Деаэратор перегретой воды


 


Владельцы патента RU 2488741:

Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет (RU)

Изобретение относится к области энергетики и может быть использовано в установках для деаэрации питательной воды паровых котлов и подпиточной воды тепловых сетей. Деаэратор перегретой воды содержит корпус с патрубком подвода деаэрируемой воды, патрубками отвода деаэрированной воды и выпара и сопло переменного поперечного сечения. Сопло размещено на выходе патрубка подвода деаэрируемой воды. Сопло состоит из последовательно расположенных конфузорного, цилиндрического и диффузорного участков. Деаэратор перегретой воды дополнительно снабжен ступенчатой камерой Эйфеля, размещенной между диффузорным участком сопла переменного поперечного сечения и корпусом деаэратора. Изобретение позволяет повысить эффективность работы деаэратора перегретой воды. 1 ил.

 

Изобретение относится к области энергетики и может быть использовано в установках для деаэрации питательной воды паровых котлов и подпиточной воды тепловых сетей.

Известен аналог - деаэратор перегретой воды (см. а.с. СССР №635045, Б.И. №44, 1978), содержащий корпус с патрубком подвода деаэрируемой воды, патрубками отвода деаэрированной воды и выпара и размещенное на выходе патрубка подвода деаэрируемой воды сопло переменного поперечного сечения, состоящее из последовательно расположенных конфузорного, цилиндрического и диффузорного участков. Данный аналог принят в качестве прототипа.

К причине, препятствующей достижению указанного ниже технического результата при использовании известного деаэратора перегретой воды, принятого за прототип, относится то, что известный деаэратор перегретой воды обладает пониженной эффективностью, так как не на всех режимах работы деаэратора осуществляется вскипание деаэрируемой воды во всем объеме диффузорного участка сопла переменного поперечного сечения. На пониженных режимах работы деаэратора не обеспечивается образование устойчивой паровой фазы на выходе из диффузорного участка сопла. В этом случае снижается эффективность деаэрации вследствие низкой интенсивности процесса десорбции газов, так как не происходит интенсификация турбулизации потока и, как следствие, активизация выделения растворенных в воде газов в паровую фазу.

Сущность изобретения заключается в следующем.

Для повышения эффективности деаэрации воды на всех режимах работы деаэратора целесообразно увеличить интенсивность процессов турбулизации и массообмена в потоке и вследствие этого повысить интенсивность процесса десорбции газов из деаэрируемой воды за счет установки между диффузорным участком сопла переменного поперечного сечения и корпусом деаэратора ступенчатой камеры Эйфеля.

Технический результат - повышение эффективности работы деаэратора перегретой воды путем интенсификации процессов турбулизации и массо-обмена в потоке деаэрируемой воды за счет установки между диффузорным участком сопла переменного поперечного сечения и корпусом деаэратора ступенчатой камеры Эйфеля.

Указанный технический результат при осуществлении изобретения достигается тем, что известный деаэратор перегретой воды содержит корпус с патрубком подвода деаэрируемой воды, патрубками отвода деаэрированной воды и выпара и размещенное на выходе патрубка подвода деаэрируемой воды сопло переменного поперечного сечения, состоящее из последовательно расположенных конфузорного, цилиндрического и диффузорного участков. Особенность заключается в том, что деаэратор перегретой воды дополнительно снабжен ступенчатой камерой Эйфеля, размещенной между диффузорным участком сопла переменного поперечного сечения и корпусом деаэратора.

На чертеже представлена схема деаэратора перегретой воды.

Деаэратор содержит корпус 1 с патрубком 2 подвода деаэрируемой воды, патрубками 3 и 4 соответственно отвода деаэрированной воды и выпара, сопло переменного поперечного сечения, состоящее из последовательно расположенных конфузорного 5, цилиндрического 6 и диффузорного 7 участков, и ступенчатую камеру Эйфеля 8. При этом конфузорность участка 5 составляет 45…60°, угол раскрытия диффузора 1…10°, длина цилиндрического участка 6 выбирается в пределах 2…4 от его диаметра, а диаметр ступенчатой камеры Эйфеля - 2…2,5 от выходного диаметра диффузорного участка сопла переменного поперечного сечения. Длина ступенчатой камеры Эйфеля принимается равной ее диаметру, диаметр выходного отверстия камеры Эйфеля составляет примерно 1,5 от выходного диаметра диффузорного участка сопла переменного поперечного сечения.

