Сканирующий измеритель параметров cg-двухполюсников

Изобретение относится к измерительной технике, в частности к устройствам измерения эквивалентных параметров CG-двухполюсников. Сканирующий измеритель параметров CG-двухполюсников содержит амплитудный детектор, индикаторы проводимости и емкости, интегратор, компаратор, генератор высокой частоты, соединенный через преобразователь напряжение-ток с измерительной цепью, к сигнальному входу которой и к общему проводу подключен измеряемый двухполюсник. Дополнительно введены пиковый детектор, дифференциатор, таймер, генератор прямоугольных импульсов, решающее устройство, модулирующий конденсатор. К выходу измерительной цепи подключен индикатор проводимости через пиковый детектор, первый вход компаратора - через амплитудный детектор и дифференциатор, второй вход компаратора соединен с общим проводом, выход - с первым входом таймера, второй вход которого соединен с первым выходом генератора прямоугольных импульсов, выход - со входом решающего устройства, первый выход решающего устройства соединен с управляющим входом измерительной цепи, второй - с индикатором емкости, а второй выход генератора прямоугольных импульсов соединен через интегратор с управляющим входом модулирующего конденсатора. Технический результат изобретения - повышение разрешающей способности по реактивной составляющей адмитанса CG-двухполюсников, а также уменьшение погрешности измерений. 2 ил.

 

Изобретение относится к измерительной технике, предназначено для измерения эквивалентных параметров CG-двухполюсников с повышенными диэлектрическими потерями и может быть использовано в системах производственного контроля электрорадиоэлементов и технологического контроля диссипативных веществ и сред.

Известен автоматический измеритель составляющих проводимости CG-двухполюсников, содержащий генератор высокочастотных колебаний, измерительный контур, включающий катушку индуктивности, управляемый конденсатор, модулирующий конденсатор, ключ, регулируемый аттенюатор, контролируемый двухполюсник, синхронный детектор, измерительный усилитель, блок динамического слежения, блоки контроля активной проводимости и емкости, фазовращатель [А.с. №924616 СССР, заявл. 02.10.80, опубл. 30.04.82].

Недостатком данного устройства является низкая помехоустойчивость, вызванная переходными процессами в измерительном контуре при работе ключа.

Наиболее близким решением к предлагаемому устройству является измеритель параметров диссипативных CG-двухполюсников, содержащий компаратор, амплитудные детекторы, индикатор проводимости, генератор высокой частоты, соединенный через преобразователь напряжение-ток с измерительной цепью, к информационному и общему входам которой подключен измеряемый CG-двухполюсник, а к управляющему входу - интегратор и индикатор емкости [Патент РФ №2314544, заявл. 14.04.2006, опубл. 10.01.2008].

Недостатком этого устройства является снижение разрешающей способности по реактивной составляющей адмитанса CG-двухполюсника, при возрастании погрешности измерения фазы.

Задачей изобретения является повышение разрешающей способности по реактивной составляющей адмитанса CG-двухполюсника.

Поставленная задача достигается тем, что в сканирующий измеритель параметров CG-двухполюсников, содержащий амплитудный детектор, индикаторы проводимости и емкости, интегратор, компаратор, генератор высокой частоты, соединенный через преобразователь напряжение-ток с измерительной цепью, к сигнальному входу которой и к общему проводу подключен измеряемый двухполюсник, дополнительно введены пиковый детектор, дифференциатор, таймер, генератор прямоугольных импульсов, решающее устройство, модулирующий конденсатор, причем к выходу измерительной цепи индикатор проводимости подключен через пиковый детектор, первый вход компаратора - через амплитудный детектор и дифференциатор, второй вход компаратора соединен с общим проводом, выход - с первым входом таймера, второй вход которого соединен с первым выходом генератора прямоугольных импульсов, выход - со входом решающего устройства, первый выход решающего устройства соединен с управляющим входом измерительной цепи, второй - с индикатором емкости, а второй выход генератора прямоугольных импульсов соединен через интегратор с управляющим входом модулирующего конденсатора.

На фигуре 1 изображена схема сканирующего измерителя параметров CG-двухполюсников; на фиг.2 - сканированная резонансная характеристика.

