Система контроля оборотов несущего винта вертолета


 


Владельцы патента RU 2486108:

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "МОСКОВСКИЙ ВЕРТОЛЁТНЫЙ ЗАВОД ИМ. М.Л. МИЛЯ" (RU)

Изобретение относится к авиационной технике и может быть использовано в системах сигнализации о пилотажных параметрах вертолета. Система контроля оборотов несущего винта вертолета содержит датчик оборотов несущего винта (1), индикатор оборотов несущего винта (2), блок сигнализации граничных оборотов несущего винта (6). Блок сигнализации граничных оборотов несущего винта выполнен в виде схемы нормализации (7) текущего значения сигналов датчика оборотов, вычислителя (8) и трех электронных ключей (9, 10, 11). Вычислитель содержит стандартные средства для сравнения текущего значения оборотов несущего винта с заданными максимальным и минимальным значениями (соответственно: 98% и 92% номинального значения) и для определения градиента оборотов несущего винта и сравнения его с заданной предельной величиной (не более 2% в секунду). Три электронных ключа (9, 10 и 11) блока сигнализации граничных оборотов (6) соединены своими управляющими входами с соответствующими выходами упомянутых функциональных блоков сравнения вычислителя (8). Выходы электронных ключей (9 и 10) соединены с табло «Обороты малы» и «Обороты высоки» системы световой сигнализации (4), а выход ключа (11) подсоединен к речевому информатору «Обороты падают». Обеспечивается более точная оценка полетной ситуации. Повышается эксплуатационная надежность вертолета на предельно допустимых режимах полета. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к авиационной технике и может быть использовано при разработке систем сигнализации о пилотажных параметрах вертолета.

Наиболее близким аналогом заявляемого устройства по назначению является система контроля оборотов несущего винта (НВ) вертолета Ми-171 («Вертолет Ми-171. Руководство по летной эксплуатации», Воениздат, кн.1, 8.23.1/2; 84.62.00, 1985 г.), использующая блок сигнализации граничных оборотов (БСГО-400).

Система содержит датчик оборотов НВ, блок сигнализации граничных оборотов с двумя одновибраторами (генераторами импульсов), а также светосигнальное табло «Обороты НВ низкие» и светосигнальное табло «Обороты НВ высокие».

Входной сигнал от датчика оборотов НВ, частота которого пропорциональна оборотам несущего винта, сравнивается по длительности с эталонными сигналами двух последовательно соединенных одновибраторов (генераторов импульсов).

Если длительность периода входного сигнала меньше длительности импульса первого одновибратора или больше длительности импульса второго одновибратора, то на одном из двух выходов блока сигнализации граничных оборотов появляется соответственно сигнал о повышении или понижении оборотов НВ.

Однако наличие на вертолете системы контроля оборотов несущего винта с подобной сигнализацией о пилотажных параметрах вертолета оказывается недостаточным вследствие недостаточной точности поддержания заданных предельных оборотов (±2%).

Это может препятствовать выработке правильной оценки полетной ситуации пилотом и принятия им своевременных решений при эксплуатации вертолета, что особенно важно при выполнении заходов на посадку и при посадке.

Задачей заявляемого изобретения является создание системы контроля оборотов несущего винта вертолета, которая обеспечит большую точность поддержания оборотов несущего винта и улучшит благодаря этому адаптацию пилота к летной обстановке, обеспечит выработку необходимого «стереотипа» оценки им полетной ситуации.

Поставленная задача решена благодаря тому, что в системе контроля оборотов несущего винта вертолета, содержащей датчик оборотов несущего винта, индикатор оборотов несущего винта и блок сигнализации граничных оборотов несущего винта, включающий средства сравнения текущего значения оборотов с заданными максимальным и минимальным значениями, связанные с системой световой сигнализации, в соответствии с изобретением блок сигнализации граничных оборотов несущего винта выполнен в виде схемы нормализации текущего значения сигналов датчика оборотов и вычислителя со средствами сравнения текущего значения оборотов с заданными максимальным и минимальным значениями, который снабжен дополнительно средством определения градиента оборотов несущего винта и сравнения его с заданной предельной величиной, соответствующий выход которого связан с речевым информатором.

При этом средства сравнения текущего значения оборотов несущего винта с заданными максимальным и минимальными значениями настроены соответственно на предельные значения оборотов более 98% и менее 92% от номинального значения, а средства сравнения градиента оборотов - на предельное значение 2% в секунду в рабочем диапазоне оборотов несущего винта от 92% до 98%.

