Способ оценки широкополосных сигналов по частоте и устройство для его реализации

Изобретение относится к области широкополосных систем радиосвязи и может быть использовано в спутниковых и подвижных системах радиосвязи для коррекции частоты опорного генератора приемника, необходимой для улучшения характеристик обнаружения сигнала и выделения информации. Технический результат - повышение точности определения частоты без увеличения времени поиска сигнала и количества корреляторов, что особо важно для обнаружения сигналов коротких по времени (соизмеримых со временем поиска), и ведение дальнейшей обработки сигнала на частоте более близкой к максимуму амплитудно-частотной характеристики. Для достижения данного технического результата после нахождения первого максимума модуля результатов накопления находят второй максимум модуля результатов накопления; в том случае если частотные интервалы максимумов расположены рядом и соотношение второго и первого максимумов не менее уровня боковых лепестков амплитудно-частотной характеристики интеграторов (4), то вычисляют поправку частоты ΔF; если номер частотного интервала первого максимума больше номера частотного интервала второго максимума, то оценка частоты F равна середине частотного интервала первого максимума минус поправка частоты ΔF, иначе оценка частоты F равна середине частотного интервала первого максимума плюс поправка частоты ΔF. 2 н.п. ф-лы, 6 ил.

 

Изобретение относится к области широкополосных систем радиосвязи и может быть использовано в спутниковых и подвижных системах радиосвязи для коррекции частоты опорного генератора приемника, необходимой для улучшения характеристик обнаружения сигнала и выделения информации.

В процессе работы широкополосных систем радиосвязи возможно рассогласование между несущей частотой принимаемого сигнала и частотой опорного генератора приемника Δf. Это может быть обусловлено такими факторами, как нестабильность опорных генераторов передатчика и приемника, а также доплеровским сдвигом частоты, возникающим из-за движения.

Выбор варианта схемы подстройки частоты зависит от конкретных условий ее реализации. В любой системе связи при поиске сигнала всегда существует расстройка между частотой передатчика и частотой опорного генератора приемника Δf. Также заранее известен интервал неопределенности частот Fmin…Fmax, где может находиться частота принимаемого сигнала. В результате работы схемы подстройки частоты разность между частотой передатчика и частотой опорного генератора приемника должна быть сведена к приемлемому минимальному значению, обеспечивающему безошибочный прием информации. Особенно это важно в широкополосных системах связи при низком соотношении сигнал/шум.

Одним из методов подстройки частоты является фазовая подстройка. Для подстройки широкополосных фазоманипулированных сигналов может быть использована, например, схема Коста [Журавлев В.И. «Поиск и синхронизация в широкополосных системах». - М.: Радио и связь, 1986. - 240 с., ил.]. Однако способам фазовой подстроки частоты присущ такой недостаток, как периодичность дискриминационной характеристики, равной π для двухфазного и π/2 - для четырехфазного сигнала. К тому же, в условиях шумов требуется усреднение (накопление) полученной оценки расстройки частоты, которая в свою очередь сужает полосу захвата.

Известны способ и устройство определения частоты на основе частотного дискриминатора, состоящего из двух полосовых фильтров, каждый из которых занимает половину полосы сигнала [Automatic frequency control using split-band signal strength measurements: U.S. Patent 5487186, МКИ H04B 1/16. Carl G. Scarpa, Hitachi America, Ltd. - N 368747, заявл. 4.1.95, опубл. 23.1.96]. Данное техническое решение позволяет определять частоту без сворачивания широкополосного сигнала и без корреляционной обработки. Принимаемый сигнал делится между двумя полосовыми фильтрами, занимающими по половине полосы пропускания сигнала, и выполняется сравнение уровней сигналов в каждой из этих полос. Разностный сигнал используется для формирования сигнала подстройки частоты. Недостатком данного способа и устройства является необходимость построения двух высокодобротных фильтров (высокого порядка) и большого времени накопления для достижения достаточной точности оценки расстройки частоты.

Также известен способ определения частоты и устройство для его реализации [патент РФ №2157050, Н04В 7/00, H03J 7/00, H04L 27/30, Н04В 1/16]. Суть способа заключается в том, что определение частоты производится параллельными корреляционными каналами последовательно за несколько итераций. Поэтапное сужение априорной области неопределенности частоты до достижения требуемой точности оценивания позволяет использовать на каждой итерации меньшее количество параллельных частотных каналов приема сигнала. Необходимая точность определения частоты достигается за счет использования опорной сигнальной функции, позволяющей восстановить информацию о возможном значении частоты на частотных интервалах между выдвинутыми гипотезами. К недостаткам данного способа и устройства относятся большое время оценки частоты, несколько итераций поиска и большое количество вычислений.

Наиболее близкими по технической сущности к предлагаемым являются способ и устройство, описанные в [Тихонов В.И. "Оптимальный прием сигналов". - М.: Радио и связь, 1983 г., стр.230, рис.3.21], принятые за прототип.

Фиг.1 - блок-схема устройства-прототипа.

Фиг.2 - зависимость амплитуды от частоты, иллюстрирующая разбиение частотного диапазона на N частотных интервалов и провалы в амплитудно-частотной характеристике на краях полосы пропускания корреляторов.

Фиг.3 - зависимость амплитуды от частоты, иллюстрирующая разнос частот и полосу пропускания интеграторов со сбросом.

Фиг.4 - зависимость амплитуды от частоты, иллюстрирующая зависимость соотношения модулей результатов накопления в двух соседних частотных интервалах от отклонения частоты.

Фиг.5 - зависимость поправки частоты ΔF от соотношения двух максимумов AMAX2/AMAX1, иллюстрирующая поправку частоты ΔF от соотношения двух максимумов модулей результатов накопления для разноса частот в 1 кГц и полосы пропускания 1 кГц.

Фиг.6 - блок-схема предлагаемого устройства.

Способ-прототип основан на использовании многоканального приемника, состоящего из N параллельных корреляционных каналов, и заключается в следующем.

Частотный диапазон от Fmin до Fmax разбивается на N частотных интервалов в каждом корреляционном канале, соответствующем частоте Fi, где i может принимать значения от 1 до N, производят накопление сигнала за время TH, образуя N комплексных отсчетов, после чего вычисляют модули результатов накопления для полученных N комплексных отсчетов. В этом случае частотный интервал с максимумом результата накопления и будет являться искомой частотой.

Для реализации способа-прототипа используют устройство, представленное на фиг.1, где обозначено:

1 - генератор опорного сигнала;

2.1 - 2.N - с 1-го по N-й перемножитель;

3.1 - 3.N - с 1-го по N-й коррелятор;

4.1 - 4.N - с 1-го по N-й интегратор;

5.1 - 5.N - с 1-го по N-й узел определения модуля;

6 - блок оценки частоты;

7 - узел выбора первого максимума;

8 - узел оценки частоты.

Устройство-прототип содержит генератор опорного сигнала 1 (генератор комплексных отсчетов гетеродина) для всех N параллельных частотных каналов, состоящих из последовательно соединенных соответствующих перемножителей 2.1-2.N и корреляторов 3.1-3.N, а также блок оценки частоты 6. Первые входы перемножителей 2.1-2.N (комплексные перемножители принятых отсчетов и комплексных отсчетов генератора опорного сигнала 1) соединены между собой и являются входом устройства, а вторые входы соединены с соответствующими выходами генератора опорного сигнала 1. Корреляторы 3.1-3.N состоят из последовательно соединенных соответствующих интеграторов 4.1-4.N (комплексные сумматоры принятых отсчетов) и узлов вычисления модуля 5.1-5.N для вычисления модуля комплексного числа, причем входы интеграторов 4.1-4.N соединены с выходами соответствующих перемножителей 2.1-2.N и являются входами соответствующих корреляторов 3.1-3.N. Блок оценки частоты 6 состоит из узла выбора первого максимума 7 и узла оценки частоты 8, причем вход узла выбора первого максимума 7 соединен с соответствующими выходами узлов вычисления модуля 5.1-5.N, которые являются выходами соответствующих корреляторов 3.1-3.N. Блок оценки частоты 6 предназначен для сравнения полученных результатов с корреляционных каналов и формирования результата оценки частоты, который содержит узел выбора первого максимума 7, предназначенный для определения номера канала с максимумом модуля результата накопления. Выход узла выбора первого максимума 7 соединен с соответствующим входом узла оценки частоты 8, выход которого является выходом блока оценки частоты 6 и предлагаемого устройства.

Устройство-прототип работает следующим образом.

После снятия манипуляции с принятого широкополосного сигнала входные отсчеты сигнала поступают на перемножители 2.1-2.N, где каждый комплексный входной отсчет умножается на комплексный отсчет генератора опорного сигнала ej2πFit, где Fi - i-я частота коррелятора (центральная частота подинтервала), t - время. Разнос частот выбирается таким образом, чтобы провал между частотами не превышал нескольких дБ. В результате на выходе каждого из перемножителей формируется принятый сигнал с частотой Fi в диапазоне частот от Fmin до Fmax. В корреляторах 3.1-3.N с помощью соответствующего интегратора 4.1-4.N производится когерентное накопление входных отсчетов сигнала за время TH. Таким образом, формируется N выходных результатов накопления, соответствующих каждой из частот.

В узле вычисления соответствующих модулей 5.1-5.N определяют модуль результата накопления, который передается в блок оценки частоты 6 на узел выбора первого максимума 7. В узле выбора первого максимума 7 выбирается максимум модуля результатов накопления, и по номеру соответствующего канала в узле оценки частоты 8 принимается решение, что частота входного сигнала соответствует именно данному частотному интервалу корреляционного канала.

К недостаткам прототипа относятся:

- провалы в амплитудно-частотной характеристике на краях полосы пропускания корреляторов, возникающие из-за того, что амплитудно-частотная характеристика имеет вид |sin(x)/x| (фиг.2), присущий интеграторам со сбросом с прямоугольным дискретно-временным окном;

- невозможность достаточно точного определения частоты из-за сложности реализации большого количества корреляторов.

Задача - повышение точности определения частоты без усложнения схемы устройства.

Для решения поставленной задачи в способе оценки широкополосного сигнала по частоте, заключающемся в том, что анализируемый частотный диапазон разбивают на N частотных интервалов, для каждого из которых на интервале TH производят когерентное накопление сигнала интеграторами со сбросом, получают N результатов накопления, затем вычисляют модули результатов накопления, после чего находят первый максимум модуля результатов накопления, согласно изобретению, после нахождения первого максимума модуля результатов накопления, находят второй максимум модуля результатов накопления; в том случае если частотные интервалы максимумов расположены рядом и соотношение второго и первого максимумов не менее уровня боковых лепестков амплитудно-частотной характеристики интеграторов, то вычисляют поправку частоты ΔF исходя из свойств амплитудно-частотной характеристики интегратора со сбросом, имеющей вид |sin(x)/x| для перекрывающихся амплитудно-частотных характеристик двух соседних частотных интервалов; если номер частотного интервала первого максимума больше номера частотного интервала второго максимума, то оценка частоты F равна середине частотного интервала первого максимума минус поправка частоты ΔF, иначе оценка частоты F равна середине частотного интервала первого максимума плюс поправка частоты ΔF.

В устройство для реализации поиска широкополосных сигналов по частоте, содержащее генератор опорного сигнала для всех N параллельных частотных каналов, состоящих из соответствующих последовательно соединенных перемножителей и корреляторов, причем первые входы перемножителей соединены и являются входом устройства, а их вторые входы соединены с соответствующими выходами опорного генератора; каждый из корреляторов содержит последовательно соединенные интеграторы и узлы вычисления модуля, причем входы интеграторов являются входами корреляторов; выходы узлов вычисления модуля являются выходами корреляторов и соединены с соответствующими входами блока оценки частоты, являющимися входами узла выбора первого максимума, выход которого соединен с соответствующим входом узла оценки частоты, выход которого является выходом блока оценки частоты и устройства, согласно изобретению в блок оценки частоты введен узел выбора второго максимума, входы которого соединены с соответствующими входами блока оценки частоты, а выход соединен с соответствующим входом узла оценки частоты, в котором, если частотные интервалы максимумов расположены рядом и соотношение второго и первого максимумов не менее уровня боковых лепестков амплитудно-частотной характеристики интеграторов, то вычисляют поправку частоты ΔF исходя из свойств амплитудно-частотной характеристики интегратора со сбросом, имеющей вид |sin(x)/x| для перекрывающихся амплитудно-частотных характеристик двух соседних частотных интервалов, если номер частотного интервала первого максимума больше номера частотного интервала второго максимума, то оценка частоты F равна середине частотного интервала первого максимума минус поправка частоты ΔF, иначе оценка частоты F равна середине частотного интервала первого максимума плюс поправка частоты ΔF, выход узла оценки частоты является выходом блока оценки частоты и предлагаемого устройства.

Предлагаемый способ оценки широкополосных сигналов по частоте реализуется на свойстве амплитудно-частотной характеристики фильтров (в частности реализованных на основе цифровых интеграторов со сбросом с прямоугольным дискретно-временным окном), имеющей вид |sin(x)/x| (фиг.3).

Анализируемый частотный диапазон от Fmin до Fmax разбивается на N частотных интервалов, соответствующих серединам данных интервалов F1…FN (фиг.2). Разнос между центрами частотных интервалов FP (фиг.3.) обычно выбирается таким образом, чтобы провал составлял не более 4 дБ, т.е. разнос должен быть не более полосы пропускания по уровню - 4 дБ. Полоса пропускания для цифрового варианта реализации коррелятора по уровню - 4 дБ определяется по формуле:

F П = 1 / Т Н , ( 1 )

где TH - период накопления, или по формуле:

F П = f Д / n , ( 2 )

где fД - частота дискретизации,

n - количество накапливаемых отсчетов.

Амплитудно-частотная характеристика цифрового коррелятора описывается формулой:

A = | sin ( 2 π k / n ) / ( 2 π k / n ) | , ( 3 )

где n - количество накапливаемых отсчетов,

k - шаг по частоте, соответствующий fД/n2.

По всем частотным интервалам производят накопление сигнала за время TH, образуя N комплексных результатов накопления. Затем вычисляют их модули A1…AN. Далее производят поиск первого и второго максимумов AMAX1 и AMAX2, соответствующих серединам частотных интервалов FMAX1 и FMAX2 и номерам частотных интервалов NMAX1 и NMAX2 (фиг.4). Если частотные интервалы максимумов расположены рядом и соотношение максимумов AMAX2/AMAX1 составляет не менее уровня боковых лепестков (0,217 или -13,3 дБ - для интегратора со сбросом с прямоугольным дискретно-временным окном), то производим вычисление поправки частоты ΔF из соотношения максимумов (фиг.5):

M = A M A X 2 / A M A X 1 , ( 4 )

или:

M = | sin ( 2 π ( k m ) / n ) / ( 2 π ( k m ) / n ) | / | sin ( 2 π k / n ) / ( 2 π k / n ) | , ( 5 )

где m - константа, соответствующая разносу частот, вычисляемая по формуле:

m = F P / ( F П / ( n / 2 ) ) , ( 6 )

На фиг.5 представлен график зависимости поправки частоты ΔF от соотношения двух максимумов AMAX2/AMAX1 для полосы пропускания корреляторов 1 кГц и разноса центров частотных интервалов в 1 кГц.

Вычисляем оценку частоты следующим образом:

е с л и N M A X 1 > N M A X 2 , т о F = F M A X 1 Δ F , и н а ч е F = F M A X 1 + Δ F . ( 7 )

Предлагаемый способ оценки широкополосных сигналов по частоте может быть использован и с применением дискретно-временных окон, отличных от прямоугольного. Данный способ оценки широкополосных сигналов по частоте может быть использован не только с фильтрами на основе корреляторов, но и с использованием согласованных фильтров.

Предлагаемое устройство оценки широкополосных сигналов по частоте представлено на фиг.6, где обозначено:

1 - генератор опорного сигнала;

2.1-2.N - с 1-го по N-й перемножитель;

3.1-3.N - с 1-го по N-й коррелятор;

4.1-4.N - с 1-го по N-й интегратор;

5.1-5.N - с 1-го по N-й узел определения модуля;

6 - блок оценки частоты;

7 - узел выбора первого максимума;

8 - узел оценки частоты;

9 - узел выбора второго максимума.

Предлагаемое устройство содержит генератор опорного сигнала 1 (генератор комплексных отсчетов гетеродина) для всех N параллельных частотных каналов, состоящих из последовательно соединенных соответствующих перемножителей 2.1-2.N и корреляторов 3.1-3.N, а также блок оценки частоты 6. Первые входы перемножителей 2.1-2.N (комплексные перемножители принятых отсчетов и комплексных отсчетов генератора опорного сигнала 1) соединены между собой и являются входом устройства, а вторые входы соединены с соответствующими выходами генератора опорного сигнала 1. Корреляторы 3.1-3.N состоят из последовательно соединенных соответствующих интеграторов 4.1-4.N (комплексные сумматоры принятых отсчетов) и узлов вычисления модуля 5.1-5.N для вычисления модуля комплексного числа, причем входы интеграторов 4.1-4.N соединены с выходами соответствующих перемножителей 2.1-2.N и являются входами соответствующих корреляторов 3.1-3.N. Блок оценки частоты 6 состоит из узла выбора первого максимума 7, узла оценки частоты 8 и узла выбора второго максимума 9, причем входы узла выбора первого максимума 7 соединены с соответствующими выходами узлов вычисления модуля 5.1-5.N, которые являются выходами соответствующих корреляторов 3.1-3.N и соединены с соответствующими входами узла выбора второго максимума 9. Блок оценки частоты 6 предназначен для сравнения полученных результатов с корреляционных каналов и формирования результата оценки частоты, который содержит узел выбора первого максимума 7, предназначенный для определения номера канала с максимумом модуля результатов накопления. Узел выбора второго максимума 9 предназначен для определения номера канала со вторым максимумом модуля результатов накопления. Выходы узла выбора первого максимума 7 и узла выбора второго максимума 9 соединены с соответствующими входами узла оценки частоты 8, выход которого является выходом блока оценки частоты 6 и предлагаемого устройства.

Предлагаемое устройство работает следующим образом.

После снятия манипуляции с принятого широкополосного сигнала входные отсчеты сигнала поступают на перемножители 2.1-2.N, где каждый комплексный входной отсчет умножается на комплексный отсчет генератора опорного сигнала ej2πFit, где Fi - i-я частота коррелятора (центральная частота подинтервала), t - время. Разнос частот выбирается таким образом, чтобы провал между частотами не превышал нескольких дБ. В результате на выходе каждого из перемножителей формируется принятый сигнал с частотой Fi в диапазоне частот от Fmin до Fmax. В корреляторах 3.1-3.N, которые содержат соответствующие интеграторы 4.1-4.N, производится когерентное накопление входных отсчетов сигнала за время TH. Таким образом, формируется N выходных результатов накопления, соответствующих каждой из частот.

В узле вычисления соответствующих модулей 5.1-5.N определяется модуль результата накопления, который передается в блок оценки частоты 6 на узел выбора первого максимума 7 и узел выбора второго максимума 9. В узле выбора первого максимума 7 выбирается максимум модуля результатов накопления, а в узле выбора второго максимума 9 выбирается второй максимум модуля результатов накопления. В узле оценки частоты 8 по значениям двух максимумов и соответствующих им номерам корреляторов, используя свойства амплитудно-частотной характеристики фильтров на основе интеграторов со сбросом, имеющих вид |sin(x)/x|, производится вычисление оценки частоты f. Генератор опорного напряжения 1, перемножители 2.1-2.N и интеграторы 4.1-4.N могут быть выполнены, например, на программируемой логической интегральной схеме 5576ХС1Т. Узлы вычисления модуля, узлы выбора первого и второго максимума 7 и 9, а также узел оценки частоты могут быть выполнены, например, на микроконтроллере 1892ВМ3Т.

Дополнительный эффект от предлагаемого технического решения заключается в уменьшении габаритов и стоимости устройства за счет реализации предлагаемого способа без увеличения числа частотных каналов.

Таким образом, предлагаемый способ оценки широкополосного сигнала по частоте и устройство для его реализации по сравнению с прототипом позволяет получить технический результат, заключающийся в повышении точности определения частоты без увеличения времени поиска сигнала и количества корреляторов, что особо важно для обнаружения сигналов, коротких по времени (соизмеримых со временем поиска), и ведения дальнейшей обработки сигнала на частоте, более близкой к максимуму амплитудно-частотной характеристики.

1. Способ оценки широкополосного сигнала по частоте, заключающийся в том, что анализируемый частотный диапазон разбивают на N частотных интервалов, для каждого из которых на интервале TH производят когерентное накопление сигнала интеграторами со сбросом, получают N результатов накопления, затем вычисляют модули результатов накопления, после чего находят первый максимум модуля результатов накопления, отличающийся тем, что после нахождения первого максимума модуля результатов накопления находят второй максимум модуля результатов накопления; в том случае, если частотные интервалы максимумов расположены рядом и соотношение второго и первого максимумов не менее уровня боковых лепестков амплитудно-частотной характеристики интеграторов, то вычисляют поправку частоты ΔF, исходя из свойств амплитудно-частотной характеристики интегратора со сбросом, имеющей вид |sin(x)/x| для перекрывающихся амплитудно-частотных характеристик двух соседних частотных интервалов; если номер частотного интервала первого максимума больше номера частотного интервала второго максимума, то оценка частоты F равна середине частотного интервала первого максимума минус поправка частоты ΔF, иначе оценка частоты F равна середине частотного интервала первого максимума плюс поправка частоты ΔF.

2. Устройство для реализации оценки широкополосных сигналов по частоте, содержащее генератор опорного сигнала для всех N параллельных частотных каналов, состоящих из соответствующих последовательно соединенных перемножителей и корреляторов, причем первые входы перемножителей соединены и являются входом устройства, а их вторые входы соединены с соответствующими выходами опорного генератора; каждый из корреляторов содержит последовательно соединенные интеграторы и узлы вычисления модуля, причем входы интеграторов являются входами корреляторов; выходы узлов вычисления модуля являются выходами корреляторов и соединены с соответствующими входами блока оценки частоты, являющимися входами узла выбора первого максимума, выход которого соединен с соответствующим входом узла оценки частоты, выход которого является выходом блока оценки частоты и устройства, отличающееся тем, что в блок оценки частоты введен узел выбора второго максимума, входы которого соединены с соответствующими входами блока оценки частоты, а выход соединен с соответствующим входом узла оценки частоты, в котором, если частотные интервалы максимумов расположены рядом и соотношение второго и первого максимумов не менее уровня боковых лепестков амплитудно-частотной характеристики интеграторов, то вычисляют поправку частоты ΔF, исходя из свойств амплитудно-частотной характеристики интегратора со сбросом, имеющей вид |sin(x)/x| для перекрывающихся амплитудно-частотных характеристик двух соседних частотных интервалов, если номер частотного интервала первого максимума больше номера частотного интервала второго максимума, то оценка частоты F равна середине частотного интервала первого максимума минус поправка частоты ΔF, иначе оценка частоты F равна середине частотного интервала первого максимума плюс поправка частоты ΔF, выход узла оценки частоты является выходом блока оценки частоты и предлагаемого устройства.



 

Похожие патенты:

Изобретение относится к области радиотехники и может быть использовано в системах радионавигации и радиосвязи для кодовой синхронизации приемников шумоподобных сигналов с минимальной частотной манипуляцией.

Изобретение относится к технике передачи дискретной информации и предназначено для синхронизации псевдослучайных последовательностей. .

Изобретение относится к радиотехнике, в частности к способам и устройствам формирования сигналов квадратурной амплитудной манипуляции, применяемым на линиях многоканальной цифровой связи, а также может быть использовано в области цифрового радиовещания и цифрового телевидения.

Изобретение относится к области бурения скважин и предназначено для передачи геофизической информации по электромагнитному или гидравлическому каналу связи. .

Изобретение относится к области связи и предназначено для синхронизации передачи данных. .

Изобретение относится к области радиотехники и связи, в частности к устройствам квазикогерентного приема дискретно-кодированных многочастотных радиосигналов, и может найти применение в информационных радиоканалах систем управления беспилотными летательными аппаратами, в частности в активных и полуактивных радиолокационных головках самонаведения крылатых и зенитных ракет, в устройствах синхронизации радиолиний телеуправления ракетами.

Изобретение относится к медиа кодерам и декодерам. .

Изобретение относится к передаче данных по речевому каналу, в частности к передаче неречевой информации посредством речевого кодека (внутри полосы пропускания) в сети связи.

Изобретение относится к области радиотехники, в частности к способам и устройствам обнаружения широкополосных сигналов в системах радиосвязи, и может быть использовано в приемных устройствах радиоэлектронных систем связи, использующих фазоманипулированные сигналы.

Изобретение относится к способам и устройствам связи в сети связи, в частности, предназначенным для передачи/приема данных по радиоканалу. Техническим результатом является увеличение количества различных преамбул, подлежащих использованию в процессе произвольного доступа. Указанный технический результат достигается тем, что содержит этапы: определения первого формата преамбулы для использования в соте второго устройства связи, определения значения основного циклического сдвига из набора значений основного циклического сдвига, причем набор выбирается на основании формата преамбулы, и передачи данных, содержащих индикацию относительно определенного первого формата преамбулы и указатель значения основного циклического сдвига, указывающий значение основного циклического сдвига в наборе значений основного циклического сдвига. 4 н. и 17 з.п. ф-лы, 10 ил.

Настоящее изобретение относится к передающему устройству (62), предназначенному для передачи сигналов в системе с множеством несущих, в котором пилотные сигналы и данные, отображенные на несущие частоты, передают в полосе пропускания передачи, в котором часть упомянутой полосы пропускания передачи не используют для передачи сигналов. Технический результат - более надежная оценка канала. Для этого передающее устройство (62) содержит: средство (63) отображения пилотного сигнала, предназначенное для отображения пилотных сигналов на выбранные несущие частоты в соответствии со структурой пилотного сигнала, которая выполнена с возможностью оценки канала в соответствующем устройстве приема, упомянутая структура пилотного сигнала обеспечивает возможность оценки канала для несущих частот, расположенных рядом с упомянутой частью упомянутой полосы пропускания передачи, которая не используется для передачи сигналов. Настоящее изобретение дополнительно относится к соответствующему способу. 6 н. и 16 з.п. ф-лы, 18 ил.

Изобретение относится к передаче цифровой информации и может быть использовано для цикловой синхронизации каскадных кодов, турбокодов и каскадных сигнально-кодовых конструкций. Технический результат - повышение точности установления цикловой синхронизации. Для этого на передаче формируют последовательность кодовых слов в виде внутренних слов каскадного кода, на приеме получают последовательность слов помехоустойчивых циклических кодов, декодируют эту последовательность, получают комбинации ошибок упомянутой последовательности, оценивают вес полученных комбинаций ошибок последовательности, затем оценивают вес комбинаций ошибок, наложенных на синхронизирующую последовательность, определяют суммарную достоверность слов помехоустойчивых циклических кодов, которую сравнивают с пороговым значением. При суммарной достоверности слов помехоустойчивых циклических кодов больше порогового значения устанавливают цикловую синхронизацию, при суммарной достоверности слов помехоустойчивых циклических кодов меньше либо равной, чем пороговое значение, скользящее окно приема смещают на один символ по входной последовательности и вычисление суммарной достоверности слов помехоустойчивых циклических кодов повторяют. 4 з.п. ф-лы.

Изобретение относится к передаче данных в системе защиты линии электропередачи и предназначено для осуществления надежного обнаружения асимметрии задержки канала и обеспечивает точную синхронизацию независимо от того, являются ли задержки канала симметричными или асимметричными. Изобретение раскрывает, в частности, способ, который содержит этапы, на которых вычисляют циклически несоответствие тактовой частоты между тактовыми частотами устройств защиты и задержки передачи данных в разных маршрутах канала передачи данных; сравнивают последние вычисленные несоответствия тактовой частоты и задержки при передаче данных с ранее вычисленными несоответствиями тактовой частоты и задержками при передаче данных, соответственно; определяют переключение каналов при превышении изменением вычисленного несоответствия тактовой частоты первого порогового значения или превышении изменением вычисленных задержек при передаче данных для любого маршрута второго порогового значения и определяют задержки канала как асимметричные при превышении разностью между вычисленными задержками при передаче данных по разным путям после переключения каналов третьего порогового значения. 5 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к системам приема, выполненным с возможностью поиска оптимальных коэффициентов передачи цепи обратной связи, и предназначено для синхронизации принятых сигналов. Технический результат - повышение точности синхронизации. Схема синхронизации содержит первую схему ФАПЧ, вторую схему ФАПЧ, первую выходную схему, вторую выходную схему, первую схему детектирования, вторую схему детектирования, схему регулирования и участок хранения. 6 н. и 5 з.п. ф-лы, 10 ил.

Изобретение относится к радиотехнике и может найти применение в системах связи с псевдослучайной перестройкой рабочей частоты. Технический результат - сокращение времени поиска по задержке сигналов, повышение радиозащищенности и помехоустойчивости радиолинии. Для этого в одном устройстве совмещены функции фильтрации сигналов ППРЧ, поиска по задержке и функции демодуляции сигналов ППРЧ и использованы при поиске по задержке сигналы, идентичные по форме информационным сигналам с ППРЧ. Устройство содержит аналого-цифровой преобразователь, блок «оконной» обработки сигналов, блок быстрого преобразования Фурье, демодулятор ППРЧ, блок весового сложения сигналов, блок выбора гипотезы, блок управления, селектор гипотез, опорный генератор , генератор ПСП. 1ил.

Изобретение относится к области оконтуривания потока данных, передаваемого через канал связи. Техническим результатом является обеспечение надежного оконтуривания без необходимости добавления данных в передаваемый полезный поток. Обеспечивается способ оконтуривания потока данных, передаваемого системой связи, использующей стек протоколов. Согласно изобретению способ использует избыточность последовательностей, содержимое которых является фиксированным, в одном или нескольких слоях в стеке протоколов для оконтуривания, содержащих или не содержащих ошибки пакетов в непрерывном потоке данных; для этого способ состоит в том, что на уровне приемника осуществляют поиск последовательностей, соответствующих известной последовательности SP, присутствующей в принятом потоке, путем обнаружения последовательностей, подобных этой известной последовательности, при этом не подобные последовательности не сохраняются; кроме того, способ состоит в том, что при наличии подобных последовательностей производят запоминание их положения для определения начала пакетов. 3 н. и 14 з.п. ф-лы, 11 ил.

Изобретение относится к области радиотехники, а именно к устройствам синхронизации приемника с передатчиком, и может использоваться в приемных устройствах. Технический результат - повышение быстродействия. Устройство содержит: демодулятор (1), дифференцирующую цепь (2), источник постоянного тока (3), ключ (4), колебательный контур (5), пороговый блок (6), формирователь строб-импульсов (7), блок регистрации (8). 2 ил.

Изобретение относится к радиотехнике и может найти применение в системах радиосвязи с программной (псевдослучайной) перестройкой рабочей частоты. Технический результат - обеспечение работы системы радиосвязи в условиях эффекта Допплера, повышение помехоустойчивости и разведзащищенности радиолинии. Для этого совмещают в одном устройстве функции определения задержки сигналов по времени и сдвига сигналов по частоте, а также сокращают затраты времени на синхронизацию и определение доплеровского сдвига по частоте, используют при синхронизации сигналы, идентичные по форме информационным сигналам с ППРЧ. Кроме того, упрощают устройство за счет исключения параллельных каналов приема. 1 ил.

Изобретение относится к способам и устройствам обработки данных в широкополосной радиосвязи и радионавигации. Технический результат заключается в сокращении временных затрат на поиск широкополосных сигналов по задержке. Способ поиска включает: параллельное накопление с выхода динамически перестраиваемых согласованных фильтров значений частной периодической взаимокорреляционной функции сегментов принимаемого сигнала с двумя опорными производящими линейками, из которых сформирована производная последовательность, а также определение номеров тактов их взаимного сдвига, соответствующих синхронизму по задержке; экстраполяции структуры частных ПВКФ в виде функций экстраполяции подканалов 2-х каналов обработки с 2-факторным контролем экстраполяции по мажоритарному принципу; контроль установления синхронизма по задержке без определения текущей временной задержки принимаемого сигнала, а по сочетанию номеров тактов синхронизма с производящими линейками. В каналах поиска в качестве динамически перестраиваемых согласованных фильтров используются акустоэлектронные конвольверы. 2 н.п. ф-лы , 13 ил.
Наверх