Сканирующий измеритель параметров CG - двухполюсников содержит генератор высокой частоты 1, соединенный через преобразователь напряжение-ток 2 с измерительной цепью 3. Измеряемый двухполюсник 4 подключен к сигнальному входу и общему проводу измерительной цепи 3. Первый выход измерительной цепи 3 соединен через пиковый детектор 5 с индикатором проводимости 6, второй - через амплитудный детектор 7 и дифференциатор 8 - с первым входом компаратора 9, второй вход которого соединен с общим проводом. Выход компаратора 9 соединен с первым входом таймера 10, выход которого соединен с входом решающего устройства 11. Первый выход решающего устройства 11 соединен с управляющим входом измерительной цепи 3, второй - с индикатором емкости 12. Первый выход генератора прямоугольных импульсов 13 соединен с вторым входом таймера 10, второй - через интегратор 14 с управляющим входом модулирующего конденсатора 15.

Устройство работает следующим образом.

Функция преобразования ток I - напряжение U измерительной цепи 3 имеет вид

U ( j ω ) I = 1 Y ( j ω ) ,                                ( 1 )

где комплексная проводимость равна

Y ( j ω ) = G + g L + j ω C Э - j b L ,                        ( 2 )

где

g L = r r 2 + ω 2 L 2                                                ( 3 )

- эквивалентная активная проводимость индуктивной ветви,

b L = ω L r 2 + ω 2 L 2                                     ( 4 )

- эквивалентная индуктивная проводимость, r - активное сопротивление катушки индуктивности, G - измеряемая проводимость,

С Э = C 0 + C B + C                                  ( 5 )

- эквивалентная емкость, определяемая суммой начальной емкости C0, емкости варикапа СB и измеряемой емкости С.

Модуль комплекса (2)

Y ( ω ) = ( G + g L ) 2 + ( ω C Э b L ) 2 ,          ( 6 )

фаза

При ωCЭ=bL в измерительной цепи наступает резонанс, при котором фаза

ϕ ( ω ) = 0,                                             ( 8 )

а модуль комплекса

Y ( ω ) = G + g L .                                    ( 9 )

В результате выходное напряжение по (1) достигает максимума, в котором не зависит от реактивной проводимости измерительной цепи:

U = I G + g L .                                        ( 1 0 )

При фиксированной амплитуде питающего тока и активной проводимости индуктивной ветви gL это напряжение определяется только измеряемой проводимостью G, т.е. инвариантно к емкости CG-двухполюсника.

Для поиска резонанса к измерительной цепи подключен модулирующий конденсатор 15. На управляющий вход этого конденсатора подается экспоненциально изменяющееся пилообразное напряжение, которое формируется интегрированием в блоке 14 импульсов, снимаемых со второго выхода генератора прямоугольных импульсов 13.

На этапе экспоненциального спада управляющего импульса временная зависимость емкости Cв2(t) модулирующего конденсатора близка к линейной, поэтому периодическое изменение этой емкости приводит к формированию на выходе измерительной цепи 3 переменного напряжения, огибающая которого отражает резонансную характеристику в виде периодической функции времени (фиг.2). Амплитудным детектором 7 огибающая восстанавливается, в результате формируется переменное напряжение в виде периодически повторяющейся с частотой модуляции сканированной резонансной характеристики (фиг.2).

На фигуре 2 сканированная характеристика K1(t) получена на частоте f=10 МГц при r=1 Ом, R=1 кОм, L=1,7 мкГн, С=80 пФ, G=0 и Gx=1 мСм. Кривая K2(t) получена также при емкости С=80 пФ, но при проводимости Gx=2 мСм. Видно, что изменение проводимости Gx, шунтирующей контур, отражается изменением амплитуды сканированной характеристики, но не приводит к временному сдвигу резонанса, что обеспечивает инвариантность Gx=inv(Cx). Положение максимума функций K(t) определяется только величиной Сх, что обеспечивает определение Сх=inv(Gx). Наиболее отчетливо изменение емкости контура проявляется во временном сдвиге склонов резонансных характеристик.

