Устройство создания газокапельной струи



Устройство создания газокапельной струи
Устройство создания газокапельной струи

 


Владельцы патента RU 2487763:

Стареева Мария Олеговна (RU)
Стареева Мария Михайловна (RU)
Кочетов Олег Савельевич (RU)

Изобретение относится к технологии генерации газокапельных струй повышенной дальнобойности и может быть использовано в противопожарной технике и сельском хозяйстве при орошении земель. Технический результат - повышение мелкодисперсности газокапельной струи. Устройство для создания газокапельной струи содержит системы подачи жидкости и газа и сопло. Система подачи жидкости осуществляется по двум направлениям: осевая подача через подводящий патрубок и последовательно соединенные и соосные с ним конфузор и цилиндрическое сопло и тангенциальная подача через коаксиальный с цилиндрическим соплом корпус в виде цилиндро-конической гильзы. На цилиндрической части гильзы закреплена вихревая кольцевая камера с патрубком для подачи жидкости. По краям кольцевой камеры выполнены два ряда подводящих жидкость тангенциальных каналов. В каждом ряду имеется, по крайней мере, три тангенциальных канала, соединяющих кольцевую камеру с цилиндрической полостью корпуса. К полости соосно прикреплено профилированное сопло, выполненное в виде двух последовательно соединенных конфузоров. У первого конфузора, соединенного с цилиндрической полостью корпуса, угол при вершине конуса конической обечайки меньше, чем у второго конфузора, соединенного с выходным соплом. Поперечное сечение сопла на выходе выполнено прямоугольным. 2 ил.

 

Изобретение относится к технологии генерации газокапельных струй повышенной дальнобойности и может использоваться в противопожарной технике, в сельском хозяйстве при орошении земель и других отраслях, связанных с необходимостью создания дальнобойных газожидкостных струй.

Наиболее близким объектом заявленного устройства является установка для создания газокапельной струи по патенту РФ №21075541, которая содержит систему подачи жидкости и газа и газодинамическое сопло с камерой смешения жидкости и газа.

Недостаток известного устройства заключается в невозможности увеличения с помощью известных средств дальности полета газокапельной струи свыше 50 м, что необходимо, например, для тушения пожаров в многоэтажных зданиях и высотных сооружениях.

Технический результат - повышение эффективности пожаротушения путем увеличения дальности полета газокапелыюй струи и ее мелкодисперсности при взаимодействии с объектом.

Это достигается тем, что в устройстве для создания газокапельной струи, содержащем системы подачи жидкости и газа и сопло, система подачи жидкости осуществляется по двум направлениям, включающим осевую подачу жидкости через подводящий патрубок и последовательно соединенные и соосные с ним конфузор и цилиндрическое сопло, а тангенциальная подача жидкости осуществляется через коаксиальный с цилиндрическим соплом корпус в виде цилиндро-конической гильзы, на цилиндрической части которой закреплена вихревая кольцевая камера с патрубком для подачи жидкости, при этом по краям кольцевой камеры выполнены два ряда подводящих жидкость тангенциальных каналов, при этом в каждом ряду имеется, по крайней мере, три тангенциальных канала, соединяющих кольцевую камеру с цилиндрической полостью корпуса, к которой соосно прикреплено профилированное сопло, выполненное в виде двух последовательно соединенных конфузоров, причем у первого конфузора, соединенного с цилиндрической полостью корпуса, угол при вершине конуса конической обечайки меньше, чем у второго конфузора, соединенного с выходным соплом, поперечное сечение которого на выходе выполнено прямоугольным.

На фиг.1 изображена функциональная схема устройства для создания дальнобойной газокапельной струи, на фиг.2 - разрез А-А фиг.1.

Устройство для создания дальнобойной газокапельной струи (фиг.1) содержит систему подачи жидкости по двум направлениям, включающую осевую подачу жидкости через подводящий патрубок 1 и последовательно соединенные и соосные с ним конфузор 3 и цилиндрическое сопло 4. Тангенциальная подача жидкости осуществляется через коаксиальный с цилиндрическим соплом 4 корпус 5 в виде цилиндрической гильзы, на цилиндрической части которой закреплена вихревая кольцевая камера 6 с патрубком 7 для подачи жидкости, при этом по краям кольцевой камеры 6 выполнены два ряда 8 и 9 подводящих жидкость тангенциальных каналов (фиг.2), при этом в каждом ряду имеется, по крайней мере, три тангенциальных канала, соединяющих кольцевую камеру 6 с цилиндрической полостью 10 корпуса 5, к которой соосно прикреплено профилированное сопло, выполненное в виде двух последовательно соединенных конфузоров 11 и 12, причем у первого конфузора 11, соединенного с цилиндрической полостью 10 корпуса 5, угол при вершине конуса конической обечайки меньше, чем у второго конфузора 12, соединенного с выходным соплом 13, поперечное сечение которого на выходе может быть выполнено круглым, прямоугольным или эллиптическим.

