Теплозащитный материал

Изобретение относится к теплозащитным материалам на основе теплостойких этиленпропилендиеновых каучуков, которые могут использоваться в авиа- и ракетостроении. Теплозащитный материал на основе этиленпропилендиенового каучука, включающий вулканизующую группу, наполнитель и технологические добавки, дополнительно содержит модифицирующую добавку поливинилиденхлорид или адамантан. Техническим результатом заявленного изобретения является снижение скорости прогрева теплозащитного материала на основе этиленпропилендиенового каучука. 3 табл., 9 пр.

 

Изобретение относится к теплозащитным материалам на основе теплостойких этиленпропилендиеновых каучуков, которые могут использоваться в авиа- и ракетостроении.

Известен теплозащитный материал АР-998 (ТУ 38.1051211-83), который представляет собой композицию, включающую армирующий теплостойкий наполнитель из асбестовой ткани с двухсторонней обкладкой резиновой смесью на основе синтетического этиленпропилендиенового каучука.

Существенным недостатком этого материала является то, что асбестовая ткань обладает более высоким коэффициентом теплопроводности, чем резиновая смесь, что в свою очередь приводит к увеличению скорости прогрева теплозащитного материала и, как следствие, снижению его теплозащитных характеристик.

Наиболее близким является теплозащитный материал (Пат. 2404209 РФ, МПК C08L 23/16, В32В 25/10, F16L 59/00, F02К 9/34, - 20.11.2010), выполненный из сформированного слоя арамидного волокна нетканой структуры, проложенного между двумя слоями резиновой смеси марки 51-2110 (ТУ 38.10551177-88) на основе этиленпропилендиенового каучука с последующей вулканизацией в составе изделия.

Недостатком данного теплозащитного материала является то, что в процессе его работы происходит разрушение резинового слоя и унос вещества с поверхности теплозащитного материала, что, в свою очередь, приводит к увеличению скорости прогрева теплозащитного материала, снижению его теплозащитных характеристик и уменьшению ресурса работоспособности изделия или узла в целом.

Таким образом, известные композиции не позволяют получать материалы с высоким уровнем теплозащитных характеристик, что снижает их потребительские и эксплуатационные качества.

Задачей предлагаемого изобретения является получение материалов с высокими теплозащитными характеристиками.

Техническим результатом заявленного изобретения является снижение скорости прогрева теплозащитного материала на основе этиленпропилендиенового каучука с сохранением физико-механических и теплофизических характеристик на уровне прототипа.

Технический результат достигается тем, что теплозащитный материал на основе этиленпропилендиенового каучука, включающий вулканизующую группу, наполнитель и технологические добавки, дополнительно содержит модифицирующую добавку поливинилиденхлорид или адамантан, при следующем соотношении компонентов, мас.ч.:

Каучук СКЭПТ 100
Сера 2,0
Дитиодиморфолин 1,5
Тиурам Д 0,75
Альтакс 0,5
Оксид цинка 5,0
Стеарин 1,0
Триэтаноламин 2,0
Технический углерод 2,0
Смола инден-кумароновая 10,0
Канифоль сосновая 3,0
Белая сажа 10-30
Указанная модифицирующая добавка 5-25

Сущность изобретения заключается в том, что в процессе работы теплозащитного материала происходит абляция поливинилиденхлорида (или адамантана), которая протекает в интервале температур 150-200°С (для поливинилиденхлорида) или 150-300°С (для адамантана) с эндотермическим эффектом. В результате абляции, во-первых, снижается тепловая нагрузка на теплозащитный материал, так как процесс протекает с эндотермическим эффектом. Во-вторых, газообразные продукты абляции создают между газопламенной струей и поверхностью теплозащитного материала теплоизоляционный слой. В результате этих двух процессов замедляется разрушение резинового слоя, что, в свою очередь, приводит к уменьшению скорости прогрева теплозащитного материала и повышению его теплозащитных характеристик и, как следствие, увеличению ресурса работоспособности изделия или узла в целом.