Для повышения точности контроля положения ветвей сканированной характеристики следует перейти от временной функции резонансной характеристики к ее производной, для чего напряжение с выхода амплитудного детектора 7 дифференцируется в блоке 8. На фиг.2 приведен один период продифференцированной сканированной характеристики D(t) на выходе дифференциатора 8. В момент прохождения резонанса функция D(t) обращается в ноль. Следовательно, достаточно зафиксировать компаратором 9 моменты перехода характеристик D(t) через ноль (для чего второй вход компаратора соединен с общим проводом), чтобы принять решение о вхождении в этот момент времени измерительной цепи 3 в резонанс. С этой целью прямоугольные импульсы с выхода компаратора 9 вводятся на первый вход таймера 10, на второй вход которого поступают импульсы с генератора прямоугольных импульсов 13. Выходное напряжение таймера поступает на вход решающего устройства 11. Решающее устройство 11 при отключенном измеряемом двухполюснике 4 (режим холостого хода) устанавливает на управляющем входе измерительной цепи 3 напряжение U0, при котором емкость Св1ХХ+C0=C1 вводит измерительную цепь 3 в резонанс в момент времени

t р е з 0 = t 0 + τ 0 ,                                 ( 1 1 )

где t0 - момент перехода управляющего импульса с фронта на срез, принимаемый за начала отсчета, τ0 - сдвиг во времени момента наступления резонанса, соответствующий холостому ходу измерительной цепи 3. На индикаторе емкости 12 решающее устройство формирует отсчет 0.

При подключении измеряемого двухполюсника 4 его емкость Сх увеличивает емкость измерительной цепи 3 до С1х, что сопровождается уменьшением временного сдвига, фиксируемого таймером 10 до τ10. Для восстановления исходного значения С1 эквивалентной емкости нагруженной измерительной цепи 3 решающее устройство 11 увеличивает напряжение на ее управляющем входе до тех пор, пока не будет восстановлено равенство τ10. При этом емкость конденсатора Св1 уменьшается до значения Св1н, при котором компенсируется дополнительная емкость Сх. Разность

С в 1 С в 1 н = C x ,                                  ( 1 2 )

следовательно, компенсирующее напряжение, сформированное решающим устройством 11, может использоваться для индикации измеряемой емкости Сх. Для этого решающее устройство 11 должно ввести на проградуированный в единицах емкости индикатор 12 напряжение, пропорциональное Сx.

Информация о проводимости Gx содержится в амплитуде сигнала, снимаемого с контура, поэтому в канал измерения проводимости Gх включен пиковый детектор 5. На выходе блока в соответствии с (10) постоянное напряжение в режиме холостого хода равно

U G 0 = I G 0 + g L ,                                        ( 1 3 )

где G0 - начальная эквивалентная активная проводимость ненагруженной измерительной цепи 3. При подключении измеряемого двухполюсника 4 после восстановления резонанса напряжение на выходе пикового детектора 5

U G н = I G x + G 0 + g L .                              ( 1 4 )

Отношение

U G 0 U G н = 1 + G x G 0 + g L .                                ( 1 6 )

Из (16) следует функция измерительного преобразования индикатора проводимости 6:

G x = ( G 0 + g L ) ( U G 0 U G н 1 ) ,                       ( 1 7 )

где g=G0+gL - параметр, определяемый при градуировке измерителя.

Таким образом, предложенное устройство позволяет инвариантно измерять Cx и Gx в режиме сканирования передаточной характеристики измерительной цепи, что, в отличие от известных технических решений, повышает точность измерений на 10…15% и обеспечивает цифровую обработку сигналов во всех звеньях измерительных цепей.

Сканирующий измеритель параметров CG-двухполюсников, содержащий амплитудный детектор, индикаторы проводимости и емкости, интегратор, компаратор, генератор высокой частоты, соединенный через преобразователь напряжение-ток с измерительной цепью, к сигнальному входу которой и к общему проводу подключен измеряемый двухполюсник, отличающийся тем, что дополнительно введены пиковый детектор, дифференциатор, таймер, генератор прямоугольных импульсов, решающее устройство, модулирующий конденсатор, к выходу измерительной цепи подключен индикатор проводимости через пиковый детектор, первый вход компаратора - через амплитудный детектор и дифференциатор, второй вход компаратора соединен с общим проводом, выход - с первым входом таймера, второй вход которого соединен с первым выходом генератора прямоугольных импульсов, выход - со входом решающего устройства, первый выход решающего устройства соединен с управляющим входом измерительной цепи, второй - с индикатором емкости, а второй выход генератора прямоугольных импульсов соединен через интегратор с управляющим входом модулирующего конденсатора.