Устройство для создания дальнобойной газокапелыюй струи работает следующим образом.

Устройство перемещается в исходное положение с помощью транспортного средства (на чертеже не показано) и направляется в сторону объекта, к которому должна осуществляться подача газокапельной струи, посредством управляющего воздействия системы управления перемещением сопла (на чертеже не показано). Включается турбокомпрессорная установка, являющаяся частью системы подачи газа, и ускоренный воздушный поток из выходного устройства силовой установки направляется в ввод 2 подачи газа в камеру смешения 10, где происходит образование двухфазного потока.

Вихри жидкости впрыскиваются в камеру смешения 10 через размещенные в ней рядами 8 и 9 тангенциальные каналы, которые смешиваются с набегающим воздушным потоком, в результате чего образуется газокапельный поток. Максимальные значения давления воздуха на входе в сопло и относительной концентрации воды в двухфазном потоке выбираются из условия предельно плотной упаковки частиц воды в воздушном потоке: gP=5,7108 Па, где Р - давление газа на входе в сопло; g - относительная концентрация воды в двухфазном потоке. Для достижения необходимой (свыше 50 м) дальности полета газокапельной струи давление газа (воздуха) на входе в сопло должно превышать Р=5,5105Па;

g=Gввод/Gвоз=4,9,

где Gввод=26 кг/с - массовый расход воды; Gвоз=5,3 кг/с - массовый расход воздуха; Тсм=298 К - температура двухфазного потока; L=1500 мм - длина корпуса 5 цилиндрической гильзы с соплом 11; D=50 мкм - средний диаметр капель воды в воздушном потоке.

Созданный в камере смешения 10 двухфазный поток при указанных выше параметрах разгоняется в профилированном канале сопла 11. Использование кольцевого сопла позволяет компактировать газокапельную струю при относительно однородном распределении капель воды по сечению струи.

Полученные результаты свидетельствуют о том, что двухфазный поток, параметры которого выбираются согласно вышеуказанным условиям, разгоняется в газодинамическом корпусе до скорости, при которой дальность полета газокапельной струи составляет 65 м.

Предложенное изобретение может использоваться в различных отраслях техники, где требуется генерация дальнобойных газокапельных струй, дальность полета которых превышает 50 м. Наиболее эффективно использование изобретения в противопожарной технике, особенно при тушении пожаров в труднодоступных очагах и объектах, и в сельском хозяйстве при орошении земель.

Устройство для создания газокапельной струи, содержащее системы подачи жидкости и газа и сопло, отличающееся тем, что система подачи жидкости осуществляется по двум направлениям, включающим осевую подачу жидкости через подводящий патрубок и последовательно соединенные и соосные с ним конфузор и цилиндрическое сопло, а тангенциальная подача жидкости осуществляется через коаксиальный с цилиндрическим соплом корпус в виде цилиндроконической гильзы, на цилиндрической части которой закреплена вихревая кольцевая камера с патрубком для подачи жидкости, при этом по краям кольцевой камеры выполнены два ряда подводящих жидкость тангенциальных каналов, при этом в каждом ряду имеется, по крайней мере, три тангенциальных канала, соединяющих кольцевую камеру с цилиндрической полостью корпуса, к которой соосно прикреплено профилированное сопло, выполненное в виде двух последовательно соединенных конфузоров, причем у первого конфузора, соединенного с цилиндрической полостью корпуса, угол при вершине конуса конической обечайки меньше, чем у второго конфузора, соединенного с выходным соплом, поперечное сечение которого на выходе выполнено прямоугольным.



 

Похожие патенты:

Изобретение относится к устройству (1) для нанесения покрытия на внутреннюю сторону (51) полого тела (49) с помощью распыленной текучей среды. .

Изобретение относится к пневматическому двухкомпонентному пистолету-распылителю для нанесения покрытия и может быть использовано при нанесении ряда компонентов, таких как быстро твердеющая пена.

Изобретение относится к двойной распылительной насадке для распыления жидкости с помощью сжатого газа. .

Изобретение относится к устройству (1) для введения жидкости в сыпучие сухие вещества, прежде всего в муку для приготовления кляра. .