Вычислитель снабжен стандартными средствами (функциональными блоками, схемами для обработки информации и вычислений с заданным алгоритмом, с заданной программой), предназначенными для сравнения текущего значения оборотов несущего винта с заданными опорными значениями, а также функциональными блоками для определения градиента изменения значения оборотов и сравнения его с заданным опорным значением.

Система предусматривает нормализацию сигналов, полученных от датчика оборотов несущего винта, с последующим сравнением их текущего значения (в цифровой форме, в процентах от номинального) с заданными максимальным и минимальным пороговыми значениями (в соответствующих функциональных блоках вычислителя; с помощью программы ЭВМ). Выходы с вычислителя через первую и вторую ключевые схемы (электронные ключи) связаны с соответствующими световыми сигнализаторами: светосигнальными табло «Обороты малы» (при значениях менее 92% от номинального) или «Обороты высоки» (при значениях более 98%), а другой выход вычислителя через третью ключевую схему подан на речевой информатор: «Обороты падают» (при значениях градиента более 2% в секунду).

Использование в предлагаемой системе контроля оборотов несущего винта вертолета, в его блоке сигнализации граничных оборотов, вычислителя с системой функциональных блоков для анализа текущего значения оборотов и функциональных блоков для вычисления и анализа градиента оборотов позволяет повысить на порядок точность работы системы (точность измерений ±0,2%) в сравнении с устройством-аналогом БСГО-400 (точность ±2%).

Система обеспечивает более точное поддержание оборотов несущего винта и таким образом более точную оценку полетной ситуации для принятия пилотом адекватных решений. Благодаря возможности контроля не только оборотов несущего винта, но и градиента падения оборотов устройство позволяет повысить точность сигнализации о пилотажных параметрах вертолета и в результате повысить эксплуатационную надежность вертолета на предельно допустимых режимах полета. Система особенно эффективна, в частности, для приобретения летных навыков при обучении курсантов летных училищ. Элементы систем световой и речевой индикации установлены на приборных досках в кабине экипажа. Выходные сигналы первой и второй ключевой схем могут быть подключены к светосигнальным табло «Обороты винта высоки» и «Обороты винта малы», или оба сигнала могут быть объединены в одно световое табло «Обороты НВ». Одновременно можно выполнить и речевые сообщения «Обороты винта высоки» и «Обороты винта малы». Сигнал от третьей ключевой схемы подключен к речевому информатору «Обороты падают» и может быть также подключен не только к звуковому (речевому) информатору, но также и к световому табло «Обороты падают». Все световые сигнализаторы выполнены мигающими.

Выходы функциональных блоков вычислителя, предназначенных для сравнения текущего значения оборотов с заданными максимальным и минимальным значениями, и выход функционального блока, предназначенного для сравнения текущего значения градиента с заданной предельной величиной, связаны с постоянным запоминающим устройством и через цифроаналоговый преобразователь - с аварийным регистратором параметров полета.

Заявляемое устройство изображено на фиг.1, представляющем функциональную схему системы контроля оборотов несущего винта вертолета.

Система содержит датчик оборотов несущего винта 1, индикатор оборотов 2, блок питания 3, световые сигнализаторы 4, речевой индикатор 5, блок 6 сигнализации граничных оборотов несущего винта.

Блок сигнализации граничных оборотов несущего винта 6 включает блок нормализации сигналов 7 и вычислитель 8 (например, однокристальную микроЭВМ).

Вычислитель выполнен со стандартными средствами (функциональными блоками, схемами, программами) для сравнения текущего значения оборотов несущего винта с заданными опорными значениями, а также с функциональным блоком для определения градиента оборотов несущего винта и блоком для сравнения текущего значения градиента оборотов с заданным опорным значением.

Блок сигнализации граничных оборотов 6 содержит также три электронных ключа 9, 10 и 11, связанные своими управляющими входами с соответствующими выходами упомянутых функциональных блоков сравнения вычислителя 8. Выходы электронных ключей 9 и 10 соединены со светосигнальными табло «Обороты малы» и «Обороты высоки» системы световой сигнализации или с объединенным табло «Обороты НВ». Выход ключа 11 подсоединен к речевому информатору «Обороты падают» системы речевой сигнализации вертолета, но может быть подключен дополнительно и к световому табло «Обороты падают», введенному в систему световой сигнализации (не показано).

Выход датчика оборотов несущего винта 1 соединен с индикатором оборотов несущего винта 2 и с входом схемы нормализации сигналов 7, выход которой соединен с входом вычислителя 8.