 

Похожие патенты:

Изобретение относится к области измерительной техники и может быть использовано при физических исследованиях механизмов затухания акустических волн в твердых телах и в технике при разработке и производстве акустических ВЧ и СВЧ резонаторов и фильтров.

Изобретение относится к области измерительной техники, в частности может быть использовано в спектроскопии диэлектриков для исследования диэлектрических характеристик веществ, знание которых необходимо при дистанционном электромагнитном зондировании, диэлектрическом каротаже, изучении молекулярного строения вещества.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических величин. .

Изобретение относится к технической диагностике агрегатов машин, имеющих замкнутую систему смазки, и предназначено для анализа содержания продуктов загрязнения в работающем масле и экспресс-диагностики технического состояния машин.

Изобретение относится к измерительной технике, в частности к устройствам для измерения скорости потока газа или жидкости резистивными подогреваемыми датчиками. .

Изобретение относится к технике измерения электрических параметров полупроводниковых приборов и может быть использовано для контроля их качества. .

Изобретение относится к измерениям диэлектрической проницаемости материалов при воздействии внешних факторов, преимущественно к устройствам измерения диэлектрической проницаемости при нагреве.

Изобретение относится к измерительной технике, в частности к измерению диэлектрической проницаемости материала опорных стержней для ламп бегущей волны. .

Изобретение относится к измерительной технике и может быть использовано для определения сопротивления и индуктивности рассеяния первичной обмотки трансформатора напряжения

Изобретение относится к электроизмерительной технике, в частности к устройствам для контроля качества изоляции, характеризуемого ее пробивным напряжением, и может быть использовано в средствах для диагностики состояния межвитковой изоляции обмотки асинхронного двигателя или трансформатора. Техническим результатом является управление током разрыва в цепи диагностируемой обмотки электродвигателя. Технический результат достигается благодаря тому, что микроконтроллерное устройство диагностики межвитковой изоляции обмотки электродвигателя по ЭДС самоиндукции содержит микроконтроллер 1, делитель напряжения 2, первый RC-фильтр 3, управляемый ключ 4, индикатор 5, второй RC-фильтр 6, источник тока 7 управляемый и диагностируемую обмотку 8 электродвигателя. При этом выход второго ШИМ микроконтроллера подключен к входу второго RC-фильтра 6, выход которого подключен к входу управления источника тока 7, первая клемма которого подключена ко второму выводу ключа 4, а вторая клемма подключена ко второму выводу диагностируемой обмотки 8. 1 ил.

Изобретение относится к СВЧ технике, а именно к способам определения коэффициента потерь tgδ диэлектриков методом объемного резонатора. Образец измеряемого диэлектрика помещают в область максимального электрического поля резонатора, возбужденного на моде Е010, измеряют добротность резонатора с образцом и без образца и по результатам измерений судят о значении tgδ диэлектриков. Заявленный способ характеризуется тем, что используют эффект роста добротности системы резонатор-диэлектрик при вводе образца диэлектрика. Если при вводе образца добротность системы увеличивается, собственную добротность резонатора увеличивают до такого максимального значения Q, при котором добротность системы при вводе диэлектрика не меняется, и tgδ образца измеряемого диэлектрика определяют из соотношения: tgδ=(ε-1)/εQ, где ε - диэлектрическая постоянная образца диэлектрика; Q - собственная добротность резонатора, при которой при вводе образца диэлектрика добротность системы резонатор-диэлектрик не меняется; а если при вводе образца добротность системы уменьшается, предварительно уменьшают добротность резонатора до такого значения, при котором при вводе образца добротность системы возрастает, и далее проводят измерения в соответствии с описанной выше процедурой. Технический результат заключается в расширении диапазона измеряемых добротностей и повышении точности измерения коэффициента потерь tgδ диэлектриков. 1 з.п. ф-лы.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано для измерения физических величин, контролируемых резистивными датчиками. Микроконтроллерный измерительный преобразователь сопротивления в двоичный код с генератором, управляемым напряжением, содержит первый резистор 1 (R1), второй резистор 2 (R2), третий резистор 3 (R3), четвертый резистор 4 (R4), управляемый напряжением и снабженный входом разрешения генерирования генератор 5 и МК 6. Первые выводы резисторов 1, 2, 3 и 4 подключены соответственно к первому, второму, третьему и четвертому выходам МК 6, вторые выводы резисторов 1, 2, 3 и 4 подключены к входу управления напряжением генератора 5, выход которого подключен к счетному входу встроенного в МК 6 двоичного счетчика, пятый выход МК 6 подключен к входу разрешения генерирования генератора 5. Технический результат заключается в повышении чувствительности. 1 ил.

Изобретение относится к области измерительной техники, в частности может быть использовано в спектроскопии диэлектриков для исследования диэлектрических характеристик веществ, знание которых необходимо при дистанционном электромагнитном зондировании, диэлектрическом каротаже, изучении молекулярного строения вещества. В способе измерения комплексной диэлектрической проницаемости жидких и сыпучих тел в широком диапазоне частот в одной ячейке, используемой в диапазоне частот выше 100 МГц как отрезок коаксиальной линии, а в диапазоне ниже 1 МГц как цилиндрический конденсатор, при этом в диапазоне частот выше 100 МГц диэлектрическая проницаемость вычисляется через измеренные значения комплексного коэффициента передачи электромагнитной волны (параметра матрицы рассеяния S12), а в диапазоне частот ниже 1 МГц - через измерение полной проводимости, новым является то, что для измерений в диапазоне частот 0,3-100 МГц используется дополнительный отрезок коаксиальной линии волновым сопротивлением 50 Ом сечения, большего, чем у ячейки, внутренний диаметр внешнего проводника которой определяют по формуле D 1 = d 1 exp ( Z 01 60 ) , где d1 - внешний диаметр корпуса ячейки; Z01 - волновое сопротивление дополнительного отрезка коаксиальной линии, в которой размещена ячейка, при этом ячейку включают как цилиндрический конденсатор в разрыв внутреннего проводника дополнительного отрезка коаксиальной линии, имеющего два СВЧ разъема, к центральным проводникам которых подключены с одной стороны центральный проводник ячейки, а с другой стороны - корпус ячейки через согласующий переходник в виде отрезка конической линии волновым сопротивлением 50 Ом, и производят его калибровку, для чего определяют параметры эквивалентной схемы дополнительного отрезка коаксиальной линии с расположенной в ней пустой ячейкой, затем заполняют ячейку исследуемым веществом и в диапазоне частот 0,3-100 МГц измеряют комплексный коэффициент передачи (параметр матрицы рассеяния S12) и по формулам, связывающим КДП с параметром S12, определяют КДП. Данный способ измерения КДП обеспечивает ее измерение в одной ячейке с низкой погрешностью во всем частотном диапазоне от 1 кГц до 6000 МГц. 9 ил.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения и контроля неэлектрических величин резистивными датчиками. Микроконтроллерный измерительный преобразователь с уравновешиванием резистивного моста Уитстона методом широтно-импульсной модуляции содержит первый резистор 1, второй резистор 2 (он же резистивный датчик), третий резистор 3, четвертый резистор 4, пятый резистор 5, шестой резистор 6, RC-фильтр 7 и микроконтроллер 8. Резисторы 1 и 2 первыми выводами подключены к входу RC-фильтра 7, выход которого подключен к первому входу АК микроконтроллера 8, первый вывод резистора 5 подключен ко второму выводу резистора 2 и к первому выводу резистора 6, второй вывод резистора 5 подключен к выходу ШИМ микроконтроллера 8, первые выводы резисторов 3 и 4 подключены ко второму входу АК микроконтроллера 8, вторые выводы резисторов 1, 3, 4 и 6 подключены соответственно к первому, второму, третьему и четвертому дискретным выходам микроконтроллера 8. Технический результат заключается в повышении точности микроконтроллерного измерительного преобразователя. 1 з.п. ф-лы, 1 ил.