Изобретение относится к распылительной насадке и распылительной установке и может быть использовано в технологии производственных процессов, например, при улавливании золы.

Изобретение относится к технологии генерации газокапельных струй эжекцией и может быть использовано в машиностроении, например, для нанесения расплавленного распыленного твердого смазочного материала на шлифовальный круг.

Изобретение относится к пистолету-распылителю для получения двухкомпонентной пены используемой в строительстве. .

Изобретение относится к области диспергирования твердых частиц и может быть использовано при исследовании свойств аэрозолей радиоактивных материалов с использованием материалов-имитаторов, сходных по поведению с радиоактивными материалами при взрывном нагружении.

Изобретение относится к средствам механизации строительных работ, а именно для герметизации стыков и нанесения покрытий на строительные конструкции полимерными материалами, образующимися в результате полимеризации двух и более жидких компонентов, смешиваемых и доставляемых к покрываемым поверхностям в виде факела, состоящего из газа и жидких компонентов.

Изобретение относится к средствам, предназначенным для создания туманообразных завес и пламягасящих направленных двухфазных потоков, и позволяет увеличить время эффективного воздействия водо-воздушного аэрозоля, обеспечить практически неограниченное время работы водяной струей за счет подключения пожарного ствола к рукавной линии пожарного автомобиля.

Изобретение относится к способу и устройству для распыления и может быть использовано для тонкого распыления жидкого стимулятора роста в грануляторе с кипящим слоем. В способе распыления жидкости форсункой (1) газовую фазу и жидкость подают по соответствующим каналам в смесительную камеру внутри форсунки (1). Скорость газовой фазы во входной области смесительной камеры приблизительно равна скорости звука или превосходит ее. Скорость жидкости во входной области смесительной камеры существенно ниже скорости газовой фазы. Массовый расход газовой фазы, подаваемой в смесительную камеру, составляет от 1 до 10% массового расхода жидкости, подаваемой в эту же смесительную камеру. В результате получается эмульсия газа в жидкости, находящаяся внутри камеры под давлением и образованная газовыми пузырьками, окруженными жидкостью в виде пленки. Распыленный поток получают за счет расширения эмульсии, при котором жидкая пленка распыляется на выходе форсунки. Форсунка для распыления жидкости содержит канал подачи газа и канал подачи жидкости. Форсунка также содержит смесительную камеру, сообщающуюся с каналом подачи газа и каналом подачи жидкости через узел распределения газа и жидкости. Узел распределения выполнен с возможностью обеспечения высокоскоростного входного газового потока во входной области смесительной камеры и более медленного входного потока жидкости в той же входной области камеры для образования в ней эмульсии газа в жидкости. Форсунка может быть использована в грануляторах с кипящим слоем. Техническим результатом изобретения является уменьшение затрат на систему подачи за счет уменьшения потребление воздуха, упрощение изготовления и сборки форсунки. 3 н. и 12 з.п. ф-лы, 12 ил.

Изобретение относится к области сельского хозяйства. Способ включает опрыскивание сельскохозяйственных культур с начальным дроблением струи раствора микроэлементных удобрений потоком воздуха и последующим электрозарядом капель в коронирующем электростатическом поле. Жидкостно-воздушную смесь готовят на расстоянии от гидравлических распылителей опрыскивателя, затем подают под давлением к гидравлическим распылителям, при выходе из которых она дробится и в виде факела с пузырьками воздуха проходит через электростатическое поле, где смесь в виде жидкостно-воздушных капель получает электрический заряд, дополнительно дробится, увеличивая монодисперсность, увлажнение поверхности подкармливаемых растений, количество свободных ионов питательных веществ микроэлементных удобрений, которые, оседая на поверхности сельскохозяйственных культур, проникают внутрь растения, улучшают его питание. Размер капель, их дробление, монодисперсность капель и количество свободных ионов регулируют давлением раствора микроэлементных удобрений от 0,2 до 0,3 МПа, давлением воздуха от 0,4 до 0,5 МПа, инъектируемого в раствор удобрений в нагнетательной магистрали, расходом раствора микроэлементных удобрений через один распылитель до 0,3 л/мин, электрозарядкой распыляемых жидкостно-воздушных капель при электростатическом напряжении на электродах от 3 до 5 кV и силе тока до 10 мА. Способ позволяет увеличить насыщение смеси раствора удобрений воздухом и повысить монодисперсность распыляемого раствора микроэлементных удобрений. 2 ил.