В предлагаемом материале используют следующие компоненты:

Этиленпропилендиеновый каучук СКЭПТ-50, содержащий в качестве диенового сополимера дициклопентадиен дициклопентадиен (ТУ 2294-022-05766801-2002).

Вулканизующая группа:

вулканизующие агенты - сера (ГОСТ 127-76), дитиодиморфолин (ТУ 2478-033-05807983-2002);

ускорители вулканизации - тиурам Д (ТУ 6-14-943-79), альтакс (ТУ 6-14-851-86);

активаторы вулканизации - оксид цинка (ГОСТ 202-84), стеарин (ГОСТ 6484-96), триэтаноламин (ТУ 6-09-2448-91).

Наполнитель - белая сажа БС-120 (ГОСТ 18307-78).

В качестве технологических добавок используются смола инден-кумароновая (ТУ 14-6-72-89), канифоль сосновая (ГОСТ 19113-84) и технический углерод К-354 (ГОСТ 7885-86).

В качестве модифицирующей добавки используется поливинилиденхлорид (ТУ 2212-015-00203275-2003) или адамантан (ТУ 6-02-7-39-87).

Образцы теплозащитного материала на основе этиленпропилендиенового каучука испытываются по ГОСТ 270-75 «Резина. Метод определения упругопрочностных свойств при растяжении», ГОСТ 263-75 «Резина. Метод определения твердости по Шору А», ГОСТ 267-73 «Резина. Методы определения плотности», ГОСТ 23630.2-79 «Пластмассы. Метод определения теплопроводности».

Оценку скорости прогрева теплозащитного материала при высокотемпературном нагреве проводили с помощью специального приспособления, состоящего из основания с закрепленным на нем металлическим стаканом с водяной рубашкой и газовоздушной горелкой. Образец теплозащитного материала, выполненный в виде цилиндра диаметром 30 мм и высотой 20 мм, закрепляли в стакане и нагревали пламенем горелки одну из его поверхностей в течение 150 секунд. С помощью заделанной в образец термопары определяли температуру внутри образца по мере его прогрева. Расстояние от спая термопары до нагреваемой поверхности составляло 5 мм. Оценку скорости прогрева материала образца проводили по времени от начала нагрева до достижения температуры 100°С в слое с термопарой.

Теплозащитный материал на основе этиленпропилендиенового каучука, включающий вулканизующую группу, наполнитель, технологические и модифицирующую добавки, получают следующим способом. Изготовление резиновой смеси производится на вальцах, например, типа ЛБ 450 225/225. Процесс смешения на вальцах на стадии подготовки каучука для смешения (роспуск) и введения ингредиентов осуществляется в течение времени не менее 20 минут. Режим ввода ингредиентов представлен в табл.1. Вулканизация резиновой смеси производится при температуре 150°С в течение 60 минут. Затем полученные образцы подвергают необходимым испытаниям.

Изобретение иллюстрируется следующими примерами:

Пример 1. Готовят резиновую смесь состава 1 (табл.2). Смешение ингредиентов резиновой смеси производят на вальцах ЛБ 450 225/225. Режим ввода ингредиентов представлен в табл.1. Затем из приготовленных резиновых смесей вулканизуют образцы, обеспечивающие соответствующие испытания. Вулканизация резиновой смеси производится при температуре 150°С в течение 60 минут. Физико-механические, теплофизические и теплозащитные свойства предлагаемого теплозащитного материала приведены в табл.3.