Блок питания 3 соединен со схемой нормализации сигналов 7 и с вычислителем 8. Вычислитель связан с постоянным запоминающим устройством 12 и через цифроаналоговый преобразователь 13 соединен двумя входами блока регистрации параметров полета 14. Один вход блока 14 предназначен для регистрации оборотов несущего винта, и второй вход - для регистрации градиента оборотов.

Система контроля оборотов несущего винта вертолета работает следующим образом.

Система контроля оборотов вступает в работу только после отрыва колес шасси от земли, для чего в цепи блока питания 3 установлен релейный элемент, замыкающий цепь при обжатии шасси.

Сигнал оборотов несущего винта вертолета от датчика 1 преобразуют в схеме нормализации сигналов 7 в цифровую форму, выражающую текущее значение частоты вращения НВ (в % от номинального). В вычислителе 8 с помощью соответствующего стандартного функционального блока сравнения (схемы сравнения) сравнивают текущее значение нормализованного сигнала частоты вращения НВ с заданными опорными максимальным и минимальным его значениями. При превышении текущим значением оборотов (частоты вращения) НВ заданного максимального опорного сигнала формируют сигнал на управляющий вход первого электронного ключа 9, соединенного своим выходом со световым табло «Обороты высоки», а при текущем значении оборотов несущего винта вертолета, меньшем заданного минимального опорного сигнала, формируют управляющий сигнал на второй электронный ключ 10, соединенный своим выходом со световым табло «Обороты малы».

Функциональный блок вычислителя 8, предназначенный для вычисления градиента оборотов, определяет скорость изменения оборотов НВ, а блок сравнения вычислителя 8 сравнивает его с заданным опорным сигналом, соответствующим его максимальному значению. При превышении градиентом заданного порогового значения на выходе блока сравнения формируется сигнал на управляющий вход третьего электронного ключа 11, выход которого соединен с речевым информатором «Обороты падают».

Условия срабатывания светосигнальных табло о нарушении разрешенного эксплуатационного диапазона оборотов НВ от 92% до 98% и о темпе падения оборотов НВ более 2% в секунду установлены из условия недопущения критического состояния несущей системы вертолета.

Выходные сигналы об оборотах несущего винта и градиенте оборотов через цифроаналоговый преобразователь 13 подаются на соответствующие входы блока аварийной регистрации параметров полета 14.

При падении оборотов несущего винта ниже заданного значения (88 - 92%) направляется сигнал на световое табло «Обороты малы», при превышении заданного максимального значения градиента оборотов более 2% в секунду формируется сигнал звукового оповещения летчика речевым информатором «Обороты падают».

Таким образом, заявляемая система дополнительно информирует летчика об изменении угловой скорости вращения НВ ниже значений, указанных в Руководстве по летной эксплуатации. Наличие контроля оборотов НВ с повышенной точностью обеспечит летчику безопасное пилотирование вертолета в сложных метеоусловиях, а также при заходах на посадку и непосредственно при посадке. Устройство обеспечивает повышенную безопасность полетов на режимах максимальной мощности, т.е. при разного рода монтажно-строительных работах, а также на переходных режимах.

Особенную пользу такое устройство будет оказывать при отработке летных навыков у курсантов летных училищ и при отсутствии большой летной практики или для поддержания таковой после длительных перерывов.

Предлагаемое устройство прошло опытную проверку и показало работоспособность и эффективность.

1. Система контроля оборотов несущего винта вертолета, содержащая датчик оборотов несущего винта, индикатор оборотов несущего винта и блок сигнализации граничных оборотов несущего винта, включающий средства сравнения текущего значения оборотов с заданными максимальным и минимальным значениями, связанные с системой световой сигнализации, отличающаяся тем, что блок сигнализации граничных оборотов несущего винта выполнен в виде схемы нормализации текущего значения сигналов датчика оборотов и вычислителя со средствами сравнения текущего значения оборотов с заданными максимальным и минимальным значениями, который снабжен дополнительно средством определения градиента оборотов несущего винта и сравнения его с заданной предельной величиной, соответствующий выход которого связан с речевым информатором.

2. Система по п.1, отличающаяся тем, что средства сравнения текущего значения оборотов несущего винта с заданными максимальным и минимальными значениями настроены соответственно на граничные значения оборотов более 98% и менее 92% от номинального значения, а средство сравнения градиента оборотов - на предельное значение 2% в секунду в рабочем диапазоне оборотов несущего винта от 92% до 98%.



