Способ получения изоцианата


 


Владельцы патента RU 2487865:

БАЙЕР МАТИРИАЛЬСАЙЕНС АГ (DE)
БАЙЕР МАТИРИАЛЬСАЙЕНС ЛЛСИ (US)

Изобретение относится к способу получения алифатического изоцианата путем взаимодействия соответствующего первичного амина с фосгеном в присутствии или отсутствии инертной среды. Способ заключается в том, что поток амина подают на фосгенирование в газовой фазе при температуре выше 200°С, но не более 570°С и абсолютных давлениях от 0,8 бара до 3 бар, причем поток амина имеет среднюю величину полярографически восстанавливаемых примесей (ПВП) менее 10 молей на миллион молей. Способ позволяет получать слабоокрашенные или бесцветные изоцианаты со сравнительно низкой долей соединений, придающих цвет. 5 з.п. ф-лы, 2 пр.

 

Изобретение относится к области изоцианатов, в особенности, к способу получения изоцианата.

Фосгенирование алифатических или ароматических аминов для получения изоцианатов может проводиться, особенно предпочтительно, в газовой фазе. Такие процессы, в принципе, известны в течение длительного времени в предшествующих технологиях и теперь приняты в промышленности (ЕР-В 289840).

Частая проблема состоит в том, что, по любой причине, эти изоцианаты окрашены, или происходят нежелательные побочные реакции в последующих стадиях модификации, например, форполимеризации, образования биуретов или тримеризации, и, в конечном счете, оказывают неблагоприятное влияние на цвет полученных полиизоцианатов. Причины и источники такого изменения цвета множественны, так как не все примеси, присутствующие в подаваемых потоках, неизбежно приводят, в конечном счете, к нежелательному изменению цвета в продуктах прямого процесса или продуктах последующих процессов.

Задача настоящего изобретения состоит в том, чтобы обеспечить способ получения изоцианата, имеющего светлый цвет, или приводящий к особенно слабо окрашенным, вплоть до бесцветных, полиизоцианатам, в особенности, когда исходные амины, которые используют при фосгенировании, имеют величину ПВП (полярографически восстанавливаемых примесей) менее 60 ммм (молей на миллион молей).

Решение этой задачи достигается предложенным способом получения изоцианата реакцией соответствующего амина с фосгеном в присутствии или отсутствии инертной среды, где поток амина подают на фосгенирование, причем этот поток имеет величину ПВП менее 60 молей на миллион молей (ммм).

Предпочтение отдают потоку амина, имеющему в среднем величину ПВП менее 40 ммм, особенно предпочтительно, менее 20 ммм, наиболее предпочтительно, менее 10 ммм.

Способ по изобретению, предпочтительно, проводят в одну стадию. Для целей настоящего изобретения это означает, что смешивание и реакция исходных материалов, чтобы сформировать продукт, происходит в одной зоне реакции. После того, как продукты покидают зону реакции, предпочтительно, происходит полная реакция вводимых аминогрупп с фосгеном. Особенно ценно стремиться к этому, потому что в ином случае непрореагировавшие аминогруппы могут приводить к формированию хлоргидрата или мочевины, что снижает полный выход изоцианата и, вследствие образования отложений, снижает время, в течение которого может эксплуатироваться реактор.

Предпочтение аналогично отдают непрерывной работе способа по изобретению.

Величину ПВП (полярографически восстанавливаемых примесей) в аминах определяют восстановлением в водных растворах методом дифференциальной импульсной полярографии (ДИП) в присутствии ацетата цинка в качестве внутреннего стандарта (-1,3 В против насыщенного каломельного электрода) при - 1,5 В против насыщенного каломельного электрода при статическом электроде из капель ртути (СКРЭ) в атмосфере азота. Величины ПВП рассчитывают из отношения высот пиков и концентрации внутреннего стандарта цинка.

