Способ получения заготовок сталей аустенитного класса с нанокристаллической структурой

Изобретение относится к области металлургии, преимущественно к обработке металлов давлением, а именно к технологии получения заготовок сталей аустенитного класса с нанокристаллической структурой, и может быть применено при изготовлении сосудов высокого давления для теплоэнергетики и химической промышленности. Способ изготовления заготовок включает закалку заготовки, многократную ковку с последовательным изменением оси ориентации на 90° в интервале температур 773-923 К с суммарной истинной степенью деформации не менее 3 и последующий отжиг при температуре выше температуры изотермической ковки на 50К в течение 1-5 часов. Технический результат заключается в получении заготовки аустенитной стали с нанокристаллической структурой и повышенными прочностными свойствами. 1табл., 2 ил., 1пр.

 

Изобретение относится к области металлургии, преимущественно к обработке металлов давлением, а именно к технологии получения заготовок сталей аустенитного класса с нанокристаллической структурой, и может быть применено при изготовлении сосудов высокого давления для теплоэнергетики и химической промышленности.

Известные способы измельчения зерен можно условно разделить на три группы. К первой группе относят чисто металлургические процессы, основанные на варьировании температурно-скоростных условий кристаллизации, легировании расплава модифицирующими элементами как Nb, Ti, Zr, Al, V, ультразвуком или электромагнитном воздействии на расплав [1], сверхбыстрой закалке из лент [2], испарении и конденсации материала в инертной среде [3, 4], плазменном распылении [5, 6], электровзрыве проводников [7], неравновесной конденсации в высокоскоростных потоках газа [8, 9] и т.д. Вторая группа методов измельчения зерен в сплавах связана с методами химического синтеза, например, получение многокомпонентных ультрадисперсных порошков гетерофазным взаимодействием в щелочных растворах, электролитическое послойное осаждение и аморфная кристаллизация [10, 11]. Третья группа методов включает различные способы обработки материалов, такие как традиционная термомеханическая обработка (ТМО), различные виды интенсивной пластической деформации (ИПД) с динамической [12, 13] или последующей статической [14] рекристаллизацией, а также обработка порошковых материалов в шаровых мельницах (так называемое механическое легирование) [15].

Методами первой и второй групп, как правило, получают нанокристаллические структуры с размером зерен порядка 10 нм. Большинство из них основано на компактировании порошков. Некоторые из этих методов были успешно использованы для формирования и изучения структуры и свойств нанокристаллических материалов. Однако развитие этих способов проблематично в связи с наличием пористости (до 10%) в компактированных, спеченных образцах, их высокой хрупкостью и сложностью контролирования химической чистоты сплава в процессе его получения. Кроме того, перечисленные методы не позволяют получать массивные заготовки с нанокристаллической структурой, достаточные для проведения полноценных исследований физико-механических свойств и изготовления полуфабрикатов для их промышленного применения.

Использование методов третьей группы позволяет получать нанокристаллические структуры в материалах со средним размером зерен около 100 нм со специальными высокоугловыми границами [16] и обладают двумя важными достоинствами: не приводят к образованию пористости, могут применяться как к чистым металлам, так и к сплавам и интерметаллидным соединениям. Методы ИПД основаны на создании в материале высокой плотности дефектов кристаллического строения (дислокации, границ зерен) в исходных совершенных (или почти совершенных) поли- и монокристаллах. Под ИПД подразумеваются истинные степени деформации e≥5 [17].

Применительно к аустенитным сталям известен способ обработки холодной деформацией с промежуточными отжигами. Так, в патенте US 4421572 (опубл. 20.12.1983) предложен метод холодной деформационной обработки с промежуточными отжигами при температуре 1010-1038°С в течение 60-90 секунд для уменьшения радиационного распухания стали AISI 316.

Способ обработки, совмещающий ИПД и ТМО, представлен в патенте UA 79726 С2 (2007 г.). Получение в стали Х18Н10Т структуры с размером фрагментов менее 1 мкм достигается за счет сочетания следующих операций: пластическая деформации методом всестороннего сжатия при низких температурах -40…-100°С (что обеспечивает получение мартенсита с размерами фрагментов 0,06-0,09 мкм), нагрев до температуры выше температуры старения и выдержка при этой температуре до конца преобразования мартенсита в аустенит и закалки на аустенит. Сталь с полученной структурой характеризуется повышенной прочностью.

Наиболее близким к предлагаемому изобретению является способ получения ультрамелкозернистой структуры в стали аустенитного класса, раскрытый в статье [18]. В [18] образцы аустенитной стали были деформированы в вакууме при 873 К методом многократной ковки с последовательным изменением оси ориентации на 90°. Истинная степень деформации за одну осадку составляла 0,4 при скорости деформации 8×10-4 с-1, суммарная степень деформации достигла 6,4. После каждой осадки образцы охлаждались в воде и затем нагревались до 873 К в течение 0,6-0,8 ксек. В результате данной обработки была получена ультрамелкозернистая структура со средним размером зерен 300 нм. Недостатком описанного способа является то, что он не позволяет получить нанокристаллическую структуру в стали, высокая трудоемкость процесса ковки из-за наличия охлаждений и нагревов заготовки после каждой осадки.

Задачей изобретения является разработка способа изготовления заготовок аустенитных сталей с нанокристаллической структурой, а также снижение трудоемкости ковки.

Технический результат заключается в

- получении однородной нанокристаллической структуры заготовки, благодаря которой происходит значительное повышение прочностных свойств стали как при комнатной, так и при повышенных температурах, что обусловлено получением однородной нанокристаллической структуры заготовок при осуществлении предлагаемого способа;

- снижении трудоемкости ковки.

Поставленная задача решается предложенным способом изготовления заготовок стали аустенитного класса с нанокристаллической структурой, включающим многократную изотермическую ковку заготовки при постоянной температуре с минимальной истинной степенью деформации за одну осадку не менее 0,4 и последовательным изменением оси ориентации на 90°, в который внесены следующие новые признаки:

- предварительная закалка заготовки с 1373 К;

- многократную изотермическую ковку проводят со скоростью деформации от 10-2 до 10-1 с-1 и с суммарной истинной степенью деформации не менее 3, при температуре, лежащей в интервале 773-973К, после чего проводят отжиг заготовки при температуре выше температуры изотермической ковки на 50 К в течение 1-5 часов.

Основными отличиями предложенного способа от прототипа являются: более высокие скорости деформации при осадке, отсутствие охлаждений и нагревов заготовки между осадками, наличие отжига для стабилизации микроструктуры после ковки.

Предлагаемое изобретение характеризуют следующие графические материалы:

Фигура 1. Схема термомеханической обработки стали 08Х18Н10.

Фигура 2. Фотография зеренной структуры стали, полученная на просвечивающем электронном микроскопе JEOL JEM-2100.

Пример осуществления.

В примере осуществления использовалась сталь 08Х18Н10, предварительно закаленная с 1373 К в воду, имеющая исходный размер зерна 25 µm. Заготовка размером 85×50×50 мм3 была подвергнута термомеханической обработке (ТМО), состоящей из многократной изотермической ковки с последовательным изменением оси ориентации на 90° при 873 К с истинной степенью деформации за одну осадку 0,4 при скорости деформации от 10-2 до 10-1 с-1, общего количества осадок 10, суммарной истинной степенью деформации 4 и последующего отжига при 923 К в течение 3 часов (фиг.1). Ковка проводилась без охлаждения и подогревов заготовки между осадками. Средний размер зерна после ТМО составил 100 нм (фиг.2).

Механические испытания на растяжения проводились по ГОСТ 1497-84 при комнатной температуре и по ГОСТ 9651-84 при повышенных температурах (табл.1).

Таблица 1
Механические свойства аустенитной стали 08Х18Н10 в исходном крупнозернистом и наноструктурном состояниях
293 К 673 К 773 К 873 К 923 К
Предел текучести, МПа Образец после ТМО 860 710 640 385 485
Образец до ТМО 300 200 190 170 170
Предел прочности, МПа Образец после ТМО 960 770 680 550 570
Образец до ТМО 640 520 500 450 400
Удлинение, % Образец после ТМО 13 7 6 17 22
Образец до ТМО 35 - 43 - 34

Источники информации

[1] О.Л.Кайбышев Сверхпластичность промышленных сплавов. - М.: Металлургия, 1984. - 264 с.

[2] Wurschum R., Greiner W., Valtev R.Z., Rapp М., Sigle W., Schneeweiss O. and Schaefev H.E. Interfacial Free Volumes in Ultra-Fine Grained Metals of Amorphous Alloys // Scr.Met.et Mater. - 1991. - P.456-564.

[3] Birrenger R. and Gleiter H. Nanocrystalline materials // Encyclopedia of Materials Science and Engineering ed. R.W.Cahn, Pergamon Press. - 1988. - Vol.1 (Suppl.). - P.339-349.

[4] Froes F.H. and Suryanarayna. Nanocrystalline Metals for Structural Applications // JOM. - 1989. - №6. - P.12-17.

[5] Морохов И.Д., Трусов Л.И., Лаповок В.И. Физические явления в ультрадисперсных средах. - М.: Наука, 1984. - С.320; Морохов И.Д., Трусов Л.И., Чижик С.П. Ультрадисперсные металлические среды. - М.: Атомиздат, 1977. - 264 с.

[6] Морохов И.Д., Трусов Л.И., Чижик С.П. Ультрадисперсные металлические среды. - М.: Атомиздат, 1977. - 264 с.

[7] Коюв Ю.А., Яворский Н.А. Исследование частиц, образующихся при электрическом взрыве проводников // Физика и химия обработки материалов. - 1978. - №4. - С.24.

[8] Морохов И.Д., Трусов Л.И., Лаповок В.И. Физические явления в ультрадисперсных средах. - М.: Наука, 1984. - С.320; Морохов И.Д., Трусов Л.И., Чижик С.П. Ультрадисперспые металлические среды. - М.: Атомиздат, 1977. - 264 с.

[9] Морохов И.Д., Трусов Л.И., Чижик С.П. Ультрадисперсные металлические среды. - М.: Атомиздат, 1977. - 264 с.

[10] Сверхмелкое зерно в металлах. Пер. с англ. - М.: Металлургия, 1973. - 384 с.

[11] Gleiter H., Nanostructured Materials: state of art and perspectives // Nanostructured Materials. - 1995. - vol.6. - P.3-14.

[12] Kaibyshev O., Kaibyshev R., Salishchev G. Formation of submicrocrystalline structure in materials during dynamic recrystallization // Mater. Sci. Forum - 1993. - Vol.113-115. - P.423-428.

[13] Жеребцов С.В., Галеев, P.M., Валиахметов О.Р., Малышева С.П., Салищев Г.А., Мышляев М.М. Формирование субмикрокристаллической структуры в титановых сплавах интенсивной пластической деформацией и их механические свойства // КШП. - 1999. - №7. - С.17-22.

[14] Valiev R.Z., Krasilnikov N.A. and Tsenev N.K. Plastic deformation of alloys with submicron-grained structure // Mater. Sci. and Eng. - 1991. - A137. - P.35-40.

[15] Shhultz L., Hellstern E. Glass formation by mechanical alloying / in Science and Technology of Rapidly Quenched Alloys, ed. by M.Tenhover, L.E.Tanner, W.L.Jonson // Materials Science Society. - 1987. - Vol.24. - P.145-150.

[16] Валиев Р.З. Александров И.В. Наноструктурные материалы, полученные интенсивной пластической деформацией. - М.: Логос, 2000. - 272 с.