 

Похожие патенты:

Изобретение относится к способу формирования прогноза вектора скорости полета. .

Изобретение относится к приборному оборудованию в области авиации. .

Изобретение относится к области разработки интерфейсных элементов для усовершенствования процедуры выполнения полета. .

Изобретение относится к способу и устройству определения массы летательного аппарата, положения его центра масс. .

Изобретение относится к авиационной технике и предназначено для использования при реализации бортового комплекса навигации, управления и наведения многофункциональных маневренных летательных аппаратов (ЛА).

Изобретение относится к области автоматизации процесса обнаружения программных и оперативных целей. .

Изобретение относится к оптико-механической промышленности и может быть использовано для обеспечения наблюдения и мониторинга окружающего пространства с подвижных носителей.

Изобретение относится к системам тревожной сигнализации, применяемым на летательных аппаратах. .

Изобретение относится к области авиации, более конкретно, к тактильным системам предупредительной сигнализации для вертолетов. .

Изобретение относится к конструкции хвостового вала трансмиссии вертолета, оснащенного измерителем крутящего момента. .

Группа изобретений относится к автономным цифровым интегрированным комплексам бортового электронного оборудования многодвигательных воздушных судов. Бортовая система информационной поддержки содержит модуль динамики взлета, модуль высотно-скоростных и метеорологических параметров, модуль летно-технических характеристик, модуль аэродинамики, модуль тяги силовых установок, модуль базы данных аэродромов и мировую базу данных рельефа подстилающей поверхности EGPWS повышенной точности в 3D формате и минимальных безопасных высот, модуль анализа и принятия решений и другие модули. В предлагаемом когнитивном формате представления информации на взлетном пилотажном индикаторе выполнены синтезированное отображение взлетно-посадочной полосы с осевой линией, номером порога взлетно-посадочной полосы, отображение границ максимально допустимого бокового отклонения судна на разбеге, другие важные отображения. На пилотажном индикаторе на фоне лобового стекла дополнительно отображены команды на подъем передней стойки, отрыв, доразгона судна до безопасных скоростей набора высоты и команды на выдерживание оптимального угла тангажа на воздушном участке взлетной дистанции, а также команды на отворот и экстренный набор высоты для предотвращения столкновения с рельефом подстилающей поверхности и искусственными препятствиями. Форматы указанных параметров отображены с использованием принципов активации визуального восприятия информации в информационной поддержке экипажа в его когнитивной деятельности с использованием принципов искусственного интеллекта, полноты представления информации, актуальности и интерактивности. В результате упрощается управление летательным аппаратом, повышается безопасность полетов. 2 н. и 18 з.п. ф-лы, 10 ил., 3 табл.

Изобретение относится к области авиации, в частности к системам индикации об опасных режимах полета. Устройство для индикации срыва потока на лопастях вертолета содержит блок волоконно-оптической коммутации, блок источника света, блок хранения информации, блок электропитания, блок анализа информации, блок спектрального анализа и цифроаналоговый преобразователь, блок-регистратор, индикатор, волоконно-оптический соединитель и два или более волоконно-оптических тензодатчиков, каждый из которых имеет свою полосу рабочих частот в спектре излучения блока источника света. Тензодатчики установлены на поверхности невращающихся деталей автомата перекоса вертолета. Выходные сигналы тензодатчиков изменяются в зависимости от стадий появления срыва воздушного потока на лопастях несущего винта вертолета и передаются блок-регистратору, установленному на борту вертолета. Индикатор стадий срыва установлен на панели управления вертолетом для информирования летчика о стадиях срыва потока на лопастях. Повышается безопасность при выполнении полетов вертолета и достигается возможность контроля пилотом эксплуатационных перегрузок на деталях автомата перекоса. 3 ил.

Изобретение относится к средствам поиска и обнаружения источников гамма-излучения и предназначается для оснащения беспилотных летательных аппаратов. Блок детектирования гамма-излучения в составе двух счетчиков сцинтилляционных, контроллера с установленным модулем GPS, аккумуляторной батареи, при этом для связи между блоком детектирования и пультом дистанционного управления используется GSM-канал, образованный размещенным в блоке детектирования модулем GSM и установленным в пульте управления GSM-модемом, а сцинтилляторы выполнены в виде круглых прямых цилиндров с высотой больше диаметра основания, причем сцинтилляторы ориентированы основанием перпендикулярно направлению полета беспилотного летательного аппарата. Технический результат - расширение области поиска локальных источников гамма-излучения в режиме реального времени. 2 ил.