Вычисление количества Zn (мкмоль), добавленного в качестве внутреннего стандарта (в 10 мл основного раствора):

В способе по изобретению возможно использовать все соединения с функциональными аминогруппами, имеющие, по меньшей мере, одну первичную аминогруппу, предпочтительно, от 1 до 3 аминогрупп, пока поток амина, вводимый в зону реакции, отвечает указанному выше критерию относительно средней величины ПВП. Несущественно, являются ли амины алифатическими, циклоалифатическими, аралифатическими или ароматическими.

Предпочтительные соединения с функциональными аминогруппами обычно имеют до 18 атомов углерода, и если множество аминогрупп присутствует в молекуле, они отделены одна от другой, по меньшей мере, двумя атомами углерода.

Предпочтение отдают использованию аминов указанного выше типа, которые могут быть введены в газовую фазу без разложения.

Особенно подходящими аминами для этой цели являются диамины и триамины на основе алифатических или циклоалифатических углеводородов, имеющих от 2 до 18 атомов углерода. Примеры представляют собой 1,6-диаминогексан (гексаметилендиамин, ГМДА),

1-амино-3,3,5-триметил-5-аминометилциклогексан (ИФДА) и 4,4'- и/или 2,4'-диаминодициклогексилметан. Предпочтение отдают использованию 1,6-диаминогексана (ГМДА).

Способ по настоящему изобретению аналогично может быть проведен с использованием ароматических аминов, которые могут быть, предпочтительно, введены в газовую фазу без разложения. Примеры предпочтительных ароматических аминов представляют собой толуолдиамин (ТДА) в виде 2,4 - или 2,6-изомеров или их смеси, диаминобензол, 2,6-ксилидин, нафталиндиамин (НДА) и 2,4'- или 4,4'-метиленди(фениламин) (МДФА) или смеси их изомеров. Среди них предпочтение отдают диаминам, особенно предпочтительно, 2,4- и/или 2,6-ТДА.

Исходные материалы амин и фосген могут также в каждом случае быть поданы вместе с инертной средой в реакционное пространство. Инертная среда представляет собой среду, которая при температуре реакции находится в газовой форме в пространстве реакции и не реагирует с соединениями, возникающими в ходе реакции. Инертную среду обычно смешивают с амином и/или фосгеном перед реакцией, но она также может быть введена отдельно от потоков подачи. Например, могут быть использованы азот, инертные газы, такие как гелий или аргон, либо ароматические соединения, такие как хлорбензол, дихлорбензол, ксилол, окись углерода или двуокись углерода. Предпочтение отдают использованию азота и/или хлорбензола в качестве инертной среды в случае амина, а в случае фосгена предпочтение отдают использованию хлористого водорода, полученного при регенерации фосгена, который был использован в избытке, и/или окиси углерода, азоту и/или хлорбензолу.

Предпочтительно, инертную среду используют в таком количестве, что отношение газовых объемов инертной среды к газовым объемам амина или фосгена составляет от 0,001 до 5, предпочтительно, от 0,01 до 3, особенно предпочтительно, от 0,1 до 1. Инертную среду, предпочтительно, вводят в реакционное пространство вместе с аминами.

Способ по изобретению, предпочтительно, проводят так, чтобы исходные материалы амин и фосген, а также изоцианат, который формируется в зоне реакции, находились в газообразном состоянии в условиях реакции, то есть формирование жидких капель, предпочтительно, исключают.

Фосген используют в мольном количестве от 1,0 до 10 относительно аминогрупп, предпочтительно, от 1,2 до 4 относительно аминогрупп.

Чтобы обеспечить указанные выше условия реакции, температуры в зоне реакции составляют, предпочтительно, более 200°С, особенно предпочтительно, более 260°С, наиболее предпочтительно, более 280°С.

Верхняя предельная температура составляет, предпочтительно, не более 570°С, особенно предпочтительно, не более 500°С.

Реакция фосгена с амином в соответствующей зоне реакции происходит при абсолютных давлениях от>0,1 бара до<20 бар, предпочтительно, от 0,5 бара до 10 бар, особенно предпочтительно, от 0,7 бара до 5 бар, наиболее предпочтительно, от 0,8 бара до 3 бар.

