Способ уменьшения влияния многолучевого распространения радиосигналов навигационных спутников и устройство его реализации

Изобретение относится к области радиотехники, а именно к навигации воздушных судов (ВС), и может быть использовано для содействия указанным ВС, а также другим движущимся объектам, таким как морские суда и т.п. Технический результат заключается в уменьшении влияния многолучевого распространения радиосигналов навигационных спутников (НС) на качество навигационной информации. Для этого используется высокоточная наземная стационарная контрольная станция (СКС) с заранее точно определенными параметрами дисклокации, в которой через входящие в состав антенный модуль, распределитель радиосигналов и группу приемников принимают сигналы НС, на каждом приемнике усиливают принятые сигналы, выделяют полезную составляющую из смеси с помехами и шумами и преобразуют полученный сигнал на промежуточную частоту с помощью радиочастотного модуля. Затем осуществляют аналого-цифровое преобразование на АЦП, анализируют данные совместно с данными метеодатчиков и отбирают сигналы качества навигационной информации и поправок. При этом прием каждой посылки осуществляется одновременно на центральной и n дополнительных антеннах, разнесенных на m метров относительно центральной, и принятые дальномерные коды с одним временем излучения перед обработкой усредняются, не учитывая код, соответствующий сигналу с наибольшим запаздыванием, для каждого НС. 1 ил.

 

Изобретение относится к области навигации воздушных судов (ВС) и может быть использовано для их надежной навигации, а также других движущихся объектов, например, морских судов и т.п..

Известен способ, описанный в полезной модели «Устройство для формирования поправок в системе радионавигации» (патент №39701 по МПК 7 G01C 21/24 за 2004 г., бюл. №22 от 10.08.2004 г.), включающий прием радиосигналов навигационных спутников (НС) через последовательно соединенные антенный модуль, распределитель радиосигналов и группу приемников, при этом на каждом приемнике осуществляют усиление радиосигналов НС, селекцию полезной их составляющей из смеси с помехами и шумами и преобразование очищенного радиосигнала с высокой частоты на промежуточную с помощью радиочастотного модуля, после чего осуществляют аналого-цифровое преобразование с помощью аналого-цифрового преобразователя (АЦП), а затем осуществляют анализ на вычислителе выходных данных группы приемников совместно с данными метеодатчиков температуры, давления и влажности воздуха и выработку сигналов качества навигационной информации и поправок к ней для ее потребителей.

Известно также устройство, осуществляющее упомянутый выше способ, описанное в той же, указанной выше, полезной модели, содержащее последовательно соединенные антенный модуль, распределитель радиосигналов, группу спутниковых приемников с радиочастотным трактом и цифровой обработкой, вычислитель и группу выходов вычислителя для выдачи информации потребителям.

Недостатками известных способа и устройства, предназначенных для решения относительно узкой задачи - выработки навигационных поправок для ВС на основе простейшей не корреляционной обработки сигналов от относительно небольшого числа HC (в отсутствии на тот момент сигналов от НС спутниковых систем GALILEO и частично ГЛОНАСС), является относительная ненадежность вырабатываемых поправок для ВС, особенно в случаях многолучевого распространения радиосигналов HC, когда на спутниковые приемники поступают истинный радиосигнал НС и его отражение (например, от горы и т.п.), имеющее такие же служебные кодовые признаки.

Известен наиболее близкий по технической сущности к заявляемому изобретению способ по изобретению «Способ определения недопустимой аномалии принимаемых сигналов навигационных спутников…» (Патент №2393504 от 23.10.2008 г. по МПК 7 G01S 19/07, Бюл. №18 от 27.06.2010 г.), включающий прием радиосигналов НС последовательно через антенный модуль, распределитель радиосигналов и группу приемников, при этом на каждом приемнике осуществляют усиление радиосигналов НС, селекцию полезной их составляющей из смеси с помехами и шумами и преобразование очищенного радиосигнала с высокой частоты на промежуточную с помощью радиочастотного модуля, после чего осуществляют аналого-цифровое преобразование с помощью АЦП, а затем осуществляют анализ на вычислителе выходных данных группы приемников совместно с данными метеодатчиков температуры, давления и влажности воздуха и выработку сигналов качества навигационной информации и поправок к ней для ее потребителей, причем прием и анализ радиосигналов НС осуществляют с помощью высокоточной наземной стационарной контрольной станции (СКС) с заранее точно определенными параметрами ее дислокации.