Таблица 1
Режим приготовления резиновых смесей
Технологическая операция Время начала операции после окончания первой загрузки, мин
Загрузка и роспуск каучука 0
Загрузка технологических добавок 5
Загрузка наполнителя и модифицирующей добавки 8
Загрузка вулканизующей группы 18
Съем резиновой смеси 20

Резиновые смеси по примерам 2-9 и резиновая смесь марки 51-2110 по прототипу, составы которых приведены в табл.2, готовятся аналогично примеру 1. Физико-механические, теплофизические и теплозащитные свойства резины марки 51-2110 по прототипу и теплозащитного материала по примерам 2-9 приведены в табл.3.

Как видно из представленных данных, предлагаемые теплозащитные материалы, во-первых, обладают комплексом физико-механических показателей, сопоставимым с уровнем физико-механических показателей резины марки 51-2110 прототипа (за исключением примера 6). Во-вторых, теплофизические характеристики теплозащитных материалов по примерам 1-9 находятся на уровне теплофизических свойств резины марки 51-2110 прототипа. В-третьих, теплозащитные свойства предлагаемых материалов, оцениваемые по времени прогрева до температуры 100°С (за исключением примеров 3, 6), выше, чем у резины марки 51-2110, на 10-20%. Теплозащитные свойства материалов по примерам 1, 4, 9 находятся на уровне прототипа, что позволяет установить оптимальное содержание модифицирующей добавки (для поливинилиденхлорида 5-25 мас.ч., для адамантана 5-15 мас.ч.).

Таблица 2
Составы по примерам
Наименования компонентов, мас.ч. по примерам Прототип (резина марки 51-2110)
1 2 3 4 5 6 7 8 9
Каучук СКЭПТ-50 100 100 100 100 100 100 100 100 100 100
Сера 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Дитиодиморфолин 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5
Тиурам Д 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75
Альтакс 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5
Оксид цинка 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0
Стеарин 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
Триэтаноламин 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Технический углерод К-354 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Смола инден-кумароновая 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0
Канифоль сосновая 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0
Белая сажа БС-120 10 30 10 30 20 10 30 20 30 30
Поливинилиденхлорид 5 5 25 25 15 - - - - -
Адамантан - - - - - 5 5 10 15 -
Таблица 3
Свойства теплозащитных материалов
Прототип (резина марки 51-2110) по примерам
Наименования показателей 1 2 3 4 5 6 7 8 9
Условная прочность при растяжении, МПа 9,0 4,8 9,6 6,5 7,0 5,7 1,7 9,0 4,8 6,5
Относительное удлинение при разрыве, % 420 770 830 690 510 940 240 670 650 600
Остаточная деформация после разрыва, % 25 33 30 60 20 65 0 16 42 30
Твердость по Шору А, усл.ед. 61 48 52 57 52 55 61 53 42 51
Плотность, кг/м3 1090 1160 1240 1130 1120 1210 1260 1160 1160 1150
Коэффициент теплопроводности, Вт/(м·К) 0,23 0,20 0,23 0,19 0,22 0,21 0,20 0,23 0,21 0,22
Время прогрева до температуры 100°С, с 122 127 144 115 126 134 121 146 137 128

Таким образом вышеизложенные сведения свидетельствуют о выполнении при использовании заявляемого изобретения следующей совокупности условий:

теплозащитный материал на основе этиленпропилендиенового каучука, включающий вулканизующую группу, наполнитель, технологические добавки и модифицирующую добавку поливинилиденхлорид или адамантан, воплощающий заявленное изобретение при его осуществлении, обеспечивает повышение теплозащитных характеристик композиции за счет снижения скорости прогрева теплозащитного материала;

заявленное изобретение позволяет получать теплозащитные материалы на основе этиленпропилендиенового каучука для использования в авиационной и ракетной технике;

для заявляемого изобретения в том виде, как оно охарактеризовано в независимом пункте нижеизложенной формулы изобретения, подтверждена возможность его осуществления с помощью вышеописанных в заявке или известных до даты приоритета средств и методов;

средство, воплощающее заявленное изобретение при его осуществлении, способно обеспечить достижение усматриваемого заявителем технического результата.