Обычно давление в линиях подачи в зону реакции выше, чем давление, указанное выше непосредственно в зоне реакции. Давление в линиях подачи составляет, предпочтительно, на величину от 20 до 2000 мбар выше, особенно предпочтительно, на от 30 до 1000 мбар выше, чем непосредственно в зоне реакции.

Обычно давление в областях процесса, примыкающих к фактической зоне реакции, предпочтительно, более низкое, чем в зоне реакции непосредственно. Давление там составляет, предпочтительно, на величину от 10 до 500 мбар ниже, особенно предпочтительно, на от 30 до 150 мбар ниже, чем в зоне реакции.

Исходные материалы, предпочтительно, вводят в зону реакции и пропускаются через нее при скорости потока в каждом случае от 3 до 100 м/с, предпочтительно, от 10 до 50 м/с.

Скорости потока этих двух исходных материалов, предпочтительно, устанавливают в пределах указанных выше интервалов так, что в зоне реакции достигают среднего времени контакта реакционной смеси аминов и фосгена обычно от 0,01 секунд до менее 15 секунд, предпочтительно, от >0,04 секунд до <10 секунд, особенно предпочтительно, от >0,08 секунд до <5 секунд. Для настоящих целей среднее время контакта представляет собой период времени от начала смешивания исходных материалов до тех пор, пока они не покидают пространство реакции на их пути к стадии обработки. В предпочтительном варианте выполнения изобретения, поток в процессе по изобретению характеризуется числом Боденштейна более 10, предпочтительно, более 100 и особенно предпочтительно, более 250.

Размеры реакционного пространства и скоростей потока, предпочтительно, выбирают так, чтобы преобладал турбулентный поток реакционной смеси, то есть поток, имеющий число Рейнольдса, по меньшей мере, 2300, предпочтительно, по меньшей мере, 2700, где число Рейнольдса формируют, используя гидравлический диаметр реакционного пространства.

В результате турбулентного потока достигают узкого интервала времени пребывания, имеющего низкое среднеквадратичное отклонение, менее 10%, предпочтительно, менее 6%.

Зона реакции, предпочтительно, не имеет внутренней подвижности.

Зона реакции может быть нагрета/охлаждена через ее внешнюю поверхность. Чтобы построить установки, имеющие высокие емкости, множество реакторных труб может быть соединено параллельно. Однако реакция также может быть проведена адиабатически. Это означает, что нагревающая или охлаждающая энергия не течет посредством инженерных мер через внешнюю поверхность реакционного объема. Реакция, предпочтительно, происходит адиабатически.

После того, как реакционная смесь прореагировала в зоне реакции, необходимо быстрое охлаждение газов после реакции фосгенирования до температуры ниже 150°С, чтобы избежать формирования нежелательных побочных продуктов в результате термического разложения моноизоцианата/диизоцианата/триизоцианата или в результате дальнейшей реакции олигомеризации/полимеризации, поскольку формируемые изоцианаты термически не устойчивы в течение длительного периода при температурах реакции от 260 до 570°С. Охлаждение до температур от 100 до 150°С проводят в одноступенчатом или многоступенчатом промывном устройстве (быстрое охлаждение в промывной колонне) с использованием инертного растворителя, как описано в ЕР-А1 1403248, колонка 2, строка 39 - колонка 3, строка 18.

Подходящие растворители представляет собой, предпочтительно, углеводороды, которые могут быть, необязательно, замещены атомами галогена, например хлорбензол, дихлорбензол и толуол. Особое предпочтение отдают использованию монохлорбензола в качестве растворителя. Также возможно использовать в качестве растворителя изоцианат или раствор полученного изоцианата, который также может циркулировать через теплообменник, чтобы удалять энергию. В промывном устройстве изоцианат выборочно перемещают в промывной раствор. Растворитель отделяют от остающегося не содержащего изоцианата газа (избыточный фосген, хлористый водород, любая инертная среда и растворитель из промывного устройства) частичной конденсацией, и фосген затем регенерируют, например, посредством поглощения в монохлорбензоле, а хлористый водород очищают, как описано в предшествующих технологиях, и повторно используют в качестве сырья. Концентрированный раствор изоцианата, полученный при быстром охлаждении и в промывной колонне, предпочтительно, очищают физическим связыванием (растворением) и химическим связыванием хлористого водорода и фосгена посредством ректификации и разделяют на растворитель, низкокипящие побочные продукты, изоцианат и высококипящие соединения в дальнейших стадиях дистилляции. Предпочтение отдают использованию изоцианата.