Наиболее близким по технической сущности к заявляемому устройству является устройство, описанное в указанном выше изобретении, содержащее в составе СКС последовательно соединенные антенный модуль, распределитель радиосигналов, группу спутниковых приемников, вычислитель и группу выходов вычислителя для выдачи информации потребителям, а также модуль метеодатчиков, группа выходов которого соединена с соответствующей группой входов вычислителя, антенный модуль представляет собой дислокационную широкополосную антенну с малошумящим высокочастотным усилителем.

Недостатками способа и устройства известного изобретения также является невозможность обеспечить качественную спутниковую навигацию ВС в условиях многолучевого распространения радиосигналов HC.

Техническим результатом и целью заявляемого изобретения является устранение недостатка прототипа путем уменьшения влияния многолучевого распространения радиосигналов HC за счет усреднения кодов дальности, получаемых от HC через дислокационную антенну и n дополнительных антенн, разнесенных на m метров с разных сторон относительно центральной дислокационной антенны. При этом в зависимости от количества дополнительных антенн и расстояния их разнесения отрицательное влияние многолучевости уменьшается на 10-90 процентов.

Указанные технический результат и цель достигаются тем, что способ уменьшения влияния многолучевого распространения радиосигналов HC, осуществляемый с помощью высокоточной наземной стационарной контрольной станции (СКС) с заранее точно определенными параметрами ее дислокации, включающий прием радиосигналов НС через входящие в СКС последовательно соединенные антенный модуль, распределитель радиосигналов и группу приемников, при этом на каждом приемнике осуществляют усиление радиосигналов HC, селекцию полезной их составляющей из смеси с помехами и шумами и преобразование очищенного радиосигнала с высокой частоты на промежуточную с помощью радиочастотного модуля, после чего осуществляют аналого-цифровое преобразование с помощью АЦП, а затем осуществляют анализ на вычислителе выходных данных группы приемников совместно с данными метеодатчиков температуры, давления и влажности воздуха и выработку сигналов качества навигационной информации и поправок к ней для ее потребителей, а также тем, что прием каждой посылки радиосигналов HC осуществляют одновременно на центральной дислокационной антенне и на n дополнительных антенн, разнесенных на m метров с разных сторон относительно центральной дислокационной антенны, и составляющих вместе с ней антенный модуль данной СКС, при этом принятые каждой антенной дальномерные коды текущей посылки радиосигнала данного HC с одним и тем же моментом времени излучения перед дальнейшей обработкой в приемниках усредняются, аналогично усредняются дальномерные коды других посылок радиосигналов данного и других HC.

Указанные технический результат и цель достигаются также тем что, устройство уменьшения влияния многолучевого распространения радиосигналов HC, содержащее в составе СКС последовательно соединенные антенный модуль, распределитель радиосигналов, группу спутниковых приемников, вычислитель и группу выходов вычислителя для выдачи информации потребителям, а также модуль метеодатчиков, группа выходов которого соединена с соответствующей группой входов вычислителя, антенный модуль содержит дислокационную широкополосную антенну с малошумящим высокочастотным усилителем, а также - n дополнительных антенн, аналогичных дислокационной антенне, разнесенных на m метров с разных сторон относительно центральной дислокационной антенны.

На фиг.1 представлена блок-схема устройства, реализующего заявленный способ для случая n=4.

Устройство содержит антенный модуль 1 с центральной дислокационной антенной 1.1 и четырьмя дополнительными антеннами 1.2, …1.5, распределитель 2 радиосигналов, группу 3 спутниковых приемников, вычислитель 4, метеодатчики 5 температуры, давления и влажности воздуха и группу 6 выходов вычислителя для выдачи информации потребителем (на воздушные суда и т.п.).

Для пояснения на фиг.1 показаны не входящие в устройство группа 7 видимых в данное время устройством навигационных спутников (HC) 7.1, 7.2, …7x, препятствие 8 (например, гора, или мачта или т.п.), прямые (истинные) лучи 9, воспринимаемые антеннами 1.1, …1.5, минуя препятствие непосредственно от HC 7.1 (от других HC 7.2, …7X аналогично) и отраженный от препятствия луч 10.

