Способ производства горячекатаных труб



Способ производства горячекатаных труб
Способ производства горячекатаных труб
Способ производства горячекатаных труб
Способ производства горячекатаных труб

 


Владельцы патента RU 2489221:

Открытое акционерное общество "Российский научно-исследовательский институт трубной промышленности" (ОАО "РосНИТИ") (RU)
Открытое акционерное общество "Синарский трубный завод" (ОАО "СинТЗ") (RU)

Изобретение предназначено для повышения производительности трубопрокатных агрегатов, качества поверхности и точности бесшовных горячекатаных труб из непрерывно-литой, а также катаной заготовок, преимущественно на трубопрокатных агрегатах с автоматическими раскатными станами. Способ включает прошивку нагретой заготовки в гильзу, раскатку гильзы, риллингование и редуцирование. Сокращение номенклатуры прокатного инструмента и возможность производства труб на трубопрокатных агрегатах с автоматическими раскатными станами из непрерывно-литой заготовки повышенного диаметра 156 мм, менее затратной и более качественной в сравнении с катаной, обеспечивается за счет того, что при риллинговании уменьшают наружный диаметр трубы по сравнению с наружным диаметром трубы до риллингования путем одновременной деформации стенки трубы с деформацией трубы по диаметру в сужающемся в направлении прокатки калибре, при этом на каждой операции горячего передела осуществляют уменьшение диаметра заготовки. 2 ил.

 

Изобретение относится к трубопрокатному производству и может быть использовано для изготовления бесшовных горячекатаных труб из непрерывнолитой, а так же катаной заготовок, преимущественно на трубопрокатных агрегатах с автоматическими раскатными станами.

Известен способ винтовой прошивки литой заготовки (патент РФ №2250147, В21В 19/04, опубл. 20.04.2005 г.), который включает подачу нагретой заготовки в рабочие валки, развернутые на угол подачи и раскатки, и прошивку заготовки оправкой, установленной в калибре, образованном валками и направляющим инструментом. Величина угла подачи составляет 12-18°, угла раскатки - 6-10°. Обжатие в пережиме равно 21-35%, при этом используют валки, угол входного конуса которых составляет 4-8°. Величина обжатия заготовки перед носком оправки регламентирована математической зависимостью. В результате получают гильзу, диаметр которой значительно меньше диаметра заготовки, задаваемой в прошивной стан.

Однако для достижения высоких деформаций требуется большой угол входного конуса 4-8°, что приводит к дестабилизации условий как первичного, так и вторичного захвата. После первых 200-220 тонн проката вследствие истирания насечки на входном участке валков (необходимое условие для реализации способа) условия первичного захвата ухудшаются настолько, что требуется остановка стана и замена валков, в то время как их срок службы рассчитан на прокат 4500-5000 тонн.

Ухудшение условий вторичного захвата характеризуется увеличением скольжения металла и ростом числа циклов частных обжатий, способствующих разрушению центральной зоны заготовки и образованию поверхностных дефектов на гильзах и трубах. Поэтому рекомендовано прошивку осуществлять при величине угла не менее 12°. При высоких общих обжатиях 21-35%, частоте вращения валков ≈100 об/мин и большом угле подачи (≥12°) имеющиеся мощности двигателей подавляющего большинства прошивных станов трубопрокатных агрегатов (ТПА) не смогут обеспечить заявленный режим прошивки.

Кроме того, процесс прошивки с повышенными обжатиями 23-28% сопровождается интенсивным износом оправок и линеек, средняя стойкость которых снижается в 3-4 раза по сравнению с уровнем износостойкости при обычном процессе (Марченко К.Л. Прошивка непрерывнолитой заготовки при повышенном обжатии / К.Л. Марченко, К.А. Поляков, Б.А. Романцев и др. // Прокатное производство. - 2005. - №2).

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ производства бесшовных горячекатаных труб, включающий нагрев круглой заготовки, ее прошивку в гильзу в стане винтовой прокатки, последующую раскатку стенки гильзы на короткой оправке в автоматическом стане в черновую трубу, риллингование черновой трубы на короткой оправке в стане винтовой прокатки с изменением ее диаметра, редуцирование и калибровку чистовой трубы (Горячая прокатка и прессование труб / Ф.А. Данилов, А.З. Глейберг и др. - М.: Металлургия, 1972, с.151-272).

