Установка для ударных испытаний образцов

Изобретение относится к испытательной технике, а именно к установкам для ударных испытаний материалов. Установка содержит основание, установленную на нем наковальню для размещения образца, стакан, закрепленный вверх дном соосно наковальне, телескопически соединенные ударники, размещенные внутри стакана с образованием полости между дном стакана и торцами ударников для заполнения рабочей средой, фиксаторы, связывающие ударники с дном стакана. Установка снабжена источником давления рабочей среды, соединенным с полостью, а фиксаторы выполнены электромагнитными с обеспечением независимого возвратно-поступательного перемещения ударников. Технический результат - расширение объема информации при испытаниях за счет обеспечения повторных нагружений участков поверхности образца с регулируемым порядком и скоростью нагружения, временем выдержки и уровнем нагрузки. 1 ил.

 

Изобретение относится к испытательной технике, а именно к установкам для ударных испытаний материалов.

Известна установка для ударных испытаний образцов (патент РФ №1317312, кл. G01N 3/08, 1988), содержащая содержащая основание, установленную на нем наковальню для размещения образца, стакан, телескопически соединенные ударники, размещенные внутри стакана с образованием полости между дном стакана и торцами ударников для заполнения рабочей средой.

Недостатком установки является отсутствие возможности проведения испытаний при нагружении отдельных участков поверхности образца. Это существенно ограничивает объем информации при испытаниях материалов и изделий.

Известна установка для ударных испытаний образцов (патент РФ №1587394, кл. G01N 3/30, 1990), содержащая содержащая основание, установленную на нем наковальню для размещения образца, стакан, телескопически соединенные ударники, размещенные внутри стакана, фиксатор, связывающий ударники с дном стакана. Установка обеспечивает испытания при нагружении участков образца нагрузками разного уровня.

Недостаток установки состоит в том, что испытание образца осуществляется только при однократном нагружении. Установка не обеспечивает повторные нагружения участков поверхности образца с регулируемым порядком и скоростью нагружения, временем выдержки и уровнем нагрузки. Это существенно ограничивает объем информации при испытаниях материалов и изделий.

Известна установка для ударных испытаний образцов (патент РФ №1370510, кл. G01N 3/30, 1988), принимаемая за прототип. Установка содержит основание, установленную на нем наковальню для размещения образца, стакан, закрепленный вверх дном соосно наковальне, телескопически соединенные ударники, размещенные внутри стакана с образованием полости между дном стакана и торцами ударников для заполнения рабочей средой, фиксаторы, связывающие ударники с дном стакана.

Недостаток установки также состоит в том, что испытание образца осуществляется только при однократном нагружении. Установка не обеспечивает повторные нагружения участков поверхности образца с регулируемым порядком и скоростью нагружения, временем выдержки и уровнем нагрузки. Это существенно ограничивает объем информации при испытаниях материалов и изделий.

Техническим результатом изобретения является расширяет объем информации при испытаниях за счет обеспечения повторных нагружении участков поверхности образца с регулируемым порядком и скоростью нагружения, временем выдержки и уровнем нагрузки.

Технический результат достигается тем, что установка для ударных испытаний образцов, содержащая основание, установленную на нем наковальню для размещения образца, стакан, закрепленный вверх дном соосно наковальне, телескопически соединенные ударники, размещенные внутри стакана с образованием полости между дном стакана и торцами ударников для заполнения рабочей средой, фиксаторы, связывающие ударники с дном стакана, согласно изобретению, она снабжена источником давления рабочей среды, соединенным с полостью, а фиксаторы выполнены электромагнитными с обеспечением независимого возвратно-поступательного перемещения ударников

На рис.1 представлена схема установки.

Установка для ударных испытаний образцов содержит основание 1, установленную на нем наковальню 2 для размещения образца 3, стакан 4, закрепленный вверх дном соосно наковальне, телескопически соединенные ударники 5, 6, 7, размещенные внутри стакана с образованием полости 8 между дном стакана 4 и торцами ударников 5, 6, 7 для заполнения рабочей средой, фиксаторы 9, 10, 11, связывающие ударники 5, 6, 7 с дном стакана 4.

Установка снабжена источником 12 давления рабочей среды, соединенным с полостью 8. Фиксаторы 9, 10, 11 выполнены электромагнитными с обеспечением независимого возвратно-поступательного перемещения ударников 5, 6, 7.

Установка работает следующим образом.

При включенных фиксаторах 9, 10, 11 включают источник 12 и создают заданное давление рабочей среды в полости 8. Для ударного нагружения образца 3 по заданному участку его поверхности выключают соответствующие фиксаторы 9, 10, 11. Давлением рабочей среды перемещаются соответствующие ударники 5, 6, 7, которые наносят удары по заданным участкам поверхности образца в заданном порядке, с заданными интервалами времени между ударами и с заданным временем выдержки участков поверхности образца под нагрузкой. Для разгрузки заданных участков поверхности образца включают соответствующие фиксаторы 9, 10, 11, которые перемещают соответствующие ударники 5, 6, 7, преодолевая давление рабочей среды. Уровень нагрузок и скорости нагружения задаются давлением рабочей среды.

Установка обеспечивает повторные нагружения участков поверхности образца с регулируемым порядком и скоростью нагружения, временем выдержки и уровнем нагрузки. Это существенно расширяет объем информации при испытаниях материалов и изделий.

Установка для ударных испытаний образцов, содержащая основание, установленную на нем наковальню для размещения образца, стакан, закрепленный вверх дном соосно наковальне, телескопически соединенные ударники, размещенные внутри стакана с образованием полости между дном стакана и торцами ударников для заполнения рабочей средой, фиксаторы, связывающие ударники с дном стакана, отличающаяся тем, что она снабжена источником давления рабочей среды, соединенным с полостью, а фиксаторы выполнены электромагнитными с обеспечением независимого возвратно-поступательного перемещения ударников.



 

Похожие патенты:

Изобретение относится к области материаловедения, в частности к металловедению, определяющему ударную вязкость, динамическую трещиностойкость металлов. .

Изобретение относится к области строительства и предназначено для диагностики и контроля качества железобетонных конструкций балочного типа вибрационным методом.

Изобретение относится к области строительства и предназначено для диагностики и контроля качества железобетонных конструкций балочного типа вибрационным методом.

Изобретение относится к области средств и технологий обеспечения требуемых значений давления в сосудах высокого давления, а именно на обеспечение проведения опытов в полунатурных испытаниях.

Изобретение относится к области дорожно-строительных материалов. .

Изобретение относится к испытательной технике. .

Изобретение относится к испытательной технике, а именно к испытаниям на прочность. .

Изобретение относится к испытательной технике, а именно к машинам для испытания образцов на центральное, внецентренное и косое внецентренное сжатие при ударных нагрузках, преимущественно бетонных или железобетонных образцов.

Изобретение относится к устройствам для испытания амортизационной способности бронежилета при воздействии ударной нагрузки. .

Изобретение относится к испытательной технике, к испытаниям на прочность образцов материалов и изделий. Стенд содержит основание, шаровой ударник, приспособление для сброса ударника, закрепленную на основании направляющую трубу для перемещения в ней ударника, выполненную с двумя параллельными участками различной высоты, соединенными между собой в нижней части коленом, имеющим окно, и поворотную заслонку, перекрывающую окно. Колено разделено по вертикальной плоскости в нижней части на два одинаковых элемента с возможностью взаимного поворота по плоскости разделения, и стенд снабжен фиксатором взаимного положения элементов колена. Технический результат: расширение функциональных возможностей стенда путем обеспечения проведения испытаний при нанесении ударов под разными углами к поверхности образца. 2 ил.

Изобретение относится к области испытания материалов и может быть использовано для определения сопротивления протяженному вязкому разрушению высокопрочных трубных сталей класса прочности К65 и выше с ударной вязкостью более 2,5 МДж/м2. Сущность: от трубы отбирают несколько заготовок, которые подвергают предварительной пластической деформации сжатием, причем величина предварительной пластической деформации не превышает 45%. Из каждой заготовки изготавливают не менее чем по три поперечных образца, которые испытывают на ударный изгиб. Выявляют зависимость относительного значения ударной вязкости от величины предварительной пластической деформации. Сопротивление протяженному вязкому разрушению определяют по величине предварительной пластической деформации, соответствующей началу интенсивного снижения ударной вязкости. Технический результат: обеспечение возможности достоверно определять сопротивление протяженному вязкому разрушению высокопрочных трубных сталей класса прочности К65 и выше с ударной вязкостью более 2,5 МДж/м2 и сопоставлять качество нескольких подобных материалов разных производителей. 2 з.п. ф-лы, 1 табл., 5 ил.

Изобретение относится к испытательной технике и может быть использовано для проведения ударных испытаний. Имитатор преграды содержит металлический ударник со скошенной под заданным углом к направлению его движения плоскостью и обтюратор из полимерного материала. Ударник выполнен в форме плиты со ступенчатым профилем ее тыльной поверхности, размещенной на лицевой поверхности обтюратора, имеющей ответный ступенчатый профиль. Обеспечивается возможность воспроизведения приближенных к натурным условий ударного нагружения объекта при встрече с преградой. 4 ил.

Способ проверки затяжки сердечника статора электрической машины, содержащей сердечник (2) статора и ротор (3), образующие воздушный зазор (5) между собой, причем способ включает в себя этапы, на которых вводят контрольно-измерительный прибор (12), который соединен с подвижной опорой (10), в воздушный зазор (11), вводят пластину (21) между стальными листами (5) сердечника статора и приводят пластину (21) во вращение, располагают локально контрольно-измерительный прибор (12) и осуществляют локальную проверку определенных зон сердечника (2) статора генератора. Устройство для реализации способа, содержащее подвижную опору (10), вводимую в воздушный зазор (11) между сердечником (2) статора и ротором (3), приводимую во вращение пластину (21) между стальными листами (5) сердечника, и контрольно-измерительный прибор (12), установленный на подвижной опоре (10). Техническая задача - выполнение проверки для определения затяжки сердечника статора без необходимости извлечения ротора с помощью предложенного способа и устройства, а также уменьшение риска повреждения сердечника статора и/или ротора в результате проверки. 2 н. и 6 з.п. ф-лы, 6 ил.

Изобретение относится к области определения характеристик материалов при ударном нагружении, в частности к способам определения динамического предела текучести грунта при проникании в образец из исследуемого материала ударника при заданной ему средствами разгона скорости. Сущность: осуществляют проведение эксперимента с внедрением ударника в исследуемый материал с последующим численным моделированием этого процесса и варьированием при расчетах параметров функции, связывающей предел текучести грунта с давлением, вплоть до уменьшения различия между результатами численного моделирования и эксперимента до величины экспериментальной погрешности, по соотношениям с подобранными параметрами определяют прочностные характеристики грунта в диапазоне динамических нагрузок, реализованных в эксперименте. Метание ударника осуществляют с помощью баллистической установки со скоростью, при которой в процессе внедрения происходит интенсивная пластическая деформация ударника с уменьшением его длины. Длину ударника выбирают превышающей его диаметр не менее, чем в 4 раза. Процесс внедрения регистрируют с помощью рентгено- или протонографии и определяют в исследуемом образце профиль образующейся каверны и длину недеформируемой части ударника на момент времени регистрации. Технический результат: повышение информативности путем обеспечения определения предела текучести материалов при скорости внедрения ударника в исследуемый материал выше 2 км/с, а также неизменности физико-механических свойств исследуемого материала перед ударом. 3 ил.

Изобретение относится к испытательной технике и может быть использовано для проведения экспериментальных исследований свойств материалов в условиях высокоскоростного нагружения. Установка содержит механический копер и механизм передачи нагрузки образцу. В конструкцию копра дополнительно введены опоры качения и набор грузов, а механизм передачи нагрузки кольцевому образцу представляет собой механический преобразователь нагружения, расположенный на наковальне механического копра и содержащий малый неподвижный и большой подвижный корпуса, выполненные в виде перевернутых стаканов с соответственно закрепленными в них подвижной и неподвижной осями для размещения кольцевого образца. Малый корпус находится внутри большого корпуса. Технический результат: возможность испытывать кольцевые образцы на растяжение при скоростях деформаций более 200 с-1. 2 ил.

Изобретение относится к области измерительной техники и может быть использовано для определения глубины проникания объекта в грунт. Способ включает сбрасывание объекта с носителя и регистрацию параметров его проникания, по крайней мере, двумя сейсмическими датчиками, расположенными на расстоянии друг от друга в зоне вероятного падения объекта. Осуществляется фиксация времен регистрации каждым датчиком сейсмической волны, возникающей в процессе проникания объекта в грунт. Измеряются расстояния от каждого датчика до точки падения объекта. Определяется скорость распространения сейсмической волны в грунте вблизи места падения объекта. С учетом угла подхода объекта к поверхности земли и углов между проекцией траектории движения объекта на поверхность земли и направлениями от точки падения объекта до каждого датчика, определяется с помощью аналитических вычислений или графическим построением глубина проникания объекта в грунт. Технический результат - повышение точности надежности измерений, необходимых для определения глубины проникания объекта в грунт. 3 ил.

Изобретение относится к испытательной технике, а именно к машинам для испытания железобетонных образцов на совместное действие изгибающего и крутящего моментов, создаваемых воздействием кратковременной динамической нагрузки. Стенд содержит опоры для размещения железобетонного элемента и две направляющие, закрепленные на силовом полу. На направляющих установлен груз, для фиксации и сброса которого служит бомбосбрасыватель. Для обжатия поперечных сечений испытуемого элемента служат два оголовника. Каждый оголовник состоит из горизонтальных и вертикальных пластин, соединенных с возможностью фиксации на обжатом испытуемом элементе, и консольной жесткой балки. Вылеты консольных балок оголовников противоположно направлены. На вылетах установлена распределительная траверса. В непосредственной близости от оголовников установлены два узла определения угла закручивания испытуемого железобетонного элемента. Каждый узел определения угла закручивания содержит балку, закрепленную на железобетонном элементе перпендикулярно его продольной оси, две подвижные каретки, установленные на концах балки, и датчики линейных перемещений. Основания датчиков линейных перемещений жестко зафиксированы на силовом полу, а штоки датчиков шарнирно закреплены на подвижных каретках. В состав стенда входят силоизмерители. Один силоизмеритель закреплен в центре распределительной траверсы. Другие силоизмерители зафиксированы на жесткой подставке опоры с помощью горизонтальных пластин, выполненных с опорными кольцами под силоизмерители. Технический результат: возможность создания напряженно-деформированного состояния в железобетонном элементе за счет одновременного воздействия кратковременного динамического изгибающего и крутящего моментов и измерения линейных перемещений точек железобетонного элемента при изгибе и закручивании и определении углов закручивания. 4 з.п. ф-лы, 3 ил.

Изобретение относится к материаловедению, а именно к способам исследования образцов металлических материалов путем приложения к ним динамической (ударной) кратковременной нагрузки, и может быть использовано для определения вязкости металлических материалов. Сущность: осуществляют испытания на ударный изгиб призматических образцов с надрезом с записью кривой разрушения в координатах нагрузка - смещение бойка путем идентификации на ней характерных точек. На полученной кривой разрушения выделяют линейный ниспадающий участок, идентифицируют на нем значения нагрузки FH, FК и смещения SH, SК, соответствующие началу и окончанию данной стадии разрушения, находят площадь под выделенным участком, а уровень вязкости KB определяют по формуле. Технический результат: возможность определения характеристик вязкости для аттестации недоломанных образцов. 2 ил.

Изобретение относится к машиностроению и предназначено для взврывозащиты технологического оборудования, в частности защиты аппаратов от разрушения при взрыве горючей смеси разрывной мембраной. Способ испытания взрывозащитных мембран заключается в том, что осуществляют взрыв паров горючей жидкости, взрывной сосуд оснащают узлом крепления мембраны, который устанавливают в торцевой части сосуда, закрытой предохранительным экраном, параллельно с механическим индикатором давления с тумблером включения двигателя индикатора. Взрывную камеру со свечой зажигания, имеющей кнопку включения зажигания, располагают оппозитно торцевой части сосуда, закрытой предохранительным экраном. При этом сосуд комплектуют штуцерами для продувки взрывного сосуда после проведения эксперимента. Штуцер для заливки горючей жидкости с установленной на нем пробкой закрепляют в стенке сосуда над контактами свечи зажигания. Элементы, участвующие в испытании: индикатор давления, свеча зажигания, штуцер для заливки горючей жидкости, штуцера для продувки взрывного сосуда подбирают по прочности на «разрыв», превосходящей прочность исследуемой мембраны не менее чем в два раза. Давление взрыва регистрируют механическим индикатором давления. После каждого эксперимента производят продувку воздухом внутреннего объема сосуда. Необходимую концентрацию смеси паров с воздухом обеспечивают дозировкой жидкости пипеткой через штуцер, который после заливки жидкости закрывают пробкой. Необходимое количество горючей жидкости (например, ацетона C3H6O) для создания стехиометрической концентрации в сосуде рассчитывается по определенной формуле. Изобретение направлено на повышение эффективности защиты технологического оборудования от взрывов за счет увеличения быстродействия мембранного узла и надежности его срабатывания путем сопоставления данных аналитического расчета и экспериментального определения проходного сечения мембраны для конкретного способа ее установки на аппарате. 1 ил.
Наверх