Также для пояснения показан параметр m в метрах разнесения дополнительных антенн 1.2, …1.5 от центральной дислокационной антенны 1.1. Уместно подчеркнуть, что чем больше значение m, тем лучше работает заявленный способ. Автором получены хорошие результаты при m=10 м.

Устройство уменьшения влияния многолучевого распространения радиосигналов HC, содержащее в составе СКС последовательно соединенные антенный модуль 1, распределитель 2 радиосигналов, группу 3 спутниковых приемников, вычислитель 4 и группу 6 выходов вычислителя 4 для выдачи информации потребителям, а также модуль 5 метеодатчиков, группа выходов которого соединена с соответствующей группой входов вычислителя 4, антенный модуль 1 содержит дислокационную широкополосную антенну 1.1 с малошумящим высокочастотным усилителем, кроме того антенный модуль 1 содержит n дополнительных антенн 1.2, …1.5, аналогичных дислокационной антенне, разнесенных на m метров с разных сторон относительно центральной дислокационной антенны 1.1.

В устройстве использованы элементы и материалы широкого применения в промышленности РФ.

Способ осуществляется следующим образом.

В прототипе используют только одну или несколько (с целью дублирования, резервирования и т.п.) антенн 1.1, установленных без существенного разнесения друг от друга, т.е. - условно в одной точке, представляющей собой очень точно выверенную константу дислокации СКС с соответствующей географической координатой Земли. При этом совмещенные антенны имеют одну и ту же координату дислокации и работают одинаково. Поэтому далее будем оперировать только одной из них, называя ее дислокационной.

В реальных условиях конкретной местности Земли на дислокационную антенну 1.1 может попадать от спутника 7.1 (для других спутников 7.2, …7.Х аналогично) не только истинный луч 9, но и луч 10, отраженный, например, от горы 8. Совершенно очевидно, что воспринятый в качестве истинного в приемниках 3 и вычислителе 4 по лучу 10 будет использоваться совершенно другая дальность СКС от спутника 7.1, что приведет к искажению поправки на выходе 6.

В предлагаемом способе используют дополнительные антенны 1.2, …1.5, разнесенные относительно дислокационной антенны 1.1 (фиг.1).

Из чертежа видно, что за счет разнесения дополнительных антенн 1.2, …1.5 относительно дислокационной антенны 1.1 должен измениться угол отражения луча 10, чтобы попасть на антенны 1.2 и 1.4 (уменьшиться) и 1.3 и 1.5 (увеличиться). Однако отражающая поверхность случайных препятствий 8 (гора и т.п.), как правило, сильно отличается по своим свойствам от реальных антенн, имея узкую или неравномерную и изрезанную диаграмму направленности отраженного луча 10 и его ослабление. Поэтому имеется весьма большая вероятность того, что отраженный луч 10 кроме дислокационной антенны 1.1 не будет воспринят всеми дополнительными антеннами 1.2, …1.5 или частью из них. Причем, чем больше значения пит, тем выше эта вероятность.

Автором данной заявки на практике реализован рассматриваемый способ при n=4 и m=10 м и получено уменьшение влияния многолучевого распространения радиосигналов от HC на 10-90% в зависимости от вида и удаленности препятствия 8.

Следует иметь ввиду, что HC 7.1, …7.Х вращаются вокруг Земли на различных орбитах с удалением от нее на 20000 км. При этом дальность от каждого HC до антенны 1.1 определяют как произведение скорости света (300000 км/с) на время прохождения радиосигнала от HC до антенны 1.1, а каждый радиосигнал содержит в себе точные коды времени его излучения (на HC имеются атомные часы системы единого времени) и географической координаты положения HC в пространстве в момент излучения соответствующего радиосигнала. Приемники группы 3, синхронизируясь с системой единого времени, получая радиосигнал (для простоты используют также термин луч, являющийся синонимом весьма сложного радиосигнала), точно определяют время его прохождения от HC до антенны.

Для случая, когда в качестве отражающего луч 10 препятствия 8 использовалась гора, удаленная от дислокационной антенны 1.1 на 120 км, дальность луча 10 от HC 7.1 до антенны 1.1 увеличилась на 0,006 часть от истинной дальности луча 9. Это относительно большая погрешность и поэтому этот ложный код дальности желательно не пропускать на дальнейшую обработку в группе 3 приемников и вычислителе 4. Этому и служит в способе усреднение дальностей, полученных антеннами 1.1, …1.5 для одного и того же радиосигнала (конкретной радиопосылке), привязанного к точному моменту времени его излучения на HC.

