Способ электролитического осаждения сплава железо-алюминий

Изобретение относится к области электролитического осаждения твердых, износостойких покрытий, в частности железоалюминиевых покрытий, применяемых для восстановления и упрочнения поверхностей деталей. Способ включает осаждение из электролита, содержащего кг/м3: хлористый алюминий 50-600, железо хлористое (II) 100-400, железо сернокислое (II) 100-400, хлористый калий (натрий) 80-100, соляную кислоту 0,5-1,5, на переменном асимметричном токе с коэффициентом асимметрии 1,2-6, катодной плотностью тока 20-80 А/дм2, температурой электролита 20-40°С, рН электролита 0,8. Технический результат: повышение содержания легирующего компонента - алюминия, повышение производительности, микротвердости и износостойкости.

 

Изобретение относится к области электролитического осаждения твердых, износостойких покрытий, в частности железоалюминиевых покрытий, применяемых для восстановления и упрочнения поверхностей деталей.

Известен способ электролитического осаждения сплава железо-алюминий из электролита, содержащего: хлористый алюминий, железо хлористое, хлористый калий (натрий), соляную кислоту, глицерин. Процесс ведут на постоянном токе при температуре 20-100°С и катодной плотности тока 5-100 А/дм2 (а.с. №377432, МПК C23b 5/32. Способ электролитического осаждения сплава железо-алюминий). Недостатком данного способа является ограниченная микротвердость покрытия, низкая прочность сцепления покрытия с основой, низкая скорость осаждения покрытия и использование высоких температур электролита, низкая износостойкость.

За прототип взят известный способ электролитического осаждения сплава железо-алюминий из электролита, содержащего: хлористый алюминий, железо хлористое, хлористый калий (натрий), соляную кислоту. Процесс ведут на переменном асимметричном токе с интервалом катодных плотностей тока 30-70 А/дм2 и коэффициентом асимметрии β=1,2-6. (Патент №2263727, МПК C25D 3/56. Способ электролитического осаждения сплава железо-алюминий).

Недостатком данного способа является низкая износостойкость и низкое содержание легирующего компонента - алюминия.

Технической задачей изобретения является повышение износостойкости покрытия и содержания легирующего компонента - алюминия.

Предлагается способ электролитического осаждения сплава железо-алюминий, который имеет в своем составе до 2% алюминия. Получаемые покрытия обладают высокой прочностью сцепления с основой, высокой микротвердостью и износостойкостью. Осаждение происходит из электролита, содержащего хлористый алюминий, железо хлористое (II), железо сернокислое (II), хлористый калий (натрий), соляную кислоту при следующем соотношении компонентов, кг/м3:

хлористый алюминий 50-600
железо хлористое (II) 100-400
железо сернокислое (II) 100-400
хлористый калий (натрий) 80-100
соляная кислота 0,5-1,5

Электроосаждение ведется при температуре 20-40°С на переменном асимметричном токе с интервалом катодных плотностей тока 20-80 А/дм2 и коэффициентом асимметрии β=1,2-6. Кислотность электролита находится в пределах рН 0,8.

Электролит получают соединением водного раствора хлористого железа, сернокислого железа, хлористого алюминия и хлористого калия (натрия).

Хлористый алюминий находится в пределах 50-600 кг/м3. Нижний предел обусловлен тем, что при содержании менее 50 кг/м3 хлористого алюминия не происходит заметного изменения физико-механических свойств покрытия. Верхний предел ограничивается содержанием хлористого алюминия 600 кг/м3. При содержании больше 600 кг/м3 происходит интенсивное образование окислов алюминия, что резко снижает физико-механические свойства электролитического покрытия.

Концентрация хлористого железа находится в пределах 100-400 кг/м3. Нижний предел показывает зону минимальной вязкости. Верхний предел показывает зону максимальной электропроводности. Концентрация сернокислого железа находится в пределах 100-400 кг/м3. Нижний предел показывает зону минимальной вязкости. Верхний предел показывает зону максимальной смачиваемости поверхности электроосаждения и максимальной растворимости сернокислого железа.

Содержание соляной кислоты находится в пределах 0,5-1,5 кг/м3. Верхний предел установлен из экономических соображений, электроосаждение железа на катоде происходит с одновременным разрядом водорода. С повышением содержания соляной кислоты резко увеличивается количество разряжающегося водорода и падает выход по току. Нижний предел выбран по качественным характеристикам структур электролитического железа. При содержании соляной кислоты меньше 0,5 кг/м3 происходит сильное защелачивание прикатодного слоя. Гидроокись, образующаяся в прикатодном слое, включается в покрытие и этим ухудшает их структуру.