Следовательно, заявленное изобретение соответствует требованию "промышленная применимость" по действующему законодательству.

Теплозащитный материал на основе этилен-пропилендиенового каучука, включающий вулканизующую группу, наполнитель и технологические добавки, отличающийся тем, что дополнительно содержит модифицирующую добавку поливинилиденхлорид или адамантан при следующем соотношении компонентов, мас.ч.:

Каучук СКЭПТ 100
Сера 2,0
Дитиодиморфолин 1,5
Тиурам Д 0,75
Альтакс 0,5
Оксид цинка 5,0
Стеарин 1,0
Триэтаноламин 2,0
Технический углерод 2,0
Смола инден-кумароновая 10,0
Канифоль сосновая 3,0
Белая сажа 10-30
Указанная модифицирующая добавка 5-25



 

Похожие патенты:
Изобретение относится к химической промышленности, в частности к производству резиновых смесей, предназначенных для использования в производстве шин легкового и грузового производства.

Изобретение относится к полимерной дисперсии для улучшения индекса вязкости моторных масел и способу ее получения. .

Изобретение относится к полимерной композиции на основе полиолефина с низким коэффициентом теплового линейного расширения, предназначенной для использования, в частности, в автомобильной промышленности для изготовления больших деталей литьем под давлением с минимальным подводом энергии.
Изобретение относится к многослойной трубе, содержащей многослойное покрытие, которое включает адгезивный слой и наружный слой, выполненные из пропиленовой полимерной композиции, а также к применению такой пропиленовой полимерной композиции для покрытия трубы.
Изобретение относится к технологии резинотехнических изделий, в частности к способам объемной модификации резин с целью замедления процессов старения, протекающих при длительном хранении и эксплуатации в резинах и резинотехнических изделиях.

Изобретение относится к гетерофазному пропиленовому сополимеру, являющемуся -нуклеированным, его изготовлению и использованию, а также к трубам, слоям в многослойных трубах и покрытиям на стальных трубах, выполненных из упомянутого -нуклеированного пропиленового сополимера.
Изобретение относится к химической промышленности, в частности к производству озоностойких резиновых смесей, предназначенных для цветных или белых боковин легковых и велошин, а также для защитных и декоративных элементов боковины шин грузового и легкогрузового ассортимента шин.

Изобретение относится к гетерофазной полипропиленовой композиции, к пленкам, полученным методом полива и содержащим такую гетерофазную полипропиленовую композицию, и к применению указанных композиций для получения пленок в качестве упаковочного материала для лекарственных средств и/или пищевых продуктов.
Изобретение относится к моноориентированным пленкам на полипропиленовой основе, характеризующимся высокой степенью усадки. .

Изобретение относится к полимерной композиции и формованному изделию для работы в чистом производственном помещении. .

Изобретение относится к гетерофазной полипропиленовой смоле, относится к способу получения такой полипропиленовой смолы и ее использованию для производства изделий, в частности в качестве материала для производства изоляционного и полупроводникового слоев силовых кабелей

Изобретение относится к резинотехнической, шинной, обувной отраслям промышленности и другим областям техники, в частности к резиновым смесям на основе диеновых или этиленпропиленовых эластомеров, наполненных белой сажей или ее комбинацией с техническим углеродом