Недостатком способа является относительно низкое качество наружной и внутренней поверхностей трубы, а также точности по стенке, получаемой после раскатки гильзы на короткой оправке в калибре автоматстана: наличие на поверхности трубы следов от действия выпусков калибра в виде локальных утолщений стенки - «лампасов», «усов», а от воздействия короткой неподвижной оправки - в виде продольных рисок, неровностей и вмятин, следов от налипания металла на оправку, сваривания с материалом оправки и т.д. Все это требует обязательной чистовой операции - обкатки или отделки трубы на специальном оборудовании - риллинг-станах винтовой прокатки, двух - или трехвалковых. Риллингование устраняет упомянутые недостатки, однако процесс риллингования происходит с увеличением трубы по диаметру до 10-12%. С увеличением диаметра от 4 до 12% осуществляют процесс прошивки заготовки на прошивных станах винтовой прокатки с обеспечением условий минимизации энергосиловых параметров процесса, высокой стойкости прокатного инструмента, главным образом, направляющих линеек, и получения удовлетворительного качества внутренней поверхности гильз.

Операции прошивки и риллингования, определяющие высокое суммарное увеличение диаметра труб, требуют, с одной стороны, использования заготовок заниженного диаметра - что снижает производительность трубопрокатного агрегата и увеличивает потери металла на угар. С другой стороны - в качестве компенсации за увеличение диаметра гильзы и трубы в процессе прошивки и риллингования необходимо соответствующее повышение степени редуцирования, т.е. уменьшение диаметра трубы за счет установки дополнительных клетей редукционно-калибровочного стана либо увеличение обжатия в каждой из клетей при постоянном их количестве. Однако увеличение общей величины редуцирования, независимо от того, как оно обеспечивается, приводит к ухудшению качества наружной и внутренней поверхностей трубы, наведению симметричной разностенности в виде «квадрата» в двухвалковых и «шестиугольника» в трехвалковых калибрах редукционного стана, а также к увеличению концевой обрези.

Отмеченный недостаток прогрессивно возрастает при использовании на малых ТПА более качественной непрерывно-литой заготовки повышенного диаметра 150-156 мм, а основной сортамент используемых заготовок составляет 90-140 (150) мм, при этом используют дорогостоящую катаную заготовку. Кроме того, при использовании заготовок меньшего диаметра снижается производительность ТПА. Риллингование, например в трехвалковом стане сопровождается повышением диаметра прокатываемой трубы до 12%, что требует компенсационного уменьшения диаметра трубы либо за счет прошивки с «глубоким» (до 28-32%) посадом гильзы по диаметру, либо повышением степени редуцирования в редукционно-калибровочном стане. Реализация обоих направлений, как было отмечено выше, связана с повышением энергосиловых параметров, ухудшением качества поверхности, снижением точности труб и интенсификацией износа прокатного инструмента, а в ряде случаев - с невозможностью использования для изготовления труб более качественной и дешевой круглой непрерывно-литой заготовки повышенного диаметра.

Техническая задача, решаемая изобретением, заключается в освоении производства труб из непрерывно-литой заготовки повышенного диаметра, преимущественно на ТПА с автоматическими раскатными станами, увеличении производительности ТПА и повышении качества поверхности и точности труб.

Поставленная задача решается за счет того, что в способе производства бесшовных горячекатаных труб, включающем прошивку нагретой заготовки в гильзу, раскатку гильзы, риллингование и редуцирование трубы, согласно изобретению, при риллинговании уменьшают наружный диаметр трубы по сравнению с наружным диаметром трубы до риллингования путем одновременной деформации стенки трубы с деформацией трубы по диаметру в сужающемся в направлении прокатки калибре, при этом на каждой операции горячего передела осуществляют уменьшение диаметра полого изделия (заготовки).

Изобретение иллюстрируется чертежами, где на фиг.1 схематично показано продольное сечение очага деформации при производстве труб известным способом по прототипу, на фиг.2 схематично изображен очаг деформации процесса риллингования при производстве труб предлагаемым способом.