Хлористый калий (натрий) находится в пределах 80-100 кг/м3. Нижний предел обусловлен тем, что при содержании менее 80 кг/м3 хлористого калия (натрия), не происходит заметного повышения электропроводности электролита и как следствие повышения катодной плотности тока. Верхний предел ограничивается содержанием хлористого калия (натрия) 100 кг/м3. При содержании больше 100 кг/м3 происходит интенсивное образование окислов калия (натрия), что резко снижает физико-механические свойства электролитического покрытия.

Температурный интервал находится в пределах 20-40°С. Нижний предел ограничен диффузионными свойствами электролита. Движение ионов замедленное и скорость осаждения покрытия низкая. Выше 40°С использование электролита невыгодно с экономической точки зрения. Качественного изменения покрытия не происходит, однако увеличиваются затраты на подогрев электролита.

Катодная плотность тока находится в пределах 20-80 А/дм2. Ниже 20 А/дм2 плотность тока использовать не целесообразно, т.к. процесс электролиза имеет низкую скорость осаждения покрытия. При катодной плотности тока выше 80 А/дм2 происходит сильное дендритообразование и резко снижается выход по току.

Начало осаждения покрытия проходит при коэффициенте асимметрии β=1,2, который обеспечивает высокую сцепляемость покрытия с основой, Gсц=350 МПа. Если коэффициент асимметрии ниже 1,2, осаждение не происходит. В процессе электроосаждения коэффициент асимметрии постепенно повышают до β=6, который характеризуется высокой и стабильной скоростью осаждения покрытия. Дальнейшее повышение коэффициента асимметрии не рекомендуется, т.к. с дальнейшим снижением анодной составляющей процесс переходит на режим, близкий к постоянному току, и качество покрытий ухудшается. Благодаря разным значениям коэффициента асимметрии можно получать покрытия с различными физико-механическими свойствами.

На основе проведенных испытаний оптимальными условиями способа электроосаждения сплава железо-алюминий являются условия, приведенные в примере:

Электролит состоит из следующих компонентов в количестве, кг/м3:

хлористый алюминий 350
железо хлористое (II) 300
железо сернокислое (II) 300
хлористый калий (натрий) 90
соляная кислота 1,0

Процесс электролитического осаждения покрытия ведут при температуре 40°С и катодной плотности тока 50 А/дм2. Процесс осаждения начинают с β=1,2 и постепенно в течение 3-5 минут повышают до β=6. Покрытие имеет Gcц=350 МПа, микротвердость Нµ=9000 МПа, скорость осаждения 0,45 мм/ч, содержание алюминия в покрытии 1,8%.

Предлагаемый способ имеет высокую производительность за счет применения переменного асимметричного тока. Он экономически эффективен, т.к. осаждение покрытия происходит при высокой катодной плотности тока и имеет высокую скорость осаждения покрытия. Покрытия, полученные предлагаемым способом, обладают высокой микротвердостью и износостойкостью, что позволяет их использовать в народном хозяйстве для восстановления и упрочнения поверхностей деталей машин.

Способ электролитического осаждения сплава железо-алюминий из электролита, содержащего хлористый алюминий, железо хлористое (II), железо сернокислое (II), хлористый калий (натрий), соляную кислоту, отличающийся тем, что осаждение ведут из электролита, содержащего, кг/м3:

хлористый алюминий 50-600
железо хлористое (II) 100-400
железо сернокислое (II) 100-400
хлористый калий (натрий) 80-100
соляная кислота 0,5-1,5,

на переменном асимметричном токе с коэффициентом асимметрии 1,2-6, катодной плотностью тока 20-80 А/дм2, температурой электролита 20-40°С и кислотностью электролита рН 0,8.



 

Похожие патенты:

Изобретение относится к способу нанесения покрытия из металлических сплавов с применением гальванической технологии. .
Изобретение относится к области гальваностегии и может быть использовано в машиностроении для получения покрытий. .
Изобретение относится к области гальванотехники и может быть использовано для нанесения композиционных гальванических градиентных покрытий на основе хрома в машиностроении и других отраслях промышленности при изготовлении или восстановлении деталей и инструментов с износостойкими антифрикционными покрытиями, в частности, для повышения стойкости деформирующих инструментов.
Изобретение относится к области гальваностегии и может быть использовано в машиностроении для получения ровных, гладких покрытий с высокой коррозионной стойкостью.
Изобретение относится к области электрохимии, в частности к нанесению упрочняющих, твердых, износостойких и защитных покрытий на стальные изделия и может быть использовано для работы в узлах трения, упрочнения поверхностей деталей, радиоэлектронной и лакокрасочной промышленности.
Изобретение относится к области электрохимии, в частности к нанесению износостойких и защитных полимерных композиционных покрытий на стальные изделия и может быть использовано для работы в узлах трения, гальванотехнике, радиоэлектронной и лакокрасочной промышленности.