Работа деаэратора перегретой воды осуществляется следующим образом.

Деаэрируемая вода, температура которой выше температуры насыщения, соответствующей давлению в корпусе 1, поступает через патрубок 2 подвода в конфузорный участок 5, где разгоняется до больших скоростей. Падение статического давления в потоке деаэрируемой воды в участке 5 приводит к возникновению центров парообразования и выделению паровых пузырьков. В цилиндрическом участке 6 происходит дальнейшее падение статического давления до величины меньшей, чем давление насыщения при температуре воды в потоке, что приводит к вскипанию деаэрируемой воды во всем объеме с образованием паровой фазы. Вследствие увеличения объема потока пароводяная смесь на выходе из цилиндрического участка 6 разгоняется до скорости звука и поступает в диффузорный участок 7. В диффузор-ном участке сопла статическое давление падает, происходит кипение и разгон потока до сверхзвуковой скорости. В процессе разгона потока деаэрируемой воды в сопле вода дробится на мелкие капли, что приводит к увеличению поверхности массообмена, интенсифицируется турбулизация потока и, как следствие, активизация выделения растворенных газов в паровую фазу.

Однако на пониженных режимах работы деаэратора не обеспечивается образование устойчивой паровой фазы на выходе из диффузорного участка сопла. В этом случае снижается эффективность деаэрации вследствие низкой интенсивности процесса десорбции газов, так как не происходит интенсификация турбулизации потока и, как следствие, активизация выделения растворенных в воде газов в паровую фазу.

После выхода из диффузорного участка 7 сверхзвуковая струя поступает в ступенчатую камеру Эйфеля 8. В камере Эйфеля образуется область пониженного давления, ограниченная торцевой и цилиндрической стенками камеры и внешней границей струи. Внешняя граница струи касается кромки выходного отверстия ступенчатой камеры Эйфеля. В области пониженного давления, ограниченной торцевой и цилиндрической поверхностями камеры Эйфеля и внешней границей струи, давление понижается и становится ниже давления в корпусе 1 деаэратора, образуется вихревая зона, где осуществляется возвратное движение частиц потока и возникает обратный поток. В этом случае значительно повышается интенсивность процессов турбулизации и массообмена (см. Б.А.Баланин "Сверхзвуковая струя в ступенчатом канале", Ученые записки Ленинградского государственного университета им. А.А.Жданова, 1968, №338, серия математических наук, вып.43, стр.86-94). Вследствие этого повышается интенсивность процесса десорбции газов, активизация выделения растворенных в воде газов в паровую фазу.

Поступающий в корпус 1 кипящий поток деаэрируемой воды разделяется на пар с выделившимися газами и воду. Выпар удаляется из корпуса 1 через патрубок 4, деаэрированная вода отводится через патрубок 3.

Таким образом, установка между диффузорным участком сопла переменного поперечного сечения и корпусом деаэратора ступенчатой камеры Эйфеля позволяет интенсифицировать процессы турбулизации и массообмена в потоке деаэрируемой воды, что повышает эффективность работы деаэратора перегретой воды.

Деаэратор перегретой воды, содержащий корпус с патрубком подвода деаэрируемой воды, патрубками отвода деаэрированной воды и выпара и размещенное на выходе патрубка подвода деаэрируемой воды сопло переменного поперечного сечения, состоящее из последовательно расположенных конфузорного, цилиндрического и диффузорного участков, отличающийся тем, что деаэратор перегретой воды дополнительно снабжен ступенчатой камерой Эйфеля, размещенной между диффузорным участком сопла переменного поперечного сечения и корпусом деаэратора.



 

Похожие патенты:

Изобретение относится к области теплоэнергетики. .

Изобретение относится к области энергетики и может быть использовано в установках для деаэрации питательной воды паровых котлов и подпиточной воды тепловых сетей.

Изобретение относится к области теплоэнергетики, в частности к термическим деаэраторам, предназначенным для удаления из воды коррозионно-агрессивных газов, и может быть использовано в теплоэнергоустановках ТЭС, АЭС и котельных.

Изобретение относится к области теплотехники и может быть использовано для получения деаэрированного конденсата турбины с меньшим содержанием в нем растворимых кислорода и двуокиси углерода.

Изобретение относится к области энергетики и может быть использовано для термической деаэрации подпиточной воды тепловых сетей, а также для получения конденсата (обессоленной воды) для паровых котлов из выпара сетевых деаэраторов.