Электронный модуль (1), например устройство отображения, содержит первый соединитель, а каркас (20), например каркас приборной панели летательного аппарата, содержит второй соединитель (22), дополняющий первый соединитель. Первый соединитель установлен в боковой выемке (11) на стенке модуля, второй соединитель установлен со свободным вращением в каркасе на опорах (23), которые также включают в себя фиксирующую ручку (24) для обеспечения электрического и механического соединения модуля в каркасе. Обеспечивается простая и легкая установка электронного модуля в каркас. 4 з.п. ф-лы, 5 ил.

Группа изобретений относится к противобликовому козырьку и приборной панели, оборудованным устройством аварийного наблюдения. Козырек включает в себя противобликовый козырек в кабине и отсек, утопленный в противобликовом козырьке. Панель содержит отсек, встроенный в приборную панель. Внутри отсека расположен нагнетатель воздуха. Надувная первая оболочка, изготовленная из воздухонепроницаемого материала и имеющая расширенную форму при развертывании и спущенную форму, когда она не используется, соединена трубчатым воздушным каналом с нагнетателем воздуха. Первая оболочка, когда она находится в спущенном виде, хранится в отсеке. Первый и второй прозрачные элементы, расположенные соответственно на первом и втором концах оболочки, обеспечивают возможность пользователю видеть через первую оболочку при ее расширении и наблюдать источник информации на удаленном конце первой оболочки при появлении дыма или других твердых частиц в окружающей среде. Переключатель, функционально связанный с нагнетателем воздуха, для приведения его в действие и надувания первой оболочки при развертывании. Обеспечивается возможность аварийного наблюдения оператором за приборами или другими источниками воспроизведения информации для безопасной посадки самолета после появления дыма и/или взвеси твердых частиц в воздухе кабины. 2 н. и 15 з.п. ф-лы, 14 ил.

Изобретение относится к области машиностроения, в частности к оболочечным конструкциям из полимерных композиционных материалов, и может быть использовано при создании корпусов и отсеков летательных аппаратов, применяемых в ракетной и авиационной технике. Согласно способу изготовления приборного конического отсека летательного аппарата из полимерных композитов, на конической оправке с цилиндрическими концами формируют внутреннюю оболочку, промежуточный слой и наружную оболочку. Для формирования внутренней оболочки на оправку наматывают спиральный технологический слой липкой двухсторонней стеклопластиковой ленты, на которую с нахлестом укладывают сектора предварительно пропитанной арамидной ткани, прижимая их края на цилиндрических концах оправки предварительно пропитанной арамидной лентой и создавая ступеньку на меньшем цилиндре. Для формирования промежуточного слоя с упором в эту ступеньку укладывают встык сектора из пластин пенопласта, предварительно обжимая их сначала технологическими кольцами из резиновых жгутов, затем слоями технологической рубашки из термоусадочных волокон, удаляя резиновые жгуты. Изобретение обеспечивает повышение качества и надежности получаемого изделия. 2 н. и 1 з.п. ф-лы, 8 ил.

Группа изобретений относится к способу и устройству защиты летательного аппарата на этапе полета. Для защиты летательного аппарата на этапе полета определяют текущую конфигурацию предкрылков и закрылков, предельный угол атаки для данной конфигурации, коэффициент усиления в зависимости от нормального ускорения. Сравнивают текущий угол атаки с предельным углом, взвешенным посредством коэффициента усиления. Подают сигнал тревоги при превышении полученного значения в зависимости от высоты полета и скорости летательного аппарата. Устройство для защиты летательного аппарата содержит средство определения предельного угла атаки, средство определения коэффициента усиления, средство сравнения текущего и предельного углов атаки, средство подачи сигнала тревоги. Обеспечивается заблаговременное предупреждение пилота о риске сваливания летательного аппарата. 2 н. и 4 з.п. ф-лы, 3 ил.

Бортовая система измерения параметров вектора скорости ветра содержит ветроприемное устройство в виде неподвижного панорамного меточного датчика аэродинамического угла и истинной воздушной скорости с системой приемных электродов, неподвижный осесимметричный полусферический аэрометрический приемник с отверстиями, блок предварительных усилителей, измерительную схему, вычислительное устройство. Обеспечивается безопасность эксплуатации вертолета за счет определения параметров скорости ветра на стоянке, стартовых и взлетно-посадочных режимах вертолета. 5 ил.
Наверх