Изобретение относится к прикладной электрохимии, в частности к электролитическому нанесению сплава цинк-никель. .

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении и авиационной промышленности. .
Изобретение относится к области гальваностегии, в частности, к электролитическому осаждению сплава висмут-галлий. .

Изобретение относится к области электролитического осаждения твердых износостойких покрытий, применяемых для восстановления и упрочнения поверхностей стальных деталей.
Изобретение относится к области гальванотехники и может быть использовано для восстановления изношенных поверхностей деталей машин, в частности подшипников скольжения автомобильных двигателей

Изобретение относится к области металлургии, в частности получению стального компонента с металлическим покрытием, который используют в качестве материала для кузовов транспортных средств. Для обеспечения хорошего сцепления покрытия и надежной защиты от коррозии на плоский стальной продукт, выполненный из стали, содержащей 0,3-3 мас.% марганца, имеющий предел текучести 150-1100 МПа и прочность на разрыв 300-1200 МПа, наносят антикоррозионное покрытие из сплава ZnNi электролитическим методом, которое состоит из единственной фазы γ-ZnNi и содержит, наряду с цинком и неизбежными примесями, 7-15 мас.% никеля. Затем из плоского стального продукта получают заготовку и сразу нагревают, по меньшей мере, до 800°C, а затем формуют в стальной компонент, или сначала формуют в стальной компонент, который затем нагревают, по меньшей мере, до 800°C. Стальной компонент, полученный в соответственных случаях, окончательно закаляют достаточно быстрым охлаждением от довольно высокой температуры. 3 н. и 18 з.п. ф-лы, 6 табл., 5 ил., 3 пр.
Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении и автомобилестроении для защиты от коррозии стальных изделий. Электролит содержит, г/л:оксид цинка 12-15, едкий натр 100-120, никель сернокислый 7-17, триэтаноламин 40-60, гексаметилендиамин-N,N,N',N'- тетрауксусную кислоту 0,5-2, диглицин 1-3, воду до 1 л. Технический результат - увеличение коррозионной стойкости цинк-никелевых покрытий, расширение диапазона рабочих плотностей тока, снижение экологической нагрузки на очистку сточных вод, путем использования низкоконцентрированных электролитов. 2 табл., 4 пр.
Изобретение относится к области упрочнения электроосажденного на стальные детали железохромистого покрытия цементацией, применяемого для восстановленных поверхностей стальных деталей. Проводят цементацию электроосажденного слоя железохромистого покрытия с содержанием хрома 0,5-3,0% в течение 3-4 ч при температуре 800-900°С с использованием пасты следующего состава, мас.%: газовая сажа ДГ-100 - 40, углекислый барий ВаСО3 - 20, поливинилацетатная эмульсия (клей ПВА) - 40 и добавлением синтина в количестве 20 капель в минуту в течение всего времени цементации. Повышается микротвердость и износостойкость стальных деталей, восстановленных электроосажденным железохромистым покрытием.

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении, автомобилестроении и других отраслях промышленности. Электролит содержит, г/л: цинк сернокислый 15-30, кобальт сернокислый 14-17, калий хлористый 120-130, таурин 45-50 и воду до 1 литра. Техническим результатом изобретения является снижение скорости коррозии цинк-кобальтовых покрытий при сохранении покрытиями, содержащими 15-17% кобальта, анодного характера защиты сталей, снижение экологической нагрузки на очистку сточных вод за счет снижения токсичности. 2 табл., 4 пр.
Изобретение относится к области гальванотехники. Электролит содержит соль меди и соль никеля, вещество, образующее комплексы с металлами, множество обеспечивающих проводимость солей, отличающихся друг от друга, соединение, выбранное из группы, состоящей из дисульфидных соединений, серосодержащих аминокислот и их солей, соединение, выбранное из группы, состоящей из сульфоновых кислот, сульфимидных соединений, соединений сульфаминовых кислот, сульфонамидов и их солей, и продукт реакции простого глицидилового эфира и многоатомного спирта. Электролит имеет pH от 3 до 8. Способ включает нанесение покрытия на подложку, выбранную из металлической подложки, состоящей из меди, железа, никеля, серебра, золота и их сплавов, или из стеклянной, керамической, пластмассовой подложки, с модифицированной любым из указанных металлов или сплавов поверхностью. Покрытие наносят при плотности катодного тока от 0,01 до 5,0 А/дм2. Технический результат: повышение стабильности электролита с обеспечением устойчивого получения покрытий с однородным составом. 2 н. и 14 з.п. ф-лы, 6 табл., 7 пр.
Наверх