Способ поиска неисправного блока в непрерывной динамической системе



Способ поиска неисправного блока в непрерывной динамической системе

 


Владельцы патента RU 2486568:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" (RU)

Областью применения является область контроля и диагностирования систем автоматического управления и их элементов. Техническим результатом является улучшение помехоустойчивости способа диагностирования непрерывных систем автоматического управления путем улучшения различимости дефектов. Результат достигается за счет того, что предварительно регистрируют реакцию заведомо исправной системы на интервале в контрольных точках и многократно определяют (одновременно) интегральные оценки выходных сигналов системы для значений параметра интегрирования, для чего в момент подачи тестового сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование сигналов системы управления для параметров интегрирования в каждой из контрольных точек с весами путем подачи на первые входы блоков перемножения сигналов системы управления, на вторые входы блоков перемножения подают экспоненциальные сигналы для блоков интегрирования, выходные сигналы блоков перемножения подают на входы блоков интегрирования, интегрирование завершают в момент времени, полученные в результате интегрирования оценки выходных сигналов регистрируют, фиксируют число блоков системы, определяют элементы топологических связей каждого блока, входящего в состав системы для каждой контрольной точки, элементы определяют из множества значений {-1,0,1}, значение -1 определяют, если знак передачи сигнала от выхода i-го блока до j-й контрольной точки отрицательный, значение 0 определяют, если передача сигнала от выхода i-го блока до j-й контрольной точки отсутствует, значение l определяют, если знак передачи сигнала от выхода i-го блока до j-й контрольной точки положительный. Затем определяют нормированные значения вектора топологических связей для каждого блока, замещают систему с номинальными характеристиками контролируемой, на вход системы подают аналогичный тестовый сигнал, определяют интегральные оценки сигналов контролируемой системы для контрольных точек и для параметров интегрирования, определяют отклонения интегральных оценок сигналов контролируемой системы для контрольных точек и параметров интегрирования от номинальных значений, определяют нормированные значения отклонений интегральных оценок сигналов контролируемой системы для параметров интегрирования, определяют диагностические признаки при параметрах интегрирования, по минимуму значения диагностического признака определяют порядковый номер дефектного блока. 1 ил.

 

Изобретение относится к области контроля и диагностирования систем автоматического управления и их элементов.

Известен способ поиска неисправного блока в динамической системе (Патент на изобретение №2439648 от 10.01.2012 по заявке №2010142159/08(060530), МКИ6 G05B 23/02, 2012), основанный на многократном интегрировании выходного сигнала блока с весами e α l t , где αl - вещественная константа, l - количество констант.

Недостатком этого способа является то, что он использует несколько моделей с пробными отклонениями параметров передаточных функций блоков.

Наиболее близким техническим решением (прототипом) является способ поиска неисправного блока в непрерывной динамической системе (Патент на изобретение №2439647 от 10.01.2012 по заявке №2011100409/08(000540), МКИ6 G05B 23/02, 2012).

Недостатком этого способа является то, что он обеспечивает определение дефектов с невысокой различимостью, то есть обладает невысокой помехоустойчивостью.

Технической задачей, на решение которой направлено данное изобретение, является улучшение помехоустойчивости способа диагностирования непрерывных систем автоматического управления путем улучшения различимости дефектов. Это достигается путем применения многократного вычисления интегральных оценок динамических характеристик для нескольких различных значений параметра интегрирования α1, α2…αn.

Поставленная задача достигается тем, что предварительно регистрируют реакцию заведомо исправной системы fjном(t), j=1, 2, …, k на интервале t∈[0,TK] в k контрольных точках и многократно определяют (одновременно) интегральные оценки выходных сигналов Fjномl), j=1, …, k; l=1, …, n системы для n значений параметра интегрирования αl, для чего в момент подачи тестового сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование сигналов системы управления для n параметров интегрирования в каждой из k контрольных точек с весами e α l t путем подачи на первые входы k·n блоков перемножения сигналов системы управления, на вторые входы блоков перемножения подают экспоненциальные сигналы e α l t для n блоков интегрирования, выходные сигналы k·n блоков перемножения подают на входы k·n блоков интегрирования, интегрирование завершают в момент времени Tк, полученные в результате интегрирования оценки выходных сигналов Fjномl), j=1, …, k; l=1, …, n регистрируют, фиксируют число m блоков системы, определяют элементы топологических связей каждого блока, входящего в состав системы для каждой контрольной точки Pji, j=1, 2, …, k; i=1, 2, …, m, элементы Pji определяют из множества значений {-1,0,1}, значение -1 определяют, если знак передачи сигнала от выхода i-го блока до j-й контрольной точки отрицательный, значение 0 определяют, если передача сигнала от выхода i-го блока до j-й контрольной точки отсутствует, значение 1 определяют, если знак передачи сигнала от выхода i-го блока до j-й контрольной точки положительный. Затем определяют нормированные значения вектора топологических связей для каждого блока из соотношения