Диизоцианаты и/или триизоцианаты, которые могут быть получены таким образом, могут быть использованы, особенно предпочтительно, в производстве полиуретановых покрытий, а также клеев и герметиков. Для этой цели их, предпочтительно, сначала вводят в реакцию, чтобы сформировать олигомерные полиизоцианаты, например изоцианураты, иминооксадиазиндионы, биуреты, уретдионы, аллофанаты и/или форполимеры, а также, если подходит, блокируют методами, известными в промышленности.

Диизоцианаты и/или триизоцианаты, которые могут быть получены путем доведения до величин ПВП по изобретению, в потоке амина приводят в случае алифатических полиизоцианатов к цветовым индексам Хазена <150 по шкале Американской ассоциации здравоохранения (АРНА), предпочтительно, <100 по АРНА.

Примеры:

Настоящее изобретение далее иллюстрируют, но не ограничивают, следующими примерами.

Определение содержания гидролизуемого хлора (величина ГХ) проводили потенциометрическим титрованием: образец, подлежащий анализу, смешивали с метанолом и нагревали с обратным холодильником в течение 10 минут для формирования уретана. Полученную смесь затем разбавляли водой и гидролизовали кипячением с обратным холодильником. Образующийся здесь ионный хлор титровали аргентометрически, после подкисления азотной кислотой и добавления известной массы хлористого натрия, стандартным раствором нитрата серебра. Титрование проводили при контролируемом смещении (равновесное титрование) с возрастающим введением реагента и автоматической фиксацией точки эквивалентности.

Пример 1

В трубчатом реакторе, снабженном стадией конденсации изоцианата ниже по ходу потока и последующей обработкой изоцианата, непрерывно получали реакцией в газовой фазе гексаметилендиизоцианат из исходных материалов гексаметилендиамина и фосгена. Температуры двух потоков подачи составляли 300°С. Давление в трубчатом реакторе было слегка выше атмосферного в 1400 мбар. Фосген использовали в избытке 100 мол. % от теории. В результате условий адиабатической реакции, температура в реакторе росла до около 450°С.

Гексаметилендиамин, вводимый в реакцию, имел содержание ПВП менее 10 ммм (молей на миллион молей).

Продукт реакции гексаметилендиизоцианат (ГМДИ) конденсировали после того, как он покидал реактор, отделяли от побочного хлористого водорода, инертных газов и избыточного фосгена и затем очищали последовательной дистилляцией. Полученный ГМДИ имел содержание гидролизуемого хлора 15 млн. долей.

ГМДИ, полученный таким способом, обрабатывали далее (способом, аналогичным примеру 2 из ЕР 1158013 А1, стр.5), чтобы сформировать биурет, трифункциональный полиизоцианат, имеющий очень низкое давление паров, который используют в системах покрытия поверхностей. Биурет фактически является прозрачным и бесцветным с цветовым индексом Хазена 30 по шкале АРНА.

Пример 2 (сравнительный пример)

Пример 1 повторяли при тех же условиях реакции.

Гексаметилендиамин, вводимый в реакцию, имел содержание ПВП в интервале от 60 до 80 ммм (молей на миллион молей); среднее составляло 75 ммм.

ГМДИ, полученный после последовательной дистилляции, имел содержание гидролизуемого хлора 40 млн. долей.