Теперь рассмотрим само усреднение для приведенных выше условий с учетом, например, того, что ложное отражение данного радиосигнала принимает только дислокационная антенна 1.1. Тогда на Земле устройством по этому радиосигналу будут приняты всего шесть соответствующих посылок (5 истинных - по одной через каждую антенну 1.1, …1.5 - лучи 9 и одна ложная через антенну 1.1 с соответствующей задержкой - отраженный луч 10), являющихся следствием излучения на НС 7.1 в конкретный момент времени (аналогично для других моментов времени и для других HC).

Соответствующие спутниковые приемники группы 3 (отдельные для различных систем ГЛОНАСС, GPS и ГАЛИЛЕО) точно определяют соответствующие дальности через полученные радиосигналы от HC как произведения скорости света на время прохождения радиосигнала от HC до антенны.

Если взять для простоты расчета вместо реальных значений дальности (десятки тысяч км) относительные значения дальности, причем за единицу - относительную дальность от HC 7.1 до антенн 1.1, …1.5, пренебрегая разбросом дополнительных антенн 1.2, …1.5 вокруг центральной антенны 1.1, а относительную дальность по лучу 10, как указывалось выше, - 1,006, то усреднение выразится: (5+1,006)/6=1,001, что уменьшает влияние отраженного луча 10 более чем на 90%.

Устройство работает следующим образом.

Периодически излучаемые группой 7 видимых HC 7.1, …7X радиосигналы воспринимаются антеннами 1.1, …1.5 антенного модуля 1 как прямыми истинными лучами 9, так и отраженным лучом 10 от препятствия 8. От антенного модуля 1 радиосигналы через распределитель 2 радиосигналов (необходим для согласованного распределения без волновых отражений высокочастотных радиосигналов между основными, дублирующими и резервными спутниковыми приемниками группы 3 для различных систем ГЛОНАСС, GPS и ГАЛИЛЕО) поступают на соответствующие приемники, где осуществляется по мере их поступления расчет дальностей с привязкой их к конкретным спутникам и их координатам, которые затем упорядоченно записываются в память вычислителя 4 отдельно по каждому НС каждой навигационной системы, куда также поступают данные метеодатчиков для учета особенностей распространения радиосигналов. В вычислителе определяются расчетные координаты местоположения антенн устройства по трем видимым HC каждой навигационной системы, которые затем сопоставляются с заведомо известными координатами дислокации устройства (СКС), на основании чего делается заключение о исправности/неисправности всех HC всех навигационных систем и вырабатываются соответствующие поправки для ВС через группу 6 выходов вычислителя.

Способ уменьшения влияния многолучевого распространения радиосигналов навигационных спутников (НС), осуществляемый с помощью высокоточной наземной стационарной контрольной станции (СКС) с заранее точно определенными параметрами ее дислокации, включающий прием радиосигналов НС через входящие в СКС последовательно соединенные антенный модуль, распределитель радиосигналов и группу приемников, при этом на каждом приемнике осуществляют усиление радиосигналов НС, селекцию полезной их составляющей из смеси с помехами и шумами и преобразование очищенного радиосигнала с высокой частоты на промежуточную с помощью радиочастотного модуля, после чего осуществляют аналого-цифровое преобразование с помощью АЦП, а затем осуществляют анализ на вычислителе выходных данных группы приемников совместно с данными метеодатчиков температуры, давления и влажности воздуха и выработку сигналов качества навигационной информации и поправок к ней для ее потребителей, отличающийся тем, что прием каждой посылки радиосигналов НС осуществляют одновременно на центральной дислокационной антенне и на n дополнительных антенн, разнесенных на m метров с разных сторон относительно центральной дислокационной антенны и составляющих вместе с ней антенный модуль данной СКС, при этом из принятых каждой антенной дальномерных кодов текущей посылки радиосигнала данного НС с одним и тем же моментом времени излучения отбрасывают дальномерный код с наибольшим значением, соответствующим отраженному сигналу с наибольшим запаздыванием, а оставшиеся дальномерные коды перед дальнейшей обработкой в приемниках усредняются, аналогично усредняются дальномерные коды других посылок радиосигналов данного и других НС.



 

Похожие патенты:

Изобретение относится к области радиотехники, а именно к способу обработки радионавигационных сигналов от спутников, передающих радионавигационные сигналы на двух различных частотах, и может быть использовано для определения местоположения и навигации с помощью спутника.

Изобретение относится к области радиотехники, а именно спутниковому позиционированию, и может быть использовано для определения координат местоположения в глобальной навигационной спутниковой системе.

Изобретение относится к области радиотехники, а именно к системам для мониторинга, и может быть использована для мониторинга группировки спутников системы позиционирования.

Изобретение относится к области радионавигации, а именно к способам определения координат с использованием спутниковых радионавигационных систем (СРНС) ГЛОНАСС и/или GPS и может быть использовано в приемниках СРНС различного назначения.

Изобретение относится к области радиотехники, а именно к осуществлению позиционирования с использованием информации содействия в повышении чувствительности (SA) с помощью спутниковых систем позиционирования (SPS), и может быть использовано в сетях беспроводной связи.

Изобретение относится к области радиотехники, а именно к обработке сигналов навигации, и может быть использовано в спутниковой системе позиционирования (SPS). .

Изобретение относится к области радиотехники, а именно к услугам, основанным на определении местоположения посредством глобальной навигационной спутниковой системы (GNSS), и может быть использовано для обеспечения идентификации спутников и частот спутников GNSS в спецификациях системы GNSS, использующей данные поддержки (A-GNSS).

Изобретение относится к области радиотехники, а именно к услугам, основанным на определении местоположения посредством глобальной навигационной спутниковой системы (GNSS), и может быть использовано для обеспечения идентификации спутников и частот спутников GNSS в спецификациях системы GNSS, использующей данные поддержки (A-GNSS).

Изобретение относится к области радиотехники, а именно к радиозондированию, и может быть использовано при разработке систем радиозондирования атмосферы (СР) на основе использования сигналов спутниковых навигационных радиоэлектронных систем (СНРС) GPS/ГЛОНАСС.

Изобретение относится к области радиотехники, а именно к уменьшению атмосферных ошибок в измерениях кода и фазы несущей, основанных на сигналах, принимаемых со множества спутников, и может быть использовано в глобальной навигационной спутниковой системе.

Изобретение относится к области радионавигации и может быть использовано в системах определения местоположения и слежения за траекторией перемещающихся в надземном пространстве объектов по сигналам глобальных навигационных спутниковых систем

Изобретение относится к области радиотехники, а именно к системе и способу для разрешения неоднозначностей, ассоциированных с сигналами, принимаемыми от космических аппаратов (SV) в спутниковой навигационной системе, и может быть использовано для определения местоположения на основе сигналов, принимаемых от геолокационных спутников

Изобретение относится к технике связи и может использоваться для определения местоположения подвижных объектов

Изобретение относится к области радиотехники, а именно к позиционированию с использованием сигналов от региональных спутниковых систем, и может быть использовано в навигационном приемнике

Изобретение относится к области радиотехники, а именно к спутниковой навигации с помощью системы ГЛОНАСС, и может быть использовано для позиционирования приемника

Изобретение относится к области систем мониторинга смещения инженерных сооружений и может быть использовано для ведения непрерывного контроля смещений и колебаний элементов конструкций мостов, плотин, башен и других инженерных сооружений с целью ранней диагностики целостности сооружения, а также оперативного обнаружения потери устойчивости сооружения. Технический результат заключается в повышении точности расчета характеристик смещений инженерных сооружений и обеспечении непрерывного контроля параметров смещений инженерных сооружений. Для этого система содержит измерительный модуль, включающий навигационную антенну ГЛОНАСС/GPS, навигационный приемник ГЛОНАСС/GPS, контроллер с энергонезависимой памятью, приемопередающий модуль связи, аккумуляторную батарею, устройство зарядки аккумуляторной батареи, датчиковую аппаратуру измерительного модуля, внешнюю датчиковую аппаратуру, автоматизированное рабочее место оператора на базе ПЭВМ с процессором. 2 ил.

Изобретение относится к области радиотехники, а именно к области спутниковых навигационных систем, и может быть использовано в сети для расчета и выдачи ионосферных коррекций пользователям. Технический результат заключается в обеспечении повышенной надежности в коммуникационной структуре ионосферных коррекций с использованием уже разработанных линий связи самолета в направлении наземного сегмента, повышении точности коррекций за счет отсутствия затрагивания измерений вкладами локальных погрешностей, обеспечении возможности выявлять малые ионосферные возмущения за счет более тонкой дискретизации сетки ионосферных коррекций, а также отсутствии ограничений по перекрытию морскими зонами или зонами горных массивов. Для этого сеть содержит авиационный сегмент (200), содержащий сегмент авиационного пользователя, образованный множеством летательных аппаратов (2) с радиочастотными приемниками на борту (21), с возможностью измерять задержки навигационных сигналов, излучаемых спутниками (GNSS), и авиационное средство (5) связи передачи данных между множеством летательных аппаратов (2) и наземным сегментом (300) для передачи измерений в наземный сегмент (300), а также средства, на уровне наземного сегмента (300), приема измерений, используемых для расчета упомянутой сетки, причем эти измерения задержек поступают от множества летательных аппаратов (2) и от множества наземных станций (SBAS G). 2 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к области радиотехники, а именно к определению местоположения, и может быть использовано для определения опорного местоположения базовой станции в дифференциальной глобальной навигационной спутниковой системе (ГНСС). Технический результат заключается в обеспечении возможности определения опорного местоположения базовой станции с высокой заданной точностью. Для этого базовая станция включает запоминающее устройство, логический контроллер и ГНСС-приемник. Сохраненные опорные местоположения хранятся в запоминающем устройстве в виде наборов координат, ГНСС-приемник определяет текущее оценочное местоположение базовой станции в виде набора координат, содержащего компоненты. При этом логический контроллер считывает сохраненное опорное местоположение и преобразует компоненты сохраненного опорного местоположения и компоненты текущего оценочного местоположения в формат двоичной строки, после чего устанавливают совпадение текущего оценочного местоположения с сохраненным опорным местоположением путем установления совпадения компонент двоичной строки, соответствующей текущему оценочному местоположению, с компонентами двоичной строки, соответствующей сохраненному опорному местоположению. Если установлено, что сохраненное опорное местоположение совпадает с текущим оценочным местоположением, принимают сохраненное местоположение в качестве опорного местоположения базовой станции. 3 н. и 12 з.п. ф-лы, 6 ил.

Изобретение относится к области радиотехники, а именно к спутниковым навигационным системам, и может быть использовано для предоставления средства оценки индикации целостности (11) спутниковой навигационной системы. Технический результат заключается в решении проблемы оценки запаса целостности спутниковой навигационной системы для событий выхода из строя очень низкой вероятности, ниже или равной приблизительно 10-7. Для этого, чтобы оценить индикацию целостности (11) системы относительно погрешностей определения местоположения (2), которые должны быть очень низкой вероятности, ниже или равной приблизительно 10-7, реализуют в реальном времени этапы: измерения данных, рассчитанных системой; расчета модели распределения Н погрешностей расчета определения местоположения (2) системы; определения параметров, характеризующих модель распределения (H); моделирования в области вероятностей хвоста распределения H(x) вычислительным средством в зависимости от упомянутых параметров, применяемых в теории экстремальных чисел; сравнения в реальном времени распределения погрешностей определения местоположения с порогом допуска, позволяющим представить индикацию целостности; и передачи в реальном времени индикации целостности (11) системы. 2 н. и 5 з.п. ф-лы, 3 ил.

Изобретение относится к области радиотехники, а именно к радионавигации, и может быть использовано в спутниковой радионавигационной системе. Технический результат заключается в обеспечении защиты пользователя радионавигационного приемника от аберрантных измерений псевдорасстояний. Для этого погрешность измерения детектируют при помощи статистического метода оценки на основании вычисления остатков измерений, что позволяет, в частности, автономно от любого наземного сегмента (то есть с использованием функции RAIM) повысить эффективность имеющегося в наличии приемника (называемого «первичным») без функции контроля целостности, детектировать возможные погрешности, искажающие входные измерения вычисления положения, за счет использования робастного статистического алгоритма оценки, то есть алгоритма, не подверженного влиянию погрешностей измерений, и с применением динамического критерия, и вычислять робастную коррекцию для положения, выдаваемого первичным приемником, с исключением любой такой детектируемой погрешности. 7 з.п. ф-лы, 1 ил.

Изобретение относится к области радиотехники, а именно к навигации воздушных судов, и может быть использовано для содействия указанным ВС, а также другим движущимся объектам, таким как морские суда и т.п

Наверх