P ^ j i P j i Σ r = 1 k P r i 2 , ( 1 )

замещают систему с номинальными характеристиками контролируемой, на вход системы подают аналогичный тестовый сигнал x(t), определяют интегральные оценки сигналов контролируемой системы Fjl), j=1, …, k; l=1, …, n для k контрольных точек и для n параметров интегрирования αl, определяют отклонения интегральных оценок сигналов контролируемой системы для k контрольных точек и n параметров интегрирования от номинальных значений

ΔFjl)=Fjl)-Fjномl), j=1, …, k; l=1, …, n,

определяют нормированные значения отклонений интегральных оценок сигналов контролируемой системы для n параметров интегрирования из соотношения

Δ F ^ j ( α l ) = Δ F j ( α l ) Σ r = 1 k Δ F r 2 ( α l ) , ( 2 )

определяют диагностические признаки при n параметрах интегрирования из соотношения

J i = 1 n Σ l = 1 n { 1 [ Σ j = 1 k P ^ j i Δ F ^ j ( α l ) ] 2 } , i = 1, , m ( 3 )

по минимуму значения диагностического признака определяют порядковый номер дефектного блока.

Таким образом, предлагаемый способ поиска неисправного блока сводится к выполнению следующих операций.

1. В качестве динамической системы рассматривают систему, состоящую из произвольно соединенных динамических блоков, с количеством рассматриваемых блоков m.

2. Предварительно определяют время контроля TK≥ТПП, где ТПП - время переходного процесса системы. Время переходного процесса оценивают для номинальных значений параметров динамической системы.

3. Определяют n параметров кратных 5/Tk многократного интегрирования сигналов.

4. Фиксируют число контрольных точек k.

5. Предварительно определяют элементы топологических связей каждого блока, входящего в состав системы для каждой контрольной точки Pji, j=1, 2, …, k; i=1, 2, …, m, элементы Pji определяют из множества значений {-1,0,1}, значение -1 определяют, если знак передачи сигнала от выхода i-го блока до j-й контрольной точки отрицательный, значение 0 определяют, если передача сигнала от выхода i-го блока до j-й контрольной точки отсутствует, значение 1 определяют, если знак передачи сигнала от выхода i-го блока до j-й контрольной точки положительный.

6. Определяют нормированные значения элементов вектора топологических связей для каждого блока из соотношения

P ^ j i P j i Σ r = 1 k P r i 2 .

7. Подают тестовый сигнал x(t) (единичный ступенчатый, линейно возрастающий, прямоугольный импульсный и т.д.) на вход системы управления с номинальными характеристиками. Принципиальных ограничений на вид входного тестового воздействия предлагаемый способ не предусматривает.

8. Регистрируют реакцию системы fjном(t), j=1, 2, …, k на интервале t∈[0,TK] в k контрольных точках и определяют интегральные оценки выходных сигналов Fjномl), j=1, …, k; l=1, …, n системы. Для этого в момент подачи тестового сигнала на вход системы управления с номинальными характеристиками одновременно начинают интегрирование (при n параметрах αl) сигналов системы управления в каждой из k контрольных точек с весами e α l t для чего сигналы системы управления подают на первые входы k·n блоков перемножения, на вторые входы блоков перемножения подают экспоненциальные сигналы e α l t , выходные сигналы k·n блоков перемножения подают на входы k·n блоков интегрирования, интегрирование завершают в момент времени Tк, полученные в результате интегрирования оценки выходных сигналов Fjномl), j=1, …, k; l=1, …, n регистрируют.

9. Замещают систему с номинальными характеристиками контролируемой. На вход системы подают аналогичный тестовый сигнал x(t).

10. Определяют интегральные оценки сигналов контролируемой системы для k контрольных точек и n параметров интегрирования Fjl), j=1, …, k; l=1, …, n, осуществляя операции, описанные в пункте 8 применительно к контролируемой системе.

11. Определяют отклонения интегральных оценок сигналов контролируемой системы для k контрольных точек и n параметров интегрирования от номинальных значений

ΔFjl)=Fjl)-Fjномl), j=1, …, k; l=1, …, n.

