Способ изготовления многоострийных автоэмиссионных катодов



Способ изготовления многоострийных автоэмиссионных катодов
Способ изготовления многоострийных автоэмиссионных катодов
Способ изготовления многоострийных автоэмиссионных катодов

 


Владельцы патента RU 2486625:

Открытое акционерное общество "Научно-производственное предприятие "Алмаз" (ОАО "НПП "Алмаз") (RU)

Изобретение относится к технологии изготовления электронных приборов, в частности к технологии изготовления углеродных многоострийных автоэмиссионных катодов, используемых в вакуумных электронных приборах с эффективными холодными источниками электронов. Технический результат - увеличение плотности автоэмиссионного тока за счет образования периодической микроострийной углеродной структуры. Для образования периодической структуры из микроострий на поверхности монолитной углеродной подложки в качестве микро-, наноразмерной обработки используется способ группового микрозаострения в низкотемпературной плазме ВЧ-разряда в кислородной или в смеси кислородной и инертной газовых средах. 3 ил.

 

Изобретение относится к технологии изготовления углеродных многоострийных автоэмиссионных катодов, используемых в вакуумных электронных приборах с эффективными холодными источниками электронов.

Известно техническое решение [1], в котором описываются материал и способ изготовления многоострийного катода из композиционного наноалмазного пленочного материала с помощью осаждения на подложку в неравновесной плазме СВЧ газового разряда в магнитном поле паров углеродосодержащих веществ. Также известно техническое решение EP 1361592 A1 (H01J 1/30, 12.11.2003), в котором представлен способ изготовления источника электронов, состоящего из подложки и нанесенного на нее композита из пасты с углеродными нанотрубками. Однако такие структуры в вышеперечисленных технических решениях имеют ряд недостатков, а именно: при использовании данных структур невозможно добиться воспроизводимости геометрических параметров микроструктуры, стабильности эмиссионных свойств, углеродные пленки, полученные из паров углеводородов, обладают низкой адгезией, поэтому отслаиваются от подложки при рабочих напряженностях электрического поля. Предлагаемое техническое решение позволяет исключить все вышеуказанные недостатки. Данное техническое решение позволяет повысить стабильность работы автоэмиссионных катодов, увеличить долговечность и надежность электровакуумных приборов.

Задачей изобретения является получение монолитной, равновысотной, матричной микроструктуры с улучшенной воспроизводимостью эмиссионных характеристик. Технический результат достигается тем, что при выполнении предлагаемой последовательности технологических процессов создается монолитная углеродная структура с заданной высотой микроразмерных столбиков, которые, в свою очередь, подвергают групповому микро-, наноразмерному заострению в низкотемпературной плазме ВЧ-разряда в кислородной или в кислородно-инертной газовых средах, и получают периодическую матрицу из равновысотных острий монолитного углерода.

На фиг.1 - технологический маршрут изготовления периодической многоострийной структуры:

а - полировка поверхности углерода до 14 класса;

б - активация поверхности стеклоуглерода перед нанесением фоторезиста с помощью низкотемпературной плазмы;

в - нанесение пленки из фоторезиста и проведение процесса прецизионной фотолитографии;

г - образование фоторезистивной маски на поверхности стеклоуглерода;

д - нанесение пленки переходных металлов на поверхность, не защищенную фоторезистом;

е - термохимическая обработка углеродной пластины в среде водорода и образование микровыступов;

ж - удаление остатков пленки металла в смеси кислот HCl, H2SO4;

з - заострение углеродных цилиндрических микровыступов в низкотемпературной плазме ВЧ-разряда в кислородной или в кислородно-инертной газовых средах;

на фиг.2 - элементы профиля микровыступов до плазмохимического микрозаострения (а), после микрозаострения (б); на фиг.3 - микрофотографии поверхности углеродной микроструктуры до плазмохимического микрозаострения (а) и после микрозаострения (б).

Сущность изобретения заключается в том, что для изготовления автоэмиссионных катодов в виде периодической многоострийной структуры на поверхности углеродной пластины в качестве микро-, наноразмерной обработки используется способ группового микрозаострения в низкотемпературной плазме ВЧ-разряда в кислородной или в смеси кислородной и инертной газовых средах.

Цилиндрические микровыступы образуются с помощью травления поверхности углеродной подложки пленкой переходного металла. Предварительно поверхность углеродной пластины подвергается механической обработке с целью подготовки поверхности и ее активации перед нанесением маски из фоторезиста (фиг.1а и 1б). Проводится процесс шлифования с использованием тонкого микропорошка, а затем полирование, где в результате этих обработок съем материала с поверхности углеродной пластины 0,015÷0,03 мм (фиг.1а). После чего проводится активация поверхности углеродной пластины перед нанесением фоторезиста с помощью низкотемпературной плазмы (фиг.1б). Нанесение фоторезиста на углеродную полированную поверхность осуществляется методом центрифугирования (фиг.1в). Для получения периодически расположенных на поверхности оснований из фоторезиста, имеющих форму круга, проводятся последовательно процессы экспонирования и проявления фоторезиста. Выбор фотошаблона зависит от требования к величине периода получаемой матричной микроструктуры и к площади основания цилиндрических микровыступов (фиг.1г).

На образующийся рисунок из фоторезиста наносится пленка переходного металла с целью дальнейшего проведения травления пленкой металла в свободных от фоторезиста периодических основаниях углеродной структуры (фиг.1д). В результате травления происходит интенсивное растворение атомов углерода в пленке металла и последующая диффузия атомов углерода через структуру пленки металла без образования химического соединения на поверхность и взаимодействие атомов углерода с газообразной средой (фиг.1е). Затем проводится удаление остатков пленки переходных металлов в смеси кислот (фиг.1ж). С целью увеличения напряженности электростатического поля на вершинах образованной периодической углеродной структуры с заданной высотой микроразмерных столбиков данную структуру подвергают групповому микро-, наноразмерному заострению в низкотемпературной плазме ВЧ-разряда в кислородной или в кислородно-инертной газовых средах с получением углеродных микроострий (фиг.1з).

На фиг.2 представлены элементы профиля плазмохимического заострения выступов.

На фиг.2 введены следующие обозначения:

h - высота микровыступа; s - расстояние между микровыступами; d - диаметр основания микровыступа; α - средний угол при вершине конического микровыступа; l - период решетки микроструктуры.

На вершине цилиндрического микровыступа поверхность полированная и поэтому имеет менее развитый микрорельеф, в отличие от боковой поверхности микровыступа. Известно [2], что неровности поверхности увеличивают вероятность взаимодействия поверхностных атомов углерода с химически активными частицами, так как при сильно развитом рельефе происходит ослабление энергии связи группы атомов углерода на поверхности, поэтому следует ожидать, что составляющая скорости заострения, направленной перпендикулярно поверхности, будет достигать своего максимального значения на круговых границах плоской торцевой и боковой цилиндрической поверхностях выступов.

Окончание процесса плазмохимического заострения углеродной микроструктуры определяется на основании изменения свойств полированной поверхности цилиндрических микровыступов.

Геометрическими условиями процесса группового плазмохимического заострения при сохранении неизменной высоты выступов являются:

α a r c t g 0,5 d h ;  h const; s l/2 .

Периодическая углеродная структура до и после плазмохимического микрозаострения представлена на фиг.3.

Источники информации

1. Патент RU 2309480 C2. Материал и способ изготовления многоострийного автоэмиссионного катода (H01J 1/30, 10.02.2007).

2. Шешин Е.П. Структура поверхности и автоэмиссионные свойства углеродных материалов - М.: МФТИ, 2001, 287 с.

Способ изготовления автоэмиссионных катодов в виде периодической многоострийной структуры, отличающийся тем, что включает очистку и полировку поверхности монолитной углеродной пластины, создание с помощью метода фотолитографии микро-, наноразмерных дисков, окруженных каталитической пленкой металлов переходной группы, термохимическое травление углеродной пластины в среде водорода с образованием столбчатой структуры, которые затем подвергают групповому микро-, наноразмерному заострению в низкотемпературной плазме ВЧ разряда в кислородной или в кислородно-инертной газовых средах.



 

Похожие патенты:
Изобретение относится к области электронной техники и может быть использовано при изготовлении изделий светоиндикаторной техники и эмиссионной электроники на основе автоэлектронной эмиссии матрицы многоострийных углеродных эмиттеров на пластинах монокристаллического кремния.

Изобретение относится к области электронной техники и может быть использовано при изготовлении изделий светоиндикаторной техники и эмиссионной электроники на основе автоэлектронной эмиссии многоострийных углеродных структур.

Изобретение относится к электронной технике и может быть использовано при изготовлении приборов вакуумной микроэлектроники. .

Изобретение относится к углеродсодержащим наноматериалам с низким порогом полевой эмиссии электронов (НППЭЭ). .

Изобретение относится к способам формирования защитного слоя при изготовлении плазменной индикаторной панели (PDP). .
Изобретение относится к области квантовой электроники и может быть использовано при производстве газоразрядных приборов, в частности холодных катодов моноблочных газовых лазеров.

Изобретение относится к области электронной техники. .

Изобретение относится к приборам вакуумной микроэлектроники, в частности к полевым эмиссионным элементам с углеродными нанотрубками, используемыми в качестве катодов: к триодам, к диодам и к устройствам на их основе, полевым эмиссионным дисплеям, вакуумным микроэлектронным переключателям токов и др.

Изобретение относится к устройствам вакуумной электроники, в частности к источникам для получения электронного потока - автоэмиттерам (холодным эмиттерам) электронов, материалам и способам их изготовления. Подобные катоды могут использоваться в качестве источников электронов в различных электронных приборах - электронных микроскопах, рентгеновских трубках, усилительных и генераторных приборах СВЧ электроники, источниках света и т.п. Технический результат изобретения - получение стабильного автоэмиссионного катода с высокой удельной проводимостью, плотностью автоэмиссионного тока до 20 мА/см2. Результат достигнут использованием в автоэмиссионном катоде объемного композитного материала, содержащего частицы металла, окруженные наноструктурированным углеродным материалом (углеродные или углерод-азотные нанотрубки, углеродные нановолокна, фуллерены и им подобные материалы). При этом металл обеспечивает низкое удельное сопротивление, высокую теплопроводность и механическую прочность, а наноуглеродный материал - высокие эмиссионные свойства катода. Для повышения эффективности автоэлектронной эмиссии при изготовлении катода применены: дополнительная механическая обработка с удалением поверхностного слоя катода и последующей шлифовкой, химическое и плазменное травление рабочей поверхности. Полученный катод обеспечивает плотность автоэмиссионного тока на уровне 10-20 мА/см2 с высокой стабильностью и однородностью. 4 ил.

Способ изготовления МДМ-катода предназначен для повышения плотности тока эмиссии и однородности ее распределения по поверхности. На подложку последовательно осаждается металлический нижний электрод на основе пленки молибдена, затем два слоя резистов, в которых формируется рисунок с помощью электронно-лучевой литографии, затем напыляется сплошная пленка молибдена. Наноострийная структура получается путем «взрыва» резистивной маски в виде пирамидок с основанием 260 нм, вершиной 40 нм, высотой 250 нм и плотностью 3·108 см-2. Технический результат - повышение равномерности распределения эмиссионных центров и плотности тока эмиссии. 2 ил.

Заявленное изобретение относится к области электротехники, а именно, к способу получения трехмерно-структурированной полупроводниковой подложки для автоэмиссионного катода, и может быть использовано в различных электронных приборах: СВЧ, рентгеновских трубках, источниках света, компенсаторах заряда ионных пучков и т.п. Создание трехмерно-структурированной полупроводниковой подложки, на которую наносят эмитирующую пленку автоэмиссионных катодов в виде микроострийной квазирегулярной ячеисто-пичковой структуры с аспектным отношением не менее 2 (отношение высоты острий к их высоте), позволяет повысить эмиссионную характеристику катодов, что является техническим результатом заявленного изобретения. Полупроводниковую подложку для формирования на ней требуемой микроострийной структуры подвергают фотоэлектрохимическому травлению в водном или безводном электролите, меняя режимы травления и интенсивность подсветки. Предложена также структурированная полупроводниковая подложка для автоэмиссионного катода из кристаллического кремния р-типа с проводимостью от 1 до 8 Ом*см и сам автоэмиссионный катод с такой подложкой, обладающий повышенными эмиссионными характеристиками. 3 н. и 3 з.п. ф-лы, 5 ил.

Изобретение относится к области электроники. Технологический прибор для обработки полого холодного катода в газовом разряде, содержащий полый холодный катод, анод, расположенный коаксиально внутри катода и равноудаленный от его поверхности, стеклянную вакуумно-плотную оболочку, в котором анод выполнен составным, рабочая часть анода, контактирующая с газовым разрядом, соединена с его внешней частью, электрически контактирующей с внешним источником напряжения или тока, посредством разъемного соединения, выполнена из того же материала, что и рабочая поверхность катода, обработана с не меньшим классом чистоты, чем у катода, со стороны входа в катод частично экранирована диэлектриком, расположенным коаксиально снаружи анода. Неэкранированная рабочая часть анода расположена внутри полости катода и ограничена максимальной длиной, не превышающей длины катода. Обрабатываемый катод закреплен в держателе, который электрически соединен с токоподводом к катоду, причем токоподвод вакуумно-плотно вмонтирован в стеклянную оболочку технологического прибора. Технический результат - возможность проводить анодное окисление катода в среде электроотрицательного газа, тренировать и испытывать катод автономно от вакуумного поста, а также неоднократно заменять или использовать анод и стеклянную вакуумно-плотную оболочку при установке нового катода. 1 ил.

Изобретение относится к лазерной технике, а именно к способам лазерной обработки материалов при изготовлении автоэмиссионных катодов из стеклоуглерода, которые могут быть использованы в области приборостроения электронной техники, а именно в электровакуумных приборах с большой плотностью электронных потоков и микросекундным временем готовности. Для создания автоэмиссионного катода в качестве углеродного материала используют стеклоуглерод. Формирование эмиттеров на поверхности катода производят фрезеровкой сфокусированным лазерным излучением и последующей лазерной очисткой поверхности катодной структуры. Нанесение эмитирующей структуры на поверхности эмиттеров катода производят лазерной микрогравировкой с образованием поля микроострий пирамидальной формы с последующей вырезкой основания катода сфокусированным лазерным излучением и лазерной очисткой эмитирующих структур. Технический результат - повышение технических характеристик автоэмиссионного катода. 2 ил.

Изобретение относится к технологии изготовления эмиттеров электронов с пониженной работой выхода, может использоваться в диоде для выпрямителей переменного тока в постоянный при высоких температурах окружающей среды. Технический результат - упрощение изготовления эмиттера с сохранением основных выходных параметров устройства больших плотностей электронного тока. Способ предусматривает изготовление эмиттера электронов из тугоплавкого материала с добавками цезия или бария, в качестве материала эмиттера используют монокристаллические W или Мо или Nb или Та, а барий или цезий имплантируют в материал эмиттера путем бомбардировки пучком ионов, ускоренных до энергии 30-60 кэВ до достижения доз имплантации 1016 ион/см2. Дополнительно осуществляют сканирование ионного пучка по поверхности эмиттера в горизонтальном и вертикальном направлениях. 1 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к области электронной техники. Способ изготовления эмиссионно-активного сплава катода для электровакуумных приборов СВЧ включает приготовление исходных компонентов сплава заданного соотношения на основе, по меньшей мере, двух компонентов, при этом одного из них - тугоплавкого металла, другого - щелочноземельного металла, соединение исходных компонентов сплава катода в инертной газовой среде посредством высокотемпературного плавления и последующей кристаллизации с обеспечением формирования заготовки сплава катода, при этом, по меньшей мере, двукратного повторения упомянутой технологической операции, обработку заготовки сплава катода с обеспечением ее заданного размера и формы. Исходные компоненты сплава катода приготавливают в виде бинарного сплава, состоящего из каждого из двух упомянутых компонентов сплава катода, при этом компонент щелочноземельного металла берут в виде интерметаллического соединения тугоплавкого и щелочноземельного металлов при их стехиометрическом соотношении 5:1, повторение упомянутой операции соединения исходных компонентов сплава катода осуществляют двукратно, при этом в первый раз при избыточном давлении инертной газовой среды (1,1-1,2)×105 Па, во второй раз при пониженном давлении инертной газовой среды не более 5,0×104 Па и при изменении расположения заготовки сплава катода на 180 градусов относительно ее первоначального технологического расположения, а обработку заготовки сплава катода осуществляют посредством ее прокатки, при этом в два этапа, на первом - при температуре 1250-1350°С, с шагом прокатки 0,2-0,3 мм, при изменении после каждого шага прокатки направления заготовки сплава катода на 90 градусов с последующим отжигом в вакууме, при температуре не менее 1000°С, в течение 1-1,5 ч, при давлении остаточных газов не более 1,33×102 Па, на втором - при комнатной температуре, с шагом прокатки не более 0,1 мм до степени деформации заготовки сплава катода 60-70%, далее с шагом прокатки не более 0,05 мм. Технический результат - повышение плотности и стабильности эмиссионного тока, повышение коэффициента вторичной электронной эмиссии, снижение себестоимости, повышение срока службы катода. 3 з.п. ф-лы, 3 ил., 2 табл.

Изобретение относится к приборам вакуумной и твердотельной электроники, в частности к автоэмиссионным элементам на основе углеродных нанотрубок (УНТ), используемых в качестве катодов: к диодам, к триодам и к устройствам на их основе. Технический результат - повышение тока автоэмиссии и временной стабильности этой величины, уменьшение рабочих напряжений в приборах вакуумной микроэлектроники на основе углеродных нанотрубок и продление их срока службы. Автоэмиссионный элемент с катодами на основе углеродных нанотрубок включает полупроводниковую подложку, на поверхности которой сформирован изолирующий слой, катодный узел, расположенный над изолирующим слоем, состоящий из токоведущего и контактного слоев и углеродных нанотрубок (УНТ), расположенных на поверхности контактного слоя, опорно-фокусирующую систему, состоящую из первого диэлектрического, затворного электропроводящего и второго диэлектрического слоев, расположенную на верхней поверхности катодного узла и содержащую сквозную полость, анодный токоведущий слой, расположенный на внешней поверхности второго диэлектрического слоя опорно-фокусирующей системы, в котором сформированы сквозные технологические отверстия. Углеродные нанотрубки расположены параллельно поверхности полупроводниковой подложки, на поверхность углеродных нанотрубок нанесен слой оксида гафния, снижающий работу выхода электронов с поверхности УНТ и защищающий поверхность эмитирующих УНТ от воздействия внешних факторов, снижения величины контактного сопротивления нанотрубка-подложка при отжиге сформированной структуры автоэмиссионного элемента. 2 н. и 1 з.п. ф-лы, 6 ил.
Наверх