Изобретение относится к системам газификации и может быть использовано в химических реакторах и системах трубопроводов для инжекции сырья. Инжекторная система подачи сырья содержит несколько кольцевых каналов 314, 316, 318, размещенных в концентрической конфигурации вокруг продольной оси, и несколько спиральных элементов 312, проходящих в тракт для прохода текучей среды. Спиральные элементы 312 выполняют с возможностью перемещения в осевом направлении в кольцевом канале. По меньшей мере один спиральный элемент 312 содержит несколько лопастей, установленных по винтовой траектории и отстоящих друг от друга. При этом один из спиральных элементов 312 выполняют с возможностью сообщения первого кругового вращения потоку текучей среды, а другой из спиральных элементов 312 выполняют с возможностью сообщения противоточного кругового вращения. Изобретение позволяет измельчить и перемешать сырье, увеличить время его пребывания в устройстве и повысить эффективность проведения процесса. 3 н. и 20 з.п. ф-лы, 9 ил.

Изобретение относится к устройствам подачи нескольких компонентов и, более конкретно, к смазке стержня механической очистки устройства подачи нескольких компонентов. Подающее устройство для смазки содержит смесительную головку для смешивания по меньшей мере двух текучих компонентов. Смесительная головка имеет впускные отверстия по меньшей мере для двух текучих компонентов и смесительный модуль между этими впускными отверстиями. Подающее устройство также содержит очистной стержень, расположенный внутри смесительной головки с возможностью скольжения. Очистной стержень может занимать переднее положение, в котором предотвращается поток из впускных отверстий по меньшей мере для двух текучих компонентов, и заднее положение, в котором разрешается поток из впускных отверстий по меньшей мере для двух текучих компонентов в смесительный модуль. Перемещение очистного стержня между этими положениями осуществляется приводом. Подающее устройство содержит также смазочную камеру, расположенную позади смесительной камеры, внутри которой расположен очистной стержень с возможностью скольжения. В смазочной камере обеспечивается подача смазочного материала на очистной стержень. Кроме того, подающее устройство имеет картридж, который содержит смазочный материал и сообщается со смазочной камерой. Подающее устройство также может содержать смесительный механизм, прикрепленный к корпусу, для смешивания по меньшей мере двух текучих компонентов. Способ подачи смазки включает обеспечение повышенного давления для первого текучего компонента, второго текучего компонента и в картридже со смазочным материалом. Кроме того, способ включает перемещение назад очистного стержня для обеспечения потоков первого и второго текучих компонентов и смешивание их в смесительной камере. Затем происходит непрерывное смазывание очистного стержня смазочным материалом, находящимся под давлением, в процессе работы подающего устройства, в котором обеспечивается предотвращение попадания смазочного материала в смесительную камеру. Техническим результатом изобретения является упрощение обслуживания подающего устройства, т.к. картридж может быть легко заменен и его можно видеть снаружи, обеспечение возможности быстрого пополнения запаса смазочного материала. В связи с прикреплением картриджа к подающему устройству обеспечивается ненужность его дополнительного сообщения с дозирующей системой и система смазки становится автономной. 3 н. и 17 з.п. ф-лы, 8 ил.

Изобретение относится к распылителю текучей среды, содержащему жидкостную форсунку с улучшенным формированием капель, и может быть использовано для распыления жидкостей или суспензий, содержащих твердые частицы. Распылительное устройство включает распылитель форсунки, жидкостную форсунку и корпус, содержащий сходящийся воздушный коллектор с переходным конусом для воздуха. Переходный конус окружает воздушную форсунку, которая соединена с центральной обдувочной трубкой. Обдувочная трубка питается через входное отверстие. Корпус содержит по меньшей мере одно отверстие для впуска воздуха, предназначенное для подачи газа, как прямоточного кольцевого потока вокруг форсунки. В распылительном устройстве текучая среда подается через центральную обдувочную трубку к жидкостной форсунке. Газ подается через отверстие для впуска воздуха. Газ ускоряется в сходящемся переходном воздушном конусе в кольцевом прямоточном потоке газа и входит в контакт с распыленной текучей средой, выходящей из жидкостной форсунки. Техническим результатом группы изобретений является обеспечение возможности формирования более мелких капель с увеличенным микронизированным объемным расходом, при этом большие объемы воздуха подаются в жидкость, распыляемую из форсунки. Высокие объемные соотношения приводят к такой средней длине свободного пробега между переносимыми каплями, которая минимизирует столкновения и предотвращает слияние капель. 6 н. и 31 з.п. ф-лы, 17 ил., 3 табл.

В изобретении предложен распылитель жидкого топлива, содержащий корпус, имеющий канал (44) подачи топлива и, по меньшей мере, одно основное отверстие (32), сконфигурированное для рассеивания потока топлива на множество капель топлива. Множество капель топлива входит в контакт с поверхностью соударения (46) для разбиения множества капель топлива на множество более малых вторичных капель и создания тонкой пленки вторичных капель на поверхности соударения. По меньшей мере, один канал (48) для сжатого воздуха подает воздушный поток в контакт с вторичными каплями для разбиения тонкой пленки вторичных капель топлива на периферийной кромке поверхности соударения для уменьшения размера вторичных капель. Вторичные капли проходят через множество вторичных выходных отверстий (52), выходя из корпуса. Размер множества вторичных капель уменьшается при выходе из множества вторичных отверстий. Технический результат заключается в повышении качества распыления и испарения жидкого топлива. 4 н. и 16 з.п. ф-лы, 30 ил.

Изобретение относится к распылительной установке с распылительной насадкой и может быть использовано в технологии различных производственных процессов. Распылительная установка с распылительной насадкой имеет выпускную или смесительную камеру и по меньшей мере два проходных канала, входящих в выпускную или смесительную камеру. Каждый проходной канал соединен с линией для текучей среды. По меньшей мере один из проходных каналов выполнен самоочищающимся и/или предусмотрены устройства для очистки по меньшей мере одного из проходных каналов. По меньшей мере одна из линий для подачи текучей среды выполнена как линия для подачи жидкости к смесительной камере. По меньшей мере одна из линий для подачи текучей среды выполнена как линия для подачи сжатого газа к смесительной камере. Кроме того, предусмотрена емкость с очистительной жидкостью. Линия для подачи очистительной жидкости проходит из емкости через вентиль к линии для подачи сжатого газа. Линия для подачи очистительной жидкости проходит из емкости через вентиль к линии для подачи сжатого газа. В распылительной установке также предусмотрены два варианта способов эксплуатации распылительной установки. Техническим результатом группы изобретений является обеспечение возможности долговременной работы распылительных насадок в распылительных установках без профилактического осмотра за счет надежного удаления отложений, появляющихся в проходных каналах. 3 н. и 18 з.п. ф-лы, 7 ил.

Изобретение относится к устройствам для смешивания по меньшей мере двух материалов, в частности от жидких до пастообразных материалов. Устройство для смешивания содержит корпус (2) по меньшей мере с двумя отверстиями (5, 6) для подачи материалов и с одним выпускным отверстием (8). Кроме того, устройство содержит смесительный элемент (3), установленный в корпусе (2) с возможностью вращения. Смесительный элемент (3) для регулирования величины зазора (18) между смесительным элементом (3) и корпусом (2) выполнен с возможностью перемещения относительно корпуса (2) в направлении (стрелка 17) своей оси (7). Техническим результатом изобретения является повышение однородности смешения компонентов при точной дозировке. 14 з.п. ф-лы, 3 ил.

Изобретение относится к смесительной детали для статичного распылительного смесителя и может быть использовано для смешивания и распыления по меньшей мере двух текучих компонентов. Соединительная деталь для статичного распылительного смесителя имеет трубчатый кожух (2) смесителя. Кожух (2) имеет по меньшей мере один смесительный элемент и распылительный стакан (4). В стакане (4) кожух (2) смесителя проходит в направлении продольной оси (А) вплоть до дальнего конца (21), который имеет выпускное отверстие (22) для компонентов. Распылительный стакан (4) имеет впускной проход (41) для сжатой распыляющей среды, а также внутреннюю поверхность, имеющую множество отдельных пазов. Пазы могут образовать отдельные каналы вместе с кожухом (2) смесителя. Соединительная деталь имеет впускной участок (11) для взаимодействия с участком дальнего конца (27) кожуха смесителя (2), а также выпускной участок (12) для взаимодействия с распылительным стаканом (4). Впускной участок (11) и выпускной участок (12) имеют угол отклонения (α), отличный от нуля. Выпускной участок (12) имеет на своем конце, удаленном от впускного участка (11), концевую секцию (13). Наружный контур концевой секции (13) является таким же, как и у кожуха (2) смесителя. Концевая секция (13) выпускного участка (12) может взаимодействовать с распылительным стаканом (4) таким же образом, как участок дальнего конца (27) кожуха смесителя (2) может взаимодействовать с распылительным стаканом (4). Распылительный смеситель может сочетаться с соединительной деталью. Техническим результатом изобретения является упрощение обслуживания и обеспечение удобства для широкой области применения при манипулировании. 2 н. и 12 з.п. ф-лы, 6 ил.
Наверх