12. Вычисляют нормированные значения отклонений интегральных оценок сигналов контролируемой системы по формуле

Δ F ^ j ( α l ) = Δ F j ( α l ) Σ r = 1 k Δ F r 2 ( α l ) , j = 1 , ,k;l = 1 , ,n .

13. Вычисляют диагностические признаки наличия неисправного структурного блока (при n параметрах интегрирования) по формуле (3).

14. По минимуму значения диагностического признака определяют дефектный блок.

Рассмотрим реализацию предлагаемого способа поиска дефекта для системы, структурная схема которой представлена на чертеже (см. фиг. Структурная схема объекта диагностирования).

Передаточные функции блоков

W 1 = k 1 ( T 1 p + 1 ) p ; W 2 = k 2 T 2 p + 1 ; W 3 = k 3 T 3 p + 1 ,

где номинальные значения параметров: T1=5 с; K1=1; K2=1; Т2=1 с; K3=1; Т3=5 с.

При моделировании в качестве входного сигнала будем использовать единичное ступенчатое воздействие. Время контроля Тк выберем равным 10 с.

Определим элементы топологических связей каждого блока, входящего в состав системы для каждой контрольной точки Pji, j=1, 2, 3; i=1, 2, 3, знак передачи сигнала от выхода первого блока (1) до первой контрольной точки положителен, поэтому P11=1, знак передачи сигнала от выхода первого блока до второй контрольной точки положителен, поэтому P21=1, знак передачи сигнала от выхода первого блока до третьей контрольной точки положителен, поэтому P31=1, таким образом, вектор топологических связей первого блока будет иметь вид P1=(1,1,1). Для второго блока (2) знак передачи сигнала от его выхода до первой контрольной точки отрицателен, а для второй и третьей контрольных точек - положителен, поэтому вектор топологических связей для второго блока будет иметь вид P2=(-1,1,1). Для третьего блока (3) вектор топологических связей будет иметь вид P3=(-1,-1,1).

Моделирование процессов поиска дефектов в первом блоке (в виде уменьшения параметра k1 на 20%) приводит к вычислению диагностических признаков при трех параметрах интегрирования (α1=0.5, α2=0.1 и α3=2.5) по формуле (3): J1=0.248, J2=0.9372, J3=0.5806. Различимость дефекта: ΔJ=J3-J1=0.3326.

Для сравнения приведем диагностические признаки наличия неисправного блока (в виде уменьшения параметра k1 на 20%) при одном параметре интегрирования α=0.5: J1=0.2237; J2=0.9954; J3=0.5093. Различимость дефекта ΔJ=J3-J1=0.2856.

Приведенные результаты показывают, что фактическая различимость нахождения дефектов этим способом выше, следовательно, выше будет и помехоустойчивость способа.

Минимальное значение диагностического признака во всех случаях правильно указывает на дефектный блок.

Таким образом, различимость дефектов при реализации заявляемого способа выше, чем при реализации прототипа.