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого устройства является повышение точности измерения. Устройство для измерения свойства диэлектрического материала содержит генератор электромагнитных колебаний, первый развязывающий элемент, соединенный выходом со входом фазовращателя, передающую и приемную антенны, детектор, подключенный выходом к блоку обработки информации, и аттенюатор. Для достижения технического результата введены первый и второй волноводные тройники и второй развязывающий элемент, причем выход генератора электромагнитных колебаний соединен с первым плечом первого волноводного тройника, второе плечо которого подключено к входу первого развязывающего элемента, выход фазовращателя через аттенюатор соединен с первым плечом второго волноводного тройника, второе плечо которого подключено к приемной антенне, третье плечо второго волноводного тройника соединено со входом детектора, третье плечо первого волноводного тройника через второй развязывающий элемент соединен с передающей антенной. 1 ил.

Изобретение относится к области радиотехники и электроники и может быть использовано для измерения электрофизических параметров материалов. Технический результат заключается в повышении разрешающей способности до порядка 1 микрометра, а также повышении чувствительности до уровня, достаточного для определения параметров материалов с диэлектрической проницаемостью в диапазоне 1.5÷400 и проводимостью в диапазоне 2·10-2 Oм-1·м-1÷107 Ом-1·м-1.Заявленное устройство содержит СВЧ-генератор с подключенным к нему прямоугольным волноводом, имеющим измерительное устройство с волноводной резонансной системой в качестве оконечного устройства, причем оконечное устройство содержит емкостную металлическую диафрагму, согласно решению на емкостную металлическую диафрагму наложен плоскопараллельный образец диэлектрика с площадью, равной площади фланца волновода, а на образец диэлектрика наложен зонд в виде металлической проволоки с длиной от 12 до 20 мм и диаметром от 0,1 до 0,5 мм с заостренным концом, изогнутым под прямым углом, отрезок зонда большей длины расположен на диэлектрической пластине перпендикулярно щели в диафрагме, отрезок зонда с заостренным концом меньшей длины перпендикулярен плоскости образца диэлектрика, при этом толщина плоскопараллельного образца диэлектрика t выбрана из условия t ε 〈 〈 λ в , где λв - длина волны основного типа в волноводе, ε - диэлектрическая проницаемость пластины. 3 ил., 1 прим. .

Изобретение относится к измерительной технике и предназначено для измерения параметров диссипативных CG-двухполюсников - эквивалентов емкостных измерительных преобразователей. Устройство содержит первый и второй источники образцового напряжения, электронный коммутатор, измеряемый CG-двухполюсник. Новым является использование для измерения параметров CG-двухполюсников электронного ключа, интегратора, переменного резистора R, операционного усилителя, инвертирующего триггера Шмидта, измерителя временных интервалов и измерителя напряжения. Технический результат заключается в повышении чувствительности к малым емкостям измерительного преобразователя на низких частотах. 3 ил.

Изобретение относится к технике измерения диэлектриков методом объемного резонатора при нагреве в диапазоне температур до 2000°C. Устройство содержит цилиндрический резонатор, ограниченный с одной стороны торцевой стенкой волновода СВЧ, а с другой стороны подвижным поршнем со штоком, загрузочное окно для установки образца исследуемого материала, измеритель температуры, подвод защитного газа, механизм перемещения поршня со штоком. При этом торцевая стенка волновода СВЧ выполнена водоохлаждаемой, а нагреватель содержит ряд трубчатых элементов из графита с односторонним выводом на токоподводы. Поршень установлен на полом составном штоке, нагреваемая часть которого выполнена в виде тонкостенной трубы из термостойкого материала, а другая в виде трубы с водяным охлаждением и снабжена фланцем с уплотнительной прокладкой. Причем к водоохлаждаемой части штока герметично подсоединен оптический пирометр, а шток закреплен на платформе модуля линейного перемещения. Механизм перемещения поршня со штоком включает два последовательно работающих модуля линейных перемещений с электромеханическими приводами, совмещенных с единым датчиком измерения перемещений, а подвод защитного газа размещен в зоне окуляра пирометра. Технический результат заключается в повышении точности измерения параметров диэлектриков при температурах до 2000°C и автоматизации процесса измерения. 1 ил.
Наверх