В очаге деформации показаны валок 1 и оправка 2 риллинг-стана, труба 3, которая на входе в очаг деформации является черновой, а на выходе из очага деформации - чистовой.

Способ производства горячекатаных труб рассмотрим по сравнению с осуществлением известного способа по прототипу.

При производстве труб известным способом по прототипу (фиг.1) в очаг деформации риллинг-стана, образованный валками 1 и оправкой 2, задают черновую трубу 3, полученную после раскатки гильзы на короткой оправке автоматстана, у которой в поперечном сечении выраженная симметричная разностенность в виде недораскатанных локальных участков, соответствующих выпускам калибра (например, «лампасов», «усов», «поясков»), а также следы от действия оправки в виде задиров, рисок, неровностей. Во входном участке очага деформации происходит захват трубы 3 валками 1 и безоправочная обкатка трубы до момента «посада» ее на оправку 2. Стабильный первичный захват трубы обеспечивают малые углы входного участка валков, составляющие, как правило, 1-3°, а также наличие трех валков риллинг-стана. Процесс риллингования трубы 3 на коническом рабочем участке оправки 2 в увеличивающемся по ходу прокатки калибре, образованном валками 1 и оправкой 2, обеспечивает необходимое качество поверхности и требуемую точность трубы по стенке. Процесс раскатки на короткой оправке с увеличивающимся в направлении прокатки диаметром рабочего участки всегда сопровождается увеличением диаметра чистовой трубы относительно диаметра трубы, задаваемой в стан. То же касается и случая риллингования трубы на короткой цилиндрической оправке, используемой, в основном в двухвалковом риллинг-стане, в котором диаметр трубы также увеличивается за счет раската неровностей стенки трубы и образования так называемого «разбоя», что не позволяет получить трубы малого диаметра из непрерывно-литой заготовки повышенного диаметра.

В предлагаемом способе производства горячекатаных труб калибровка валка риллинг-стана представляет сочетание входного конического участка с малым углом образующей (например, 2°) и сопряженного с ним цилиндрического участка. Для упрощения процесса риллингования и калибровки валка и обеспечения большей маневренности входной и рабочий участки валка выполнены с конусностью, угол образующей которых одинаковый и составляет, например, 2°. Аналогичный профиль имеет оправка риллинг-стана. Конический рабочий участок валка 1 и конический рабочий участок оправки 2 образуют уменьшающийся по диаметру в направлении прокатки калибр (фиг.2), в котором осуществляют риллингование с уменьшением трубы по диаметру. Механизм риллингования по предлагаемому способу состоит в следующем: черновую трубу 3 после раскатки стенки гильзы в автоматстане на короткой оправке задают в очаг деформации риллинг-стана, образованный валками 1 и оправкой 2. Процесс первичного захвата до момента «посада» на оправку 2 черновой трубы 3 практически не отличается от аналогичной стадии существующего способа. На этой стадии происходит частичный раскат стенки черновой трубы. В последующей стадии риллингования труба 3 одновременно с деформацией стенки получает деформацию по диаметру в сужающемся в направлении прокатки калибре, образованном валками 1 и оправкой 2. Для обеспечения качественного риллингования целесообразно задавать в стан черновую трубу с толщиной стенки, равной номинальной - в этом случае необходимая степень обжатия по стенке достигается за счет утолщения стенки, получаемой путем уменьшения диаметра трубы 3.

Преимуществом редуцирования в риллинг-стане трубы 3 является наличие постоянного контакта ее с оправкой 2, препятствующего развитию растягивающих напряжений на внутренней поверхности и образованию внутренних дефектов. В этом плане процесс риллингования с уменьшением трубы по диаметру технологически более предпочтителен, чем процесс безоправочного редуцирования трубы на редукционно-калибровочном стане.

После редуцирования на оправке на участке обратного конуса труба проходит короткий смежный участок между конусом и цилиндром, и поверхность ее окончательно полируется на цилиндрическом участке.