Способ поиска неисправного блока в непрерывной динамической системе, основанный на том, что фиксируют число блоков m, входящих в состав системы, определяют время контроля ТК≥ТПП, где ТПП - время переходного процесса системы, определяют параметр интегрального преобразования сигналов из соотношения α = 5 T K , используют тестовый сигнал на интервале t∈[0,TK], в качестве динамических характеристик системы используют интегральные оценки сигналов, полученные для вещественных значений α переменной Лапласа, фиксируют число k контрольных точек системы, регистрируют реакцию объекта диагностирования и реакцию заведомо исправной системы fjном(t), j=1, 2, …, k на интервале t∈[0,TK] в k контрольных точках, определяют интегральные оценки выходных сигналов Fjном(α), j=1, …, k исправной системы, для чего в момент подачи тестового сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование сигналов системы управления в каждой из k контрольных точек с весами e 1 α t , где α = 5 T K путем подачи на первые входы k блоков перемножения сигналов системы управления, на вторые входы блоков перемножения подают экспоненциальный сигнал e 1 α t , выходные сигналы k блоков перемножения подают на входы k блоков интегрирования, интегрирование завершают в момент времени Тк, полученные в результате интегрирования оценки выходных сигналов Fjном (α), j=1, …, k регистрируют, замещают систему с номинальными характеристиками контролируемой, на вход системы подают аналогичный тестовый сигнал x(t), определяют интегральные оценки сигналов контролируемой системы для k контрольных точек Fj(α), j=1, …, k для параметра α, определяют отклонения интегральных оценок сигналов контролируемой системы для k контрольных точек от номинальных значений, определяют нормированные значения отклонений интегральных оценок сигналов контролируемой системы, определяют элементы топологических связей каждого блока, входящего в состав системы для каждой контрольной точки Pji, j=1, …, k; i=1, …, m, элементы Pji определяют из множества значений {-1,0,1}, значение -1 определяют, если знак передачи сигнала от выхода i-го блока до j-й контрольной точки отрицательный, значение 0 определяют, если передача сигнала от выхода i-го блока до j-й контрольной точки отсутствует, значение l определяют, если знак передачи сигнала от выхода i-го блока до j-й контрольной точки положительный, определяют нормированные значения элементов вектора топологических связей для каждого блока из соотношения P ^ j i P j i Σ r = 1 k P r i 2 , вычисляют диагностические признаки, по минимуму диагностического признака определяют дефект, отличающийся тем, что определяют n параметров интегрирования сигналов α1 кратные 5 T K , в качестве динамических характеристик системы используют интегральные оценки, полученные для n вещественных значений α1, и определяют интегральные оценки выходных сигналов Fjном1), j=1, …, k; l=1, …, n системы, для чего в момент подачи тестового сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование сигналов системы управления в каждой из k контрольных точек для n параметров интегрирования с весами e 1 α t , l=1, …, n путем подачи на первые входы k·n блоков перемножения сигналов системы управления, на вторые входы блоков перемножения подают экспоненциальные сигналы e 1 α t , l=1, …, n, выходные сигналы k·n блоков перемножения подают на входы k·n блоков интегрирования, интегрирование завершают в момент времени Тк, полученные в результате интегрирования оценки выходных сигналов Fjном1), j=1, …, k; l=1, …, n регистрируют, определяют интегральные оценки сигналов контролируемой системы для k контрольных точек и n параметров интегрирования Fj1), j=1, …, k; l=1, …, n, определяют отклонения интегральных оценок сигналов контролируемой системы для k контрольных точек и n параметров интегрирования от номинальных значений
ΔFj1)=Fj1)-Fjном1), j=1, …, k; l=1, …, n,
определяют нормированные значения отклонений интегральных оценок сигналов контролируемой системы из соотношения:
Δ F ^ ( α l ) = Δ F j ( α l ) Σ r = 1 k Δ F r 2 ( α l ) ,
определяют диагностические признаки из соотношения:
J i = 1 n Σ l = 1 n { 1 [ Σ j = 1 k P ^ j i Δ F ^ j ( α l ) ] 2 } , i = 1, , m .



 

Похожие патенты:

Изобретение относится к области автоматики и телемеханики. .

Изобретение относится к средствам моделирования многоканальных преобразователей. .

Изобретение относится к сетям управления технологическим процессом. .

Изобретение относится к способу организации вычислительного процесса испытаний электронных устройств, имеющих в своем составе вычислительный модуль. .

Изобретение относится к области диагностики технических систем. .

Изобретение относится к системе управления, по меньшей мере, одним приводом капотов реверсора тяги для турбореактивного двигателя. .

Изобретение относится к области автоматизированной контрольно-проверочной аппаратуры и может использоваться как аппаратура проверки работоспособности многоканальных систем связи и устройств управления авиационными средствами поражения (АСП) летательных аппаратов (ЛА) и их составных частей при предполетной подготовке ЛА.

Изобретение относится к экспериментальным исследованиям приводов систем автоматического управления и предназначено для определения запасов устойчивости рулевого привода.

Изобретение относится к области контроля и диагностирования систем автоматического управления и их элементов. .

Изобретение относится к области контроля и диагностирования систем автоматического управления и их элементов

Изобретение относится к области контроля и диагностирования систем автоматического управления и их элементов

Изобретение относится к области приборостроения, в частности к устройствам дистанционного мониторинга балансов газовых потоков, утечек газа и продуктов сгорания при использовании природного газа в многоквартирных домах

Изобретение относится к пилотажно-навигационным комплексам летательных аппаратов и их бортовой радиоэлектронной аппаратуре и предназначается для формирования сигналов оповещения об отказе элементов в резервированных системах радиоавтоматики и системах автоматического управления летательными аппаратами

Изобретение относится к системе управления, но меньшей мере, одним приводом капотов реверсора тяги для турбореактивного двигателя, содержащая группу приводных и/или контрольных компонентов, которая содержит, по меньшей мере, один привод капота, приводимый в действие, по меньшей мере, одним электродвигателем, и средства управления электродвигателем