Изобретение относится к области теплоэнергетики, в частности к термическим деаэраторам, предназначенным для удаления коррозионно-агрессивных газов из питательной воды парогенераторов с одновременным ее нагревом, и может быть использовано в теплоэнергоустановках ТЭС, АЭС и котельных.

Деаэратор // 2321798
Изобретение относится к области теплотехники и может быть использовано для деаэрации воды в конденсаторе паровой турбины, а также как барботажная ступень в термическом деаэраторе.

Изобретение относится к очистке воды от газов и может быть применено для удаления хлора из водопроводной воды. .

Изобретение относится к области энергетики, и может быть использовано для термической деаэрации воды паровых котлов и подпиточной воды тепловых сетей, а также для деаэрации воды, используемой в химической и других технологиях.

Изобретение относится к технологиям очистки сточных вод от ионов металлов и может найти применение в различных отраслях промышленности. .

Изобретение относится к технологиям очистки сточных вод от ионов металлов и может найти применение в различных отраслях промышленности. .

Изобретение относится к технологиям очистки сточных вод от ионов металлов и может найти применение в различных отраслях промышленности. .

Изобретение относится к технологической линии переработки жиросодержащих отходов. .

Изобретение относится к способу получения биодизельного топлива из илов и/или осадков очистных сооружений, включающему предварительную обработку сырья, экстракцию липидной фракции, переэтерификацию липидной фракции, разделение полученных фракций и осушение биодизеля.

Изобретение относится к области физики и может быть использовано: для предварительной водоподготовки питьевой воды: очистки исходной воды от планктона (ПТ), водорослей (ВД), взвешенных веществ (ВВ) и коллоидных частиц (КЧ), обеззараживании воды - очистки воды от болезнетворных бактерий (ББ), а также холодной (акустической) сушки осадка и его дальнейшего использования в строительных материалах - в интересах здоровья населения; для очистки оборотных промышленных вод и для очистки промышленных сточных вод от нефтепродуктов (НП), тяжелых металлов (ТМ), ВВ и КЧ, а также раздельной сушки различных осадков с последующей утилизацией (при наличии ББ в нем) или дальнейшего использования (при отсутствии ББ в нем) в строительных материалах - в интересах рационального природопользования; для очистки бытовых сточных вод от ВВ, КЧ и ББ, а также раздельной сушки различных осадков с последующей утилизацией и дальнейшего использования в качестве сырья для биотоплива и др.

Изобретение относится к области физики и может быть использовано: для предварительной водоподготовки питьевой воды: очистки исходной воды от планктона (ПТ), водорослей (ВД), взвешенных веществ (ВВ) и коллоидных частиц (КЧ), обеззараживании воды - очистки воды от болезнетворных бактерий (ББ), а также холодной (акустической) сушки осадка и его дальнейшего использования в строительных материалах - в интересах здоровья населения; для очистки оборотных промышленных вод и для очистки промышленных сточных вод от нефтепродуктов (НП), тяжелых металлов (ТМ), ВВ и КЧ, а также раздельной сушки различных осадков с последующей утилизацией (при наличии ББ в нем) или дальнейшего использования (при отсутствии ББ в нем) в строительных материалах - в интересах рационального природопользования; для очистки бытовых сточных вод от ВВ, КЧ и ББ, а также раздельной сушки различных осадков с последующей утилизацией и дальнейшего использования в качестве сырья для биотоплива и др.
Изобретение относится к методам очистки промышленных сточных вод от ионов ртути и цинка, образующихся при амальгамации цинковых электродов в технологическом процессе производства химических источников тока на основе серебряно-цинковой электрохимической системы.
Изобретение относится к методам очистки промышленных сточных вод от ионов ртути и цинка, образующихся при амальгамации цинковых электродов в технологическом процессе производства химических источников тока на основе серебряно-цинковой электрохимической системы.

Изобретение относится к технологии переработки нефтеносных песков, в частности к области увеличения потока воды из отстойного резервуара процесса переработки нефтеносных песков через мембранную систему разделения и улучшения очистки воды, содержащейся в этом потоке.

Изобретение относится к области определения доз коагулянта при реагентной очистке природных вод с применением алюминийсодержащих коагулянтов с целью снижения в ней мутности, цветности, окисляемости и остаточного алюминия
Наверх