[17] Saito Y., Tsuji N., Utsunomiya H. et. al. Ultra-fine grained bulk aluminum produced by Accumulative Roll-Bonding (ARB) process // Scripta Mater. - 1998. - № 39. - P.1221-1227.

[18] Belyakov A., Sakai T. and Miura H. Fine-Grained Structure Formation in Austenitic Stainless Steel under Multiple Deformation at 0.5Tm // Material Transactions, - 2000. - Vol.41. - № 4 - P.476-484.

Способ изготовления заготовок сталей аустенитного класса с нанокристаллической структурой, включающий многократную изотермическую ковку заготовки с последовательным изменением оси ориентации на 90° при постоянной температуре и с минимальной истинной степенью деформации за одну осадку не менее 04, отличающийся тем, что предварительно закаленную с температуры 1373К заготовку подвергают многократной изотермической ковке при постоянной температуре в интервале 773-973К со скоростью деформации от 10-2 до 10-1 с-1, после достижения суммарной истинной степени деформации не менее 3 проводят отжиг заготовки при температуре выше температуры изотермической ковки на 50 К в течение 1-5 ч.



 

Похожие патенты:

Изобретение относится к прокатному производству и может быть использовано при производстве холоднокатаной ленты из низкоуглеродистых марок стали, применяемой для холодной вырубки.
Изобретение относится к области термомеханической обработки деталей из стали перлитного класса и может быть использовано при изготовлении, например, болтовых соединений.

Изобретение относится к области металлургии, а именно к получению неориентированной магнитной листовой стали, используемой для изготовления сердечников двигателей электромобилей.
Изобретение относится к области металлургии, а именно к производству стального круглого, калиброванного, сортового проката в прутках диаметром от 32 до 55 мм, используемого для изготовления штоков амортизаторов.

Изобретение относится к области металлургии, преимущественно для получения штрипсов, используемых при строительстве магистральных нефтегазопроводов в районах Крайнего Севера.

Изобретение относится к области металлургии и может быть использовано в машиностроении для производства дешевого инструмента, в частности выглаживателей для деталей из цветных металлов.
Изобретение относится к изготовлению тонколистовой холоднокатаной трубной стали, используемой для трубок амортизаторов автомобилей. .

Изобретение относится к прокатному производству и может быть использовано для получения холоднокатаных полос и лент, поставляемых потребителям в нагартованном состоянии, например, для упаковки грузов.

Изобретение относится к области металлургии, в частности к магнитно-мягкому сплаву и способу его формирования, при этом сплав может быть использован в трансформаторе, индукторе.

Изобретение относится к области металлургии, преимущественно к области деформационно-термической обработки аустенитных нержавеющих сталей. .
Изобретение относится к области металлургии, а именно к получению деталей для автомобилестроения термомеханической обработкой горячекатаных и/или холоднокатаных стальных полос или листов, снабженных слоем покрытия из цинкового сплава.

Изобретение относится к области металлургии, в частности к обработке металлов давлением, а именно к технологии получения заготовок из стали аустенитного класса, и может быть применено при изготовлении сосудов высокого давления для теплоэнергетики и химической промышленности.
Изобретение относится к области черной металлургии, конкретнее к способам обработки высокопрочных аустенитных сталей, и может быть использовано, например, для изготовления высоконагруженных деталей в машиностроении.
Изобретение относится к области черной металлургии, конкретнее к способам обработки высокопрочных аустенитных сталей, и может быть использовано, например, для изготовления высоконагруженных деталей в машиностроении.

Изобретение относится к столовым приборам и/или сервировочным приборам. .
Изобретение относится к области машиностроения и может быть использовано для реализации процессов термической обработки деталей, к поверхности которых предъявляются особые требования.

Изобретение относится к области термической обработки деталей и предназначено для использования в судовом машиностроении для изготовления штамповок кривошипных валов.
Изобретение относится к эпоксидным композициям холодного отверждения и может быть использовано для изготовления конструкций, в том числе крупногабаритных, из полимерных композиционных материалов (ПКМ) методом вакуумной инфузии в областях техники.
Наверх