Изобретение относится к резиновым композициям. Композиция содержит каучук на диеновой основе и один простой полиэфир или простой полигликолевый эфир на основе циклоалифатического эпоксида. Композиция может содержать наполнитель, вулканизующий агент. Вариант композиции содержит каучук на диеновой основе и один простой полиэфир или простой полигликолевый эфир на основе циклоалифатического эпоксида и одно масло для наполнения. Масло для наполнения выбирают из группы, состоящей из ароматического масла, алифатического масла, нафтенового масла и их смесей. Изобретение обеспечивает более высокую скорость вулканизации, улучшение относительного удлинения и более высокий модуль упругости при 300% удлинении, улучшенные динамические механические показатели. 5 н. и 22 з.п. ф-лы, 4 ил., 6 пр., 6 табл.
Изобретение имеет отношение к эластомерному материалу на основе бутилкаучука для корпуса маски фильтрующего противогаза. Эластомерный материал содержит серу в качестве вулканизующего агента, тетраметилтиурамдисульфид (тиурам Д) в качестве активатора вулканизации, оксид цинка в качестве ускорителя вулканизации, 2-меркантобензтиазол (каптакс) в качестве регулятора скорости вулканизации, кислоту стеариновую в качестве пластификатора, а также углерод в качестве порошкового наполнителя, отличающийся тем, что он дополнительно содержит полиизобутилен в качестве пластифицирующей резиновую смесь технологической добавки, а также в качестве антиоксиданта и стабилизатора крафанил-У, или ацетонанил-Р (бензопиридин) с формулой (C12H15N)n, или нафтам-2, или смесь ацетонанила-Р с 18-28 мас.ч. нафтама-2, или смесь крафанила-У с 32-40 мас.ч ацетонанила-Р (бензопиридина) при следующем соотношении компонентов на 100 мас.ч. бутилкаучука: указанный активатор вулканизации 1,3-1,7; указанный ускоритель вулканизации 4,4-5,6; указанный вулканизующий агент 1,8-2,5; указанный регулятор скорости вулканизации 0,3-1,1; указанный порошковый наполнитель 40-50; полиизобутилен 4,8-10,6; указанный пластификатор 0,8-2,4; указанный антиоксидант и стабилизатор 0,9-2,0. Технический результат - создание эластомерного материала, обеспечивающего заданную эластичность и прилегание по форме головы спасателя, сохранение заданной формы корпуса маски фильтрующего противогаза, достаточную газонепроницаемости и надежную защиту кожных покровов человека от аэрозольного и капельного проникновения жидких химических и вредных веществ. 4 з.п. ф-лы, 15 пр.
Изобретение относится к гетерофазной пропиленовой композиции для изготовления изделий, полученных способом литьевого формования, а также к композиции для улучшения прочности полипропилена при низких температурах. Композиция содержит полипропиленовую матрицу, эластомерный сополимер, содержащий звенья этилена, по меньшей мере, одного С3-С20 α-олефина и возможно несопряженного диена, полиэтилен высокой плотности, представляющий собой бимодальный или мультимодальный полиэтилен, и неорганический наполнитель. Гетерофазная полипропиленовая композиция по изобретению обладает приемлемыми ударными характеристиками при -40°C без потери жесткости. 5 н. и 9 з.п. ф-лы, 3 табл., 14 пр.

Изобретение относится к полимерным композициям на основе полиолефинов и может быть использовано в производстве волокон и нетканых материалов для изготовления изделий медицинского назначения. Композиция содержит сополимер пропилена с от 3 до 11 мас.% этилена и показателем текучести расплава от 25 до 50 г/10 мин, и пространственно затрудненный амин - поли-(N-бета-гидроксиэтил-2,2,6,6-тетраметил-4-гидрокси-пиперидилсукцинат). В качестве стабилизатора композиция содержит глицидилполи[изопропилиден-2,2-дифенилен-O-(2-этилгексил)]фосфит, диарил(3,5-ди-трет-бутил-4′-гидроксибензил)фосфонат и пентаэритрил-тетракис-3-(3′,5′-ди-трет-бутил-4′-гидроксифенил)пропионат. Кроме того, в состав композиции входит концентрат красителя Remafin. Композиция по изобретения обладает стойкостью к воздействию ионизирующего излучения и позволяет получить на основе заявляемой полимерной композиции нетканый материал с более высокой эластичностью и меньшими энергозатратами при ее переработке. 2 табл., 8 пр.