Изобретение относится к области комплексного контроля пилотажно-навигационного оборудования систем управления подвижными маневренными аппаратами, в частности, к средствам аппаратурно безызбыточного контроля основных датчиков ориентации и навигации этих аппаратов минимального веса, габаритов, энергопотребления, сложности и стоимости. Техническим результатом работы устройства является повышение достоверности и точности контроля. Указанный результат достигается введением новых продольного, нормального, поперечного акселерометров, умножителей, сумматора, функционального преобразователя извлечения квадратного корня, задатчика ускорения силы тяжести и связей. При этом обеспечивается работа и контроль всех датчиков как в полетном, так и предполетном состоянии. Контроль ведется по безынерционным соотношениям, содержащим арифметические операции, достаточно просто реализуемые на борту подвижного аппарата в реальном масштабе времени. 1 ил.

Изобретение относится к электротехнике. Технический результат заключается в упрощении конструкции стенда и повышении надежности его работы. Для этого предложен стенд для диагностики микропроцессорной системы управления (МСУ) локомотивом, содержащий компьютер, источник питания, при этом стенд оснащен блоком управления, блоком коммутаторов цифроаналоговых преобразователей (ЦАП), блоком проверки частотных сигналов, блоком проверки входных дискретных каналов, блоком проверки выходных дискретных каналов, блоком проверки широтно-импульсных модуляторов (ШИМ) МСУ и блоком нагрузок, причем компьютер соединен с диагностируемой МСУ, блок управления соединен с блоком коммутаторов ЦАП, блоком проверки частотных сигналов, блоком проверки входных дискретных каналов, блоком проверки выходных дискретных каналов, блоком проверки широтно-импульсных модуляторов, при этом выходы блока коммутаторов ЦАП соединены с входами МСУ, выходы блока проверки частотных сигналов соединены с входами МСУ, выходы блока проверки входных дискретных каналов соединены с входами МСУ, входы блока проверки выходных дискретных каналов соединены с выходами МСУ, ШИМ-входы блока проверки широтно-импульсных модуляторов соединены с выходами ШИМ МСУ и с входом блока нагрузок, блок управления соединен по второму последовательному каналу связи с МСУ, источник питания соединен с диагностируемой МСУ и со всеми блоками стенда, кроме блока нагрузок. 1 ил.

Изобретение относится к диагностической системе и способу для бытового прибора, а более конкретно к системе диагностики бытовых приборов и способу для выполнения проверки состояния и диагностики неисправностей бытового прибора на основе технической информации для бытового прибора, которая выводится в качестве звукового сигнала, чтобы упрощать послепродажное обслуживание бытового прибора. Технический результат - сохранение данных о неисправности, требуемых для диагностики бытового прибора при минимизации необязательного объема хранения данных, тем самым повышение эффективности использования ограниченных ресурсов бытового прибора и предоставление возможности более точной диагностики бытового прибора. Бытовой прибор выводит техническую информацию в качестве предварительно определенного звукового сигнала, и звуковой сигнал передается в удаленный сервис-центр по сети связи, так что состояние бытового прибора легко проверяется в сервис-центре. Данные, ассоциированные с каждой операцией бытового прибора, сохраняются в качестве технической информации согласно рабочему режиму бытового прибора. Техническая информация также сохраняется, когда работа внезапно завершена, и затем выводится в качестве звукового сигнала, так что можно корректно проверять состояние бытового прибора и корректно диагностировать ошибку, которая возникает в бытовом приборе. 3 н. и 17 з.п. ф-лы, 12 ил., 1 табл.

Настоящее изобретение обеспечивает устройство и способ анализа остатка для обнаружения системных ошибок в поведении системы воздушного судна. Технический результат - повышение точности оценки состояния системы воздушного судна. Устройство для анализа остатка содержит устройство для генерирования остатка в зависимости, по меньшей мере, от величины управляющего воздействия и выходного параметра системы, компараторный блок для обеспечения результата анализа путем сравнения остатка с установленным пороговым значением, первый блок для обеспечения постоянной составляющей порогового значения, второй блок для обеспечения адаптивной составляющей порогового значения в зависимости по меньшей мере от изменяющейся во времени величины управляющего воздействия и третий блок для обеспечения порогового значения, путем объединения постоянной составляющей порогового значения с адаптивной составляющей порогового значения. 6 н. и 17 з.п. ф-лы, 12 ил.
Наверх