P2(MoO3)18] 3 120 17,2 4,0 48
5 9 100 [P(MoO3)12] 4 150 18,5 4,0 41
6 10 160 [P2(MoO3)18] 2 200 19,0 4,0 43
7 По прототипу, пример 1

1. Способ приготовления катализатора, включающий пропитку носителя раствором соединений металлов VI группы и нитрата кобальта, отличающийся тем, что готовится совместный пропиточный раствор, содержащий фосфорно-молибденовый гетерополикомплекс с мольным отношением Мо:Р, равным n=9 и 12, и уксусную кислоту при соотношении Мо/СН3СООН, равном 2-4.

2. Способ по п.1, отличающийся тем, что в качестве носителя используется оксид алюминия, предварительно пропитанный 5-10%-ным раствором уксусной кислоты, объем которого равен объему пор носителя, и высушенный при температурах 100-200°С.

3. Способ по п.2., отличающийся тем, что завершающая термическая обработка готового катализатора проводится при температурах 120-200°С.

4. Катализатор гидроочистки нефтяных фракций, содержащий оксид кобальта и фосфорно-молибденовый гетерополикомплекс, отличающийся тем, что мольное отношение Мо:Р равно n=9 и 12, при следующем содержании компонентов, мас.%:

СоО 4,0
МоО3 14,0-19,0
P2O5 0,6-1,0
оксид алюминия 76,0-81,4



 

Похожие патенты:
Изобретение относится к регенерированному катализатору гидроочистки, способу регенерации дезактивированных катализаторов и способу гидроочистки нефтяных дистиллятов.
Изобретение относится к катализаторам гидроочистки, способам приготовления таких катализаторов, носителям для катализаторов, способам приготовления носителей и способам получения нефтепродуктов с низким содержанием серы.
Изобретение относится к способу улавливания мышьяка и обессеривания углеводородной фракции, содержащей олефины, серу и мышьяк, в неподвижном слое, где способ включает стадию а) контактирования в присутствии водорода улавливающей массы с вышеупомянутой углеводородной фракцией, причем вышеупомянутая улавливающая масса содержит: молибден, в сульфированной форме, и никель, в сульфированной форме; по меньшей мере, один пористый носитель, выбранный из группы, включающей оксиды алюминия, диоксиды кремния, смешанные оксиды кремния и алюминия, оксиды титана, оксиды магния, при этом содержание никеля, выраженное в % оксида никеля на улавливающую массу перед сульфированием, находится в интервале от 10 до 28 мас.%, содержание молибдена, выраженное в % оксида молибдена на улавливающую массу перед сульфированием, находится в интервале от 0,3 до 2,1 мас.%, и стадию b), на которой эфлюент стадии а) приводят в контакт с селективным катализатором гидрообессеривания.

Изобретение относится к способу получения неочищенного продукта и включает контактирование углеводородного сырья с одним или несколькими катализаторами, для получения суммарного продукта, содержащего неочищенный продукт, представляющий собой жидкую смесь при 25°С и 0,101 МПа, при этом углеводородное сырье имеет, на 1 грамм углеводородного сырья, содержание остатка, по меньшей мере, 0,1 грамма; и, по меньшей мере, один из катализаторов может быть получен путем смешивания: мелких частиц минерального оксида, которые имеют размер в диапазоне от 0,2 до 500 микрометров, одного или нескольких металлов группы 6 периодической таблицы элементов и/или одного или нескольких соединений одного или нескольких металлов группы 6 периодической таблицы элементов, и носителя; и приготовления катализатора, имеющего распределение пор по размерам со средним диаметром пор по меньшей мере 80 Å, и в котором от 1% до 10% пор имеют размер между 1000 Å и 5000 Å, причем размер пор измеряют по стандарту ASTM метод D4284; и регулирование условий контактирования при парциальном давлении водорода, по меньшей мере, 3 МПа и температуре, по меньшей мере, 200°С, чтобы получить неочищенный продукт, причем неочищенный продукт имеет содержание остатка не более 90% от содержания остатка в углеводородном сырье, где содержание остатка определяют по стандарту ASTM метод D5307.
Изобретение относится к катализаторам гидроочистки дизельного топлива, способам приготовления таких катализаторов и способам получения малосернистого дизельного топлива.

Изобретение относится к области нефтепереработки, в частности к способу получения высокодисперсного массивного катализатора гидропереработки нефтяных фракций. .
Изобретение относится к катализаторам получения нефтяных дистиллятов с низким содержанием серы, способам приготовления таких катализаторов и способам получения носителей для катализаторов гидроочистки углеводородного сырья.
Изобретение относится к катализаторам гидроочистки. .
Изобретение относится к катализаторам гидрооблагораживания дизельных дистиллятов, способу получения катализатора и способу гидрооблагораживания дизельных дистиллятов с целью получения экологически чистых дизельных топлив и может быть использовано в нефтеперерабатывающей промышленности.

Изобретение относится к способу получения катализатора гидрообработки. .
Изобретение относится к материалу, пригодному в качестве катализатора для дегидрировании алканов, к способу его получения и способу каталитического дегидрирования содержащих алканы газовых смесей.

Изобретение относится к катализаторам изомеризации. .
Изобретение относится к регенерированному катализатору гидроочистки, способу регенерации дезактивированных катализаторов и способу гидроочистки нефтяных дистиллятов.
Изобретение относится к способу получения катализатора. .
Изобретение относится к области гетерогенного катализа. .

Изобретение относится к катализаторам синтеза Фишера-Тропша. .

Изобретение относится к способу гидродесульфуризации (10) потоков углеводородов. .

Изобретение относится к усовершенствованному способу получения, по меньшей мере, одного из продуктов акролеина и акриловой кислоты путем частичного окисления пропилена, при котором а) предварительно очищенный пропан превращают на первой стадии реакции в присутствии и/или при исключении молекулярного кислорода, по меньшей мере, одного дегидрирования из группы, включающей гомогенное дегидрирование, гетерогенное каталитическое дегидрирование, гомогенное оксидегидрирование и гетерогенное каталитическое оксидегидрирование, причем получают газовую смесь 1, содержащую не превращенный пропан и образованный пропилен, и b) при необходимости, из общего количества или из частичного количества газовой смеси 1 отделяют частичное количество содержащихся в ней отличных от пропана и пропилена составляющих, например, таких как водород, моноокись углерода, водяной, пар, и/или, при необходимости, превращают его в другие соединения, например, такие как вода и двуокись углерода, и причем получают газовую смесь 1', содержащую пропан и пропилен, и на, по меньшей мере, одной следующей стадии реакции, с) газовую смесь 1, или газовую смесь 1', или смесь из образованной газовой смеси 1' и оставшейся газовой смеси 1 в качестве составляющей газовой смеси 2 подвергают гетерогенному каталитическому газофазному частичному окислению пропилена, содержащегося в газовой смеси 1 и/или газовой смеси 1', причем получают газовую смесь 3, содержащую, по меньшей мере, один продукт, d) на, по меньшей мере, одной стадии отделения из газовой смеси 3 отделяют продукт и от при этом оставшегося остаточного газа, по меньшей мере, пропан возвращают на первую стадию реакции, где предварительно очищенный пропан из сырого пропана, который содержит 90% масс.

Изобретение относится к области химии, а именно к области производства катализаторов, предназначенных для глубокой гидроочистки нефтяных фракций, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности

Наверх