ГМДИ, полученный таким образом, обрабатывали далее, как в примере 1, чтобы сформировать биурет, трифункциональный полиизоцианат, имеющий очень низкое давление паров, который используют в системах покрытия поверхностей. Этот биурет имеет легкий желтоватый цвет и цветовой индекс Хазена 80 по шкале АРНА.

Хотя изобретение было описано подробно в предшествующем для цели иллюстрации, должно быть понятно, что такие подробности служат исключительно для этой цели и что могут быть сделаны вариации специалистами без отхода от сущности и объема изобретения, за исключением того, что может быть ограничено пунктами формулы изобретения.

1. Способ получения алифатического изоцианата путем взаимодействия соответствующего первичного амина с фосгеном в присутствии или отсутствии инертной среды, в котором поток амина подают на фосгенирование в газовой фазе при температуре выше 200°С, но не более 570°С и абсолютных давлениях от 0,8 бара до 3 бар, причем поток амина имеет среднюю величину полярографически восстанавливаемых примесей (ПВП) менее 10 молей на миллион молей.

2. Способ по п.1, в котором фосгенирование амина проводят так, чтобы не происходило формирование жидких капель в зоне реакции.

3. Способ по п.1, в котором инертная среда выбрана из группы, состоящей из азота, окиси углерода, хлорбензола и их смесей.

4. Способ по п.1, в котором давление в линиях подачи амина или фосгена поддерживают на величину от 20 до 2000 мбар выше давления в зоне реакции, а давление в зонах ниже по ходу потока зоны реакции поддерживают на величину от 10 до 500 мбар ниже давления в зоне реакции.

5. Способ по п.1, в котором амин и фосген вводят в зону реакции и пропускают их через нее при скорости потока в каждом случае от 3 до 100 м/с, причем среднее время контакта реакционной смеси аминов и фосгена составляет от 0,01 с до менее 15 с.

6. Способ по п.1, в котором процесс проводят адиабатически.



 

Похожие патенты:
Изобретение относится к способу получения первичных ароматических диизоцианатов путем взаимодействия соответствующих первичных ароматических диаминов с фосгеном в газовой фазе.

Изобретение относится к способу получения изоцианата путем проведения реакции термического разложения сложного эфира карбаминовой кислоты. .
Изобретение относится к способу получения ароматических и алифатических изоцианатов. .
Изобретение относится к области химии, конкретно к способу получения ароматических и (цикло)алифатических диизоцианатов. .

Изобретение относится к способу получения ди- и полиизоцианатов дифенилметанового ряда. .
Изобретение относится к способу совместного получения ароматических изоцианатов и хлора. .
Изобретение относится к способу получения блокированного ди- и полиизоцианата, расплав которого может быть использован в шинной и резинотехнической промышленности для повышения адгезии резин к синтетическому волокну.
Изобретение относится к способу получения (цикло)алифатических и ароматических диизоцианатов фосгенированием (цикло)алифатических и ароматических диаминов в газовой фазе.

Изобретение относится к способу получения изоцианатов без использования токсичного фосгена. .
Изобретение относится к способу получения первичных ароматических диизоцианатов путем взаимодействия соответствующих первичных ароматических диаминов с фосгеном в газовой фазе.

Изобретение относится к реактору-смесителю типа «ротор-статор» для смешения по меньшей мере двух текучих веществ, суспензий или растворов. .

Изобретение относится к способу получения хлора каталитическим окислением хлористого водорода, в котором используемый поток хлористого водорода имеет содержание серы в элементарной или связанной форме менее 100 частей на млн, предпочтительно, менее 50 частей на млн, особенно предпочтительно, менее 5 частей на млн и, наиболее предпочтительно, менее 1 части на млн в расчете на массу потока хлористого водорода.
Изобретение относится к способу получения ароматических и алифатических изоцианатов. .
Изобретение относится к области химии, конкретно к способу получения ароматических и (цикло)алифатических диизоцианатов. .

Изобретение относится к способу получения ди- и полиизоцианатов дифенилметанового ряда. .
Изобретение относится к способу совместного получения ароматических изоцианатов и хлора. .
Наверх