Изобретение относится к полимерным композициям на основе полиолефинов и может быть использовано в производстве волокон и нетканых материалов для изготовления изделий медицинского назначения. Полимерная композиция содержит сополимер пропилена с этиленом, содержит от 3 до 11 мас.% этилена и с показателем текучести расплава от 25 до 50 г/10 мин, полиэтилен, пространственно затрудненный амин, триаллилизоцианурат и пентаэритрил-тетракис-3-(3′,5′-ди-трет-бутил-4′-гидроксифенил)пропионат в качестве стабилизатора. Кроме того, композиция содержит пентаэритрит и концентрат красителя Remafin. Композиция по изобретения обладает стойкостью к воздействию ионизирующего излучения и позволяет получить на основе заявляемой полимерной композиции нетканый материал с более высокой эластичностью и меньшими энергозатратами при ее переработке. 2 табл., 8 пр.

Изобретение относится к полимерным композициям на основе полиолефинов и может быть использовано в производстве волокон и нетканых материалов для изготовления изделий медицинского назначения. Композиция содержит сополимер пропилена с 3 до 11 мас.% этилена и показателем текучести расплава от 25 до 50 г/10 мин, пространственно затрудненный амин, дендример с концевыми акрилатными группами и пентаэритрил-тетракис-3-(3′,5′-ди-трет-бутил-4′-гидроксифенил)пропионат, а также концентрат красителя Remafin. Композиция по изобретению обладает стойкостью к воздействию ионизирующего излучения и позволяет получить на основе заявляемой полимерной композиции нетканый материал с более высокой эластичностью и меньшими энергозатратами при ее переработке. 2 табл., 8 пр.

Изобретение относится к полиолефиновой маточной смеси, которая может быть использована для получения полиолефиновых композиций, подходящих для изготовления способом литьевого формования относительно больших изделий. Композиция маточной смеси содержит гомополимер пропилена или сополимер пропилена с этиленом или С4-С10 альфа олефинами, имеющий значение скорости течения расплава (230°C/2,16 кг) в диапазоне от 15 до 70 г/10 мин., и сополимер пропилена и этилена, имеющий значение характеристической вязкости [η] фракции, растворимой в ксилоле при комнатной температуре, в диапазоне от 5 до 9 дл/г. Причем указанная композиция маточной смеси имеет суммарное значение скорости течения расплава(230°C/2,16 кг) выше чем 4 г/10 мин и значение модуля упругости при изгибе, измеренного в соответствии со стандартом ISO методом 178, в диапазоне от 950 до 2000 МПа. Композиция маточной смеси по изобретению предназначена для диспергирования в полиолефиновой матрице и обеспечивает получение готовых профилированных изделий, имеющих превосходный внешний вид поверхности благодаря снижению эффекта появления «тигровых полос» в сочетании со значительным уменьшением количества областей геля.2 н. и 5 з.п. ф-лы, 2 табл., 3 пр.

Изобретение относится к стойким к воздействию ионизирующего излучения полимерным композициям на основе полиолефинов и может быть использовано в производстве волокон и нетканых материалов для изготовления изделий медицинского назначения. Полимерная композиция содержит сополимер пропилена с этиленом, пространственно затрудненный амин, стабилизатор и концентрат красителя Remafin. В качестве затрудненного амина композиция содержит поли-(N-бета-гидроксиэтил-2,2,6,6-тетраметил-4-гидрокси-пиперидилсукцинат), а качестве стабилизатора - ди(4-метил-2,6-дитретбутилфенил)фосфористую кислоту, олигомерный дифенокси-пропилиден-фениловый эфир фенилфосфоновой кислоты и пентаэритрил-тетракис-3-(3',5'-ди-трет-бутил-4'-гидроксифенил)пропионат. Полимерная композиция по изобретению позволяет получить нетканый материал с высокой эластичностью, которая сохраняется до и после воздействия ионизирующего облучения дозой. 2 табл.
Наверх