Способ производства горячекатаных труб, в котором процесс риллингования осуществляли с уменьшением диаметра чистовой трубы, был реализован на полупромышленном двухвалковом прошивном стане при проведении опытной прокатки труб с различной толщиной стенки. В стан задавали заготовку черновой трубы диаметром 73 мм с толщинами стенок 6,5; 9,5 и 13,0 мм, которые обкатывали (риллинговали) в трубы до получения трубы с конечным диаметром 58 мм и толщинами стенок 6,0; 10,0 и 13,0 мм, степень уменьшения диаметра трубы составила порядка 20%. Процесс риллингования проходил устойчиво без отклонений условий первичного и вторичного захвата, а также стадии установившегося процесса, с обеспечением удовлетворительного состояния поверхности и геометрической точности труб.

В сочетании с возможностью ведения процесса прошивки заготовки также с некоторым уменьшением гильзы по диаметру в пределах до 10%, реализация процесса риллингования с уменьшением диаметра чистовой трубы по сравнению с диаметром трубы до риллингования изменяет качественно способ производства труб на ТПА с автоматическим станом за счет обеспечения возможности осуществления горячего передела с последовательным уменьшением диаметра полого изделия на каждой технологической операции и освоения производства труб из непрерывно-литой заготовки повышенного диаметра.

Для осуществления предлагаемого способа был подготовлен прокатный инструмент и проведена опытная прокатка труб размером 127×10 мм из непрерывно-литой заготовки повышенного диаметра 156 мм - с уменьшением диаметра трубы в процессе риллингования. Прокат труб осуществляли по схеме:

Как следует из схемы прокатки, изменения режимов деформации коснулись операции прошивки, которую осуществляли с небольшим уменьшением гильзы по диаметру относительно диаметра заготовки (приемлемая величина уменьшения диаметра гильзы относительно диаметра заготовки для процесса прошивки составляет 2,0-5,0%) и операции риллингования, в которой уменьшение диаметра чистовой трубы составило 5,2%. Процессы прошивки и риллингования были стабильными, средняя величина токовой нагрузки на привод прошивного стана не превышала 3 кА при предельно допустимой 4 кА, на привод риллинг-стана - 0,6 кА при допустимой 1,0 кА. Было прокатано 78 труб, качество поверхности и геометрическая точность труб - удовлетворительные. Все трубы прошли технический контроль и сданы в соответствии с требованиями ГОСТ 8732-78 с выходом годного 98,8%.

Кроме того, возможна реализация способа, сочетающего наиболее благоприятный режим работы на операции сквозной прошивки с обеспечением минимизации энергосиловых параметров процесса, получения удовлетворительного качества внутренней поверхности гильз, а также обеспечения высокой стойкости прокатного инструмента, главным образом, направляющих линеек, т.е. увеличение диаметра гильзы относительно диаметра заготовки, задаваемой в стан, с последующим поэтапным уменьшением диаметра полого изделия на каждой операции горячего передела, например, по схеме:

В известном способе производства горячекатаных труб, по меньшей мере, одну их технологических операций - риллингование осуществляли с обязательным увеличением диаметра трубы для обеспечения высокого качества поверхности. Однако реализация этого способа требовала использования заготовок уменьшенного диаметра и, главное - различных типоразмеров, что снижало производительность ТПА и требовало использования катаной заготовки. Предлагаемый способ, в отличие от известного, позволяет осуществлять все без исключения технологические операции горячего передела с уменьшением диаметра полого изделия, что дает возможность использовать для производства труб заготовку повышенного диаметра, в основном - непрерывно-литую, повысить производительность ТПА и качество труб.

Таким образом, реализация предлагаемого способа производства труб позволяет освоить производство труб на малых ТПА с автоматическими раскатными станами из непрерывно-литой заготовки повышенного диаметра 156 мм, менее затратной и более качественной в сравнении с катаной, унифицировать типоразмеры используемых заготовок, сократить номенклатуру прокатного инструмента, повысить производительность трубопрокатных агрегатов, качество поверхности и точность труб.

Способ производства бесшовных горячекатаных труб, включающий прошивку нагретой заготовки в гильзу, раскатку гильзы, риллингование и редуцирование трубы, отличающийся тем, что при риллинговании уменьшают наружный диаметр трубы по сравнению с наружным диаметром трубы до риллингования путем одновременной деформации стенки трубы с деформацией трубы по диаметру в сужающемся в направлении прокатки калибре, при этом на каждой операции горячего передела осуществляют уменьшение диаметра заготовки.



 

Похожие патенты:

Изобретение относится к области обработки металлов давлением и касается изготовления гильз из литой, а также непрерывно-литой заготовки в косовалковом прошивном стане.
Изобретение относится к области обработки металлов давлением и касается получения горячекатаных труб на трубопрокатных агрегатах (ТПА) с раскатным станом продольной прокатки, например, с непрерывным станом.

Изобретение относится к трубопрокатному производству горяче-деформированных труб для паровых котлов, паропроводов и коллекторов установок с высокими и сверхкритическими параметрами пара из слитков электрошлакового переплава стали марки 10Х9К3В2МФБР-Ш и на трубопрокатных установках с пилигримовыми станами.

Изобретение относится к трубопрокатному производству, а именно к способу винтовой прокатки полых изделий. .

Изобретение относится к области трубопрокатного производства, а точнее к способам получения гильз из сплошной заготовки на прошивных станах поперечно-винтовой прокатки.

Изобретение относится к способу прокатки гильз на прошивном стане и может быть использовано на агрегатах, производящих цельные горячекатаные трубы. .

Изобретение относится к области обработки металлов давлением и касается технологии производства бесшовных труб, в частности, с применением винтовой прошивки для получения гильз, преимущественно из сталей и сплавов с пониженной пластичностью, например из слитков.
Изобретение относится к трубопрокатной области и касается, в частности, технологии получения гильз для дальнейшего производства труб. .

Изобретение относится к области обработки металлов давлением и касается получения полых заготовок - гильз из непрерывно-литой заготовки или слитка. .

Изобретение относится к трубопрокатному производству и касается технологии получения горячекатаных бесшовных труб (гильз) короткой длины винтовой прокаткой, в частности к способу получения горячекатаных труб на станах винтовой прокатки нагретой заготовки на оправке в калибре, образованном валками и линейками.

Изобретение предназначено для повышения качества изделий и снижения простоев косовалкового прошивного стана за счет увеличения межперевалочного срока службы валков. Валок прошивного стана содержит входной конус, пережим и выходной конус. Снижение количества дефектов "плена" на внутренней поверхности труб за счет обеспечения надежного захвата заготовки валками и повышения стойкости валков обеспечивается посредством того, что на рабочей поверхности входного конуса валка выполнена винтовая резьба переменной глубины с направлением, противоположным вращению валка, с максимальным значением глубины в начале входного конуса валка, равным 0,1÷0,3 шага резьбы, и уменьшением глубины на участке пережима валка до значения 0,0÷0,15 максимальной ее глубины, при этом резьба имеет криволинейный, треугольный или трапециевидный профиль с наклоном боковых поверхностей 25÷65°. 2 ил.

Изобретение предназначено для улучшения качества поверхности гильз, получаемых на косовалковом прошивном стане для производства горячекатаных труб. Технологический инструмент косовалкового прошивного стана содержит валки, включающие конус прошивки и конус раскатки, разделенные пережимом, линейки и оправку, выдвинутую за пережим валков. Повышение обжатия заготовки, снижение износа технологического инструмента прошивного стана обеспечивается за счет того, что на рабочем конусе оправки выполнена кольцевая выемка длиной не более 3/4 длины рабочего конуса от поперечного сечения начала калибрующего участка оправки и глубиной 1,5-12,0% от величины диаметра оправки. Кольцевая выемка может быть образована пересечением участков конических поверхностей, равных по высоте и с разнонаправленной конусностью, с эквидистантной поверхностью рабочего конуса оправки, причем в сечении, соответствующем началу калибрующего участка оправки, расположен участок прямого конуса, а в носовой части оправки - участок обратного конуса. Кольцевая выемка может быть образована пересечением поверхностей участка обратного конуса и рабочего конуса оправки в носовой части и сопряжением поверхности кольцевой выемки с поверхностью рабочего конуса оправки в сечении, соответствующем началу калибрующего участка оправки. 7 з.п. ф-лы, 7 ил.

Изