Способ контактного измерения профилей скорости ветра и течений в зоне волнения

Заявленное изобретение относится к методам измерения гидрометеорологических параметров окружающей среды. При реализации способа измерения профиля скорости ветра используют систему вертикально распределенных на жесткой мачте анемометров, соединенных с многоканальным регистратором и накопителем информации, в котором анемометры располагают таким образом, что самый нижний из них находится ниже минимальных уровней подошв волн, а самый верхний находится на высоте, превышающей максимальную высоту гребней волн. При этом на той же мачте устанавливают электронный измеритель уровня воды, который коммутируют с дополнительно установленным коммутатором-переключателем электрического сигнала таким образом, что сигнал с каждого из анемометров записывают в накопитель информации только тогда, когда измеритель уровня воды указывает, что данный анемометр находится в воздухе, а при попадании в воду его сигнал не регистрируют. При реализации способа измерения профиля скорости течений используют систему вертикально распределенных на жесткой мачте измерителей скорости течений, соединенных с многоканальным регистратором и накопителем информации. При этом измерители течений располагают так, чтобы самый нижний из них находился ниже минимальных уровней подошв волн, а самый верхний находился на высоте, превышающей максимальную высоту гребней волн. Способ коммутации измерителей течений с электронным измерителем уровня воды и переключателем устанавливают таким образом, что регистрация сигналов измерителей течений на накопителе информации выполняется только при нахождении измерителей течений в воде. Технический результат заключается в возможности проведения измерений профиля скорости ветра и течений в зоне волнения, повышении точности измерений и упрощении процесса измерений. 2 н. и 1 з.п. ф-лы, 4 ил.

 

Предлагаемое изобретение относится к методам измерения гидрометеорологических параметров окружающей среды. В частности, предлагаемый способ касается измерения вертикального распределения (профиля) скорости воздушного потока (ветра) и течения воды (течения) в области взволнованной границы раздела сред воздух-вода. Такого рода измерения представляют, преимущественно, научный интерес. Полученные результаты применяются для решения практических задач (береговое строительство, безопасность судоходства, морская индустрия нефти и газа и т.д.).

Если измеряющие приборы находятся в контакте со средой измерения, такой метод измерения называется контактным. Если измеряющие приборы находятся вдали от среды измерений, а информация получается при помощи видео- или радио-наблюдений, то метод называется дистанционным (например, дистанционное измерение температуры поверхности Земли). В данном случае рассматривается метод контактного измерения скоростей воздушного или водного потоков.

Уровень техники

В настоящее время для измерения вертикального профиля скорости ветра в заданной географической точке суши или водного пространства (озера, моря и т.п.) принято использовать специальный измеритель - анемометр [1, 2]. Существует большое разнообразие анемометров, различающихся по методам измерения скорости ветра, инерционности, точности и размерам. Для наших целей приемлемы малогабаритные и малоинерционные анемометры, которые нечувствительны к влаге, например типа Wind Sonic [3].

Для измерения скорости течений воды применяют пропеллерные измерители течений различной конструкции [1, 2], которые конструктивно заведомо влагоустойчивы.

При выполнении измерений профиля ветра обычно анемометры располагаются на жесткой мачте, установленной в указанной географической точке местности. При измерении скорости ветра на одной заданной высоте (т.н. горизонте) достаточно использовать только один анемометр. При необходимости измерения вертикального профиля ветра используют несколько анемометров 2, распределенных по вертикали и расположенных на единой мачте 1 (Фиг.1) [4]. (Конструктивно могут быть использованы несколько мачт, расположенных рядом друг с другом, при условии, что они не мешают измерениям). Результаты измерений, фиксируемые анемометрами, определенным способом (по электрическим проводам) передаются на приемник-накопитель информации 3 (Фиг.1). Далее эта информация подлежит обработке, требуемой целями измерения.

В случае выбора точки измерения, находящейся в области водного пространства (озеро, море и т.п.), нижняя граница воздушного потока является подвижной по причине присутствия ветровых волн на поверхности раздела сред воздух-вода. Над взволнованной поверхностью раздела сред, измерения профиля ветра усложняются по целому ряду причин, главной из которых является подвижная водная поверхность, т.к. движение границы раздела сред ограничивает расположение измерителей по вертикали. В таком случае, обычно, самый нижний измеритель располагают на достаточном удалении от наивысшего из возможных положений водной поверхности, что обусловлено, прежде всего, целями сохранности измерителя, а также надежности его показаний [5].

Известен способ контактного измерения профиля скорости ветра, основанный на использовании вертикально распределенных на жесткой мачте анемометров, соединенных с многоканальным регистратором и накопителем ветровой информации [6].

Одной из проблем измерения профиля ветра над взволнованной поверхностью воды является невозможность применения известных измерений ветра в области малых горизонтов, т.е. в зоне высот, где попеременно присутствует то вода, то воздух. Эта зона далее будет называться зоной волнения. В волновой механике принято считать, что зона волнения 4 по вертикали занимает пространство между самыми глубокими ложбинами и самыми высокими гребнями волн (Фиг.2).

Далее предлагается решение указанной проблемы, а именно, способ контактного измерения профиля ветра в зоне волнения. Этот же способ обобщается на случай измерения профиля течений в зоне волнения путем замены анемометров на измерители течений и изменением коммутации измерителей.

Сущность изобретения

Для решения поставленной задачи, в отличие от известного способа контактного измерения профиля скорости ветра [6], анемометры располагают таким образом, что самый нижний из них находится ниже минимальных уровней подошв волн, а самый верхний располагают на высоте, превышающей максимальную высоту гребней волн (Фиг.3). При этом для реализации измерения скорости ветра в зоне волнения, на той же мачте устанавливают электронный измеритель уровня воды 5 (Фиг.3), который коммутируют с анемометрами 2 при помощи стандартного многоканального переключателя электрического сигнала 6 так, что сигнал с каждого из анемометров записывается в накопитель информации 3 только тогда, когда измеритель уровня воды указывает, что данный анемометр находится в воздухе, а при попадании анемометра в воду его сигнал не регистрируется.

С целью упрощения описанного процесса измерения профиля ветра в зоне волнения вместо измерителя уровня воды используют малогабаритные емкостные датчики наличия воды, жестко прикрепленные непосредственно под корпусами каждого из анемометров, сохраняя коммутацию сигналов анемометров, датчиков уровня воды и прерывателя, обеспечивающую запись в накопитель информации только тогда, когда для каждого анемометра его датчик воды указывает, что данный анемометр находится в воздухе.

С целью повышения точности измерения скорости ветра, на корпус каждого анемометра жестко прикрепляют измерители влажности воздуха 7 (Фиг.4), сигнал с которых через переключатель записывается в отдельные каналы накопителя информации по аналогии с записью сигналов анемометров.

С целью измерения профиля скорости течений в зоне волнения используют тот же набор измерителей (Фиг.3) и тот же способ регистрации информации, только вместо анемометров 2 применяют измерители течений, а коммутацию измерителей течений с измерителем высоты уровня воды и прерывателем устанавливают таким образом, что он обеспечивает запись измерений течений в накопителе информации только при нахождении каждого из измерителей течений в воде.

С целью упрощения процесса измерения профиля скорости течений в зоне волнения вместо измерителя уровня воды используют малогабаритные емкостные датчики наличия воды, жестко установленные непосредственно над корпусами каждого из измерителей течений воды, сохраняя коммутацию измерителей течений с датчиками воды и прерывателем, обеспечивающую запись измерений течений в накопителе информации только при нахождении каждого из измерителей течений в воде.

Возможность реализации

Пример реализации способа измерения профиля ветра в зоне волнения поясняет Фиг.4, где показаны: 1 - мачта, 2 - анемометры, 3 - накопитель информации, 4 - зона волнения, 5 - струнный измеритель уровня воды, 6 - коммутатор-переключатель сигнала, 7 - измерители влажности.

Все перечисленные элементы системы являются хорошо известными устройствами, которые широко используются в различных областях измерительной техники[1]. В частности, в качестве малоинерционных и малогабаритных анемометров, нечувствительных к влаге, могут быть использованы акустические анемометры типа «АТЕ-1034»[7], а в качестве измерителя уровня воды - струнный измеритель емкостного типа [1].

С целью повышения точности измерений на всех попадающих в зону волнения анемометрах 2 жестко укрепляют малогабаритные и малоинерционные измерители влаги воздуха 7 (типа НМР-233), информация с которых поступает на отдельные каналы накопителя 3. Эту информацию, позволяющую учитывать зависимость плотности воздуха от его влажности, используют для пересчета данных, полученных с анемометров 2, расположенных в зоне волнения 4, что и обеспечивает уточнение измерений скорости ветра.

Предлагаемый способ измерения профиля скорости ветра реализуется следующим образом. На жестко закрепленной в вертикальном положении прочной мачте 1 располагают несколько анемометров 2, занимающих по вертикали широкий диапазон высот, перекрывающий возможную в данной серии измерений зону волнения 4. Каждый анемометр 2, находящийся на некотором фиксированном горизонте, измеряет мгновенную скорость ветра на этом горизонте. Для достижения цели проведения измерений в зоне волнения, на той же мачте с анемометрами (или очень близко к ней) располагают измеритель уровня воды 5, который измеряет положение уровня воды по той вертикали, где расположены анемометры (Фиг.4).

Все измерители скорости ветра и измеритель уровня воды определенным образом электрически коммутируют с многоканальным коммутатором-переключателем 6, работа которого заключается во включении анемометров только в те периоды времени, когда тот или иной из анемометров 2, расположенный на фиксированной высоте, находится выше постоянно меняющегося уровня воды. В противном случае, т.е. при попадании анемометра в воду, переключатель отключает данный анемометр, и его сигнал не поступает на накопитель 3. Таким образом, только в том случае, когда каждый конкретный анемометр 2, согласно показаниям измерителя уровня воды 5, находится в воздухе, сигнал этого анемометра, управляемого через коммутатор-переключатель 6, поступает на многоканальный накопитель информации 3.

В результате, на накопителе 3 собирается информация от каждого анемометра в свой отдельный канал информации только в те периоды времени, когда измеритель уровня воды 5 указывает, что каждый данный анемометр 2 находится в воздухе. Получается многоканальная запись сигнала о скорости ветра по числу горизонтов расположения анемометров (с отдельным записью для каждого анемометра). Затем эта информация подвергается стандартной обработке (осреднению во времени для каждого горизонта). В итоге, для каждого фиксированного горизонта, на котором имеется анемометр, только при его нахождении в воздухе фиксируется конкретная величина ветра. В сумме это дает профиль ветра по вертикали в том диапазоне высот, который перекрывается системой анемометров 2.

Поскольку анемометры, как правило, калибруются на определенную плотность воздуха, существенно зависящую от его влажности, точность измерений скорости ветра зависит от учета влажности воздуха. Поскольку на фиксированном горизонте в зоне волнения, занимающей пространство, где попеременно присутствует то воздух, то вода, влажность воздуха может меняться в значительных пределах, то такие вариации влажности воздуха приводят к понижению точности измерений скорости ветра. Учитывая этот эффект, точность измерений скорости ветра в зоне волнения можно повысить за счет закрепления малогабаритных датчиков влажности 7 на корпусах анемометров 2 (Фиг.4). При этом коммутатор-переключатель коммутируют с измерителями влажности 7 таким образом, чтобы он пропускал их сигналы на каналы накопителя 3 только в тот период времени, когда анемометры и закрепленные на них измерители влажности находятся выше уровня воды. В таком случае стандартная обработка данных для получения среднего ветра возможна с учетом влажности воздуха, что и повышает точность измерений.

С целью упрощения процесса измерения профиля ветра в зоне волнения вместо измерителя уровня воды 5 используют малогабаритные емкостные датчики наличия воды, жестко прикрепленные непосредственно под корпусами каждого из анемометров 2, сохраняя коммутацию анемометров, датчиков воды и переключателя, обеспечивающую запись сигнала с каждого анемометра в накопитель информации только тогда, когда датчик воды указывает, что данный анемометр находится в воздухе.

Описанный способ просто видоизменяется на случай измерения скорости течений. Для целей измерения скорости течений в зоне волнения анемометры 2 заменяют на измерители течений, оставляя всю остальную систему приборов без изменения (Фиг 3). При этом, однако, коммутацию измерителя уровня воды 5 и переключателя 6 с измерителями течений 2 устанавливают таким образом, что переключатель обеспечивает включение каждого из измерителей течений только при его нахождении в воде. Способ накопления информации выполняют по аналогии с таковым для случая измерения скорости ветра. В случае измерения профиля течений воды, естественно, что датчики влажности не нужны.

С целью упрощения процесса измерения профиля скорости течений в зоне волнения, вместо измерителя уровня воды 5 используют малогабаритные емкостные датчики наличия воды, жестко установленные непосредственно над корпусами измерителей течений воды 2 (Фиг.3), сохраняя коммутацию измерителей течений, датчиков воды и переключателя сигналов, обеспечивающую запись измерений течений в накопителе информации только при нахождении каждого из измерителей течений в воде.

Источники информации

1. В.Н.Кедроливанский, М.С.Стернзат. Метеорологические приборы. - Л.; М: Гидрометеоиздат, 1953.

2. Kristensen, L., 1993: The cup anemometer and other exciting instruments. Tech. Rep.Risoe-R-615(EN), Rise National Laboratory, 83 pp.

3. http://www.gill.co.uk/products/anemometer/anemometer.htm

4. Bernstein, Abram В., 1967: A Note on the Use of Cup Anemometers in Wind Profile Experiments. J. Appl. Meteor., 6, 280-286.

5. A.Pena, S.-E. Gryning, Chamock's Roughness Length Model and Non-dimensionalWind Profiles Over the Sea. Boundary-Layer Meteorology (2008) 128:191-203.

6. Патент России №2030749.

7. http://www.aktakom.ru/kio/index.php?SECTION_ID=493&ELEMENT_ID=38092

1. Способ контактного измерения профиля скорости ветра, основанный на использовании системы вертикально распределенных на жесткой мачте анемометров, соединенных при помощи переключателя сигналов с многоканальным накопителем информации, отличающийся тем, что анемометры располагают так, что самый нижний из них находится ниже минимальных уровней подошв волн, а самый верхний находится на высоте, превышающей максимальную высоту гребней волн, и на той же мачте устанавливают электронный измеритель уровня воды, который коммутируют с анемометрами и переключателем сигнала таким образом, что сигнал с каждого из анемометров записывают в накопитель информации только тогда, когда измеритель уровня воды указывает, что данный анемометр находится в воздухе, а при попадании в воду его сигнал не регистрируют.

2. Способ контактного измерения профиля скорости ветра в зоне волнения по п.1, отличающийся тем, что на корпус каждого анемометра укрепляют измерители влажности воздуха и коммутируют их с датчиками уровня воды и с переключателем сигнала так, что сигнал каждого измерителя влажности записывают в накопитель информации по аналогии с записью сигнала соответствующего ему анемометра по п.1.

3. Способ контактного измерения профиля скорости течений, основанный на использовании системы вертикально распределенных на жесткой мачте измерителей течений, соединенных при помощи переключателя сигналов с многоканальным накопителем информации, отличающийся тем, что измерители скорости течений располагают так, что самый нижний из них находится ниже минимальных уровней подошв волн, а самый верхний находится на высоте, превышающей максимальную высоту гребней волн, и на той же мачте устанавливают электронный измеритель уровня воды, который коммутируют с измерителями течений и переключателем сигнала так, что сигнал с каждого измерителя течений записывают в накопитель информации только тогда, когда измеритель уровня воды указывает, что данный измеритель течений находится в воде, а при попадании в воздух его сигнал не регистрируют.



 

Похожие патенты:

Изобретение относится к нефтегазодобывающей промышленности и предназначено для измерения скорости движения жидкости или газа по стволу действующей скважины. .

Изобретение относится к устройствам, предназначенным для измерения параметров потока флюида (нефть, вода, газ и их смеси), таких как температура, скорость и фазовый состав, и может быть использовано при проведении геофизических исследований скважин, а также при контроле за транспортировкой жидких углеводородов по трубопроводной системе. Техническим результатом, достигаемым при реализации изобретения, является расширение функциональных возможностей датчика и повышение эффективности измерений. Скважинный датчик, предназначенный для измерения параметров потока флюида, содержит два идентичных полых открытых с одного конца металлических корпуса, оси симметрии которых находится на одной линии. Открытые концы корпусов обращены друг к другу и жестко закреплены в электрическом изоляторе. В каждом корпусе расположен датчик термоанемометра. Электрические выводы датчиков проходят внутри полостей корпусов и через электрический изолятор выведены наружу. 5 з.п. ф-лы, 1 ил.

Анемометр // 2535650
Предложенное изобретение относится к микромеханическим системам для измерения потоков жидкостей и газов и определения направления данных потоков. Заявленный анемометр, предназначенный для измерения указанных величин, содержит цилиндр, датчики, расположенные на его поверхности, и блок съема и анализа данных. При этом указанный цилиндр выполнен сплошным или полым с не менее чем двумя продольными полостями на цилиндрической поверхности, покрытыми упругими стенками того же радиуса кривизны, на каждой из которых сформирован по крайней мере один тензодатчик, соединенный с блоком съема и анализа данных. Причем его полости могут сообщаться с внешней средой через фильтр, а его продольные полости могут быть заполнены газом или быть герметичными. Данное изобретение позволяет повысить устойчивость к воздействию внешней среды и существенно уменьшить температурную деградацию его основных элементов. 9 з.п. ф-лы, 2 ил.

Изобретение относится к области метеорологии и может быть использовано для указания параметров ветра при посадке летательного аппарата. Сущность: устройство развертывается вдоль воздушной траектории по направлению к поверхности земли, например, после сброса с летательного аппарата в полете. Устройство включает в себя анемометр, высотомер, компас, процессор и передатчик. Анемометр получает измерения локальной скорости ветра и локального направления ветра вдоль траектории. Высотомер получает измерения высоты вдоль траектории. Компас получает измерения направления вдоль траектории. Процессор определяет значения скорости и направления ветра, ассоциированные с предопределенной высотой устройства. Передатчик передает определенное значение скорости ветра и значение направления ветра к удаленно расположенному приемнику. Технический результат: измерение параметров ветра. 3 н. и 24 з.п. ф-лы, 5 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при проведении геофизических исследований в горизонтальных и наклонно-направленных действующих нефтяных скважинах. Техническим результатом является повышение точности измерений. Способ измерения скорости потока флюида в скважине заключается в импульсном нагреве потока флюида, измерении температуры флюида по меньшей мере двумя датчиками температуры, разнесенными вдоль оси скважины, и сравнении сигналов двух датчиков температуры. Нагрев осуществляют с помощью автономного скважинного термоанемометра. Термоанемометр содержит блок питания, герметичный цилиндрический корпус, в верхней части которого расположен герметичный отсек, содержащий вычислительную систему. В нижней части термоанемометра по оси корпуса расположено сквозное окно овального сечения, образующее цилиндрический канал с расположенными внутри него двумя датчиками температуры, которые находятся у противоположных стенок канала по оси корпуса. В вычислительную систему в процессе измерения производят запись температуры с первого датчика, измеряющего исходную температуру в потоке скважинного флюида, и со второго датчика, измеряющего температуру с нагретого при помощи широтно-импульсной модуляции флюида, который находится в канале термоанемометра выше другого датчика температуры. Скорость движения потока флюида в скважине находят путем определения разности измеренных температур с первого и второго датчиков, на основе которой, с учетом исходной температуры потока скважинного флюида, производят расчет по математическому выражению, с учётом коэффициентов, рассчитанных при проведении калибровки прибора в рабочем диапазоне температур. 2 н. и 12 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и касается способа измерения скорости течения жидкости с рассеивающими свет частицами. Способ включает в себя освещение потока жидкости одновременно двумя пучками лазерного излучения и определение спектра мощности P12(f) отраженного сигнала. Затем поток жидкости освещают каждым пучком лазерного излучения в отдельности и определяют спектр мощности P1(f) и P2(f) отраженных сигналов при освещении соответственно первым и вторым пучком излучения. Выделяют из спектра мощности частотные компоненты P'12(f), соответствующие рассеянию света на частицах, освещенных одновременно двумя пучками лазерного излучения: P'12(f)=P12(f)-P1(f)-P2(f). Из выделенных частотных компонент определяют частоту fd максимума спектра мощности. Скорость течения жидкости вычисляют по формуле u=λ0/(2n sin(α/2)cosβ)fd, где λ0 – длина волны лазерного излучения, n – показатель преломления среды, в которой измерен угол α между лазерными пучками, β – угол между направлениями скорости крови u и разностного волнового вектора K, где K=ki1-ki2, где ki1 и ki2 – волновой вектор соответственно первого и второго пучков лазерного излучения. Технический результат заключается в обеспечении высокого соотношения сигнал/шум при измерении скорости течения сильно рассеивающих жидкостей и точности измерений. 1 з.п. ф-лы, 12 ил.

Предложен способ определения скорости ветра над водной поверхностью, в котором получают более двух пространственно-временных изображений водной поверхности из оптических изображений, полученных с помощью более чем двух оптических систем на основе линеек ПЗС-фотодиодов, синхронизированных между собой единым задающим генератором и установленных с разными направлениями визирования в заданном угловом секторе, определяемом азимутальным углом между крайними линейками ПЗС-фотодиодов, причем каждая линейка ПЗС-фотодиодов регистрирует одномерные оптические изображения с захватом линии горизонта и части неба под малыми углами наблюдения, стыкуют по дальности два полученных с соседних линеек ПЗС-фотодиодов изображения по дальности, определяют направления распространения ветровых порывов (определяют углы между направлениями визирования соседних линеек ПЗС-фотодиодов и направлением движения полос ветровых порывов между соседними линейками ПЗС-фотодиодов) и скорость ветровых порывов для соседних линеек ПЗС-фотодиодов по углам наклона полос ветровых порывов на пространственно-временных изображениях, полученных соседними линейками ПЗС-фотодиодов, и известному углу между направлениями визирования соседних линеек ПЗС-фотодиодов, скорость ветра определяют над каждой точкой водной поверхности в направлении визирования каждой линейки ПЗС-фотодиодов из известной модельной зависимости дисперсии уклонов волн от скорости ветра с учетом направления ветровых порывов, а значение дисперсии уклонов волн в направлении визирования в каждой точке водной поверхности получают решая задачу «обращения» зависимости яркости водной поверхности от дисперсии уклонов волн с учетом углового распределения яркости неба, причем для решения задачи «обращения» используют в каждой точке водной поверхности в направлении визирования каждой линейки ПЗС-фотодиодов сравнение измеренной яркости водной поверхности, нормированной на яркость неба у горизонта, зарегистрированной в оптическом изображении водной поверхности, и модельной (расчетной) нормированной яркости водной поверхности, при этом в формуле для яркости водной поверхности используют либо аналитическое выражение для углового распределения яркости неба в зависимости от условий освещения, либо используют угловое распределение яркости неба и окологоризонтного участка водной поверхности, зарегистрированное в цифровом виде в случае необходимости достижения высокого пространственного разрешения на водной поверхности в направлении визирования линеек ПЗС-фотодиодов либо с помощью двух взаимно откалиброванных видеокамер, на объективы которых установлены поляроиды с вертикально и горизонтально расположенными осями пропускания, либо с помощью одной видеокамеры, на объектив которой, как и на объективы линеек ПЗС-фотодиодов, установлены поляроиды или с вертикально, или с горизонтально расположенной осью пропускания, при этом в линейках ПЗС-фотодиодов используют длиннофокусные узкоугольные объективы, а в случае необходимости достижения широкой полосы обзора - с помощью самих линеек ПЗС-фотодиодов с установленными на них широкоугольными объективами и установленными на объективах поляроидами с вертикально или горизонтально расположенной осью пропускания. 4 ил.

Изобретения относятся к области измерительно-преобразующей техники и могут быть использованы для поверки роторных анемометров. Способ позволяет проводить поверку роторного анемометра непосредственно на месте его эксплуатации. Устройство для осуществления способа содержит образцовый торсиометр с системой отсчета показаний, электродвигатель и контроллер. При этом вращение оси анемометра осуществляется электродвигателем через образцовый торсиометр. Скручивание торсиометра пропорционально крутящему моменту, создаваемому на оси анемометра. Система отсчета расположена вне торсиометра и позволяет измерять частоту вращения анемометра и угол скручивания. Крутящий момент, создаваемый на оси анемометра, имеет две составляющие, обусловленные трением оси анемометра и аэродинамическими характеристиками воздушного винта. Отклонение крутящего момента от номинального для каждой из моделей анемометров в рабочем диапазоне скорости вращения служит критерием годности. Технический результат заключается в упрощении процедуры поверки анемометра. 2 н.п. ф-лы, 1 ил.

Способ контактного измерения профилей скорости ветра и течений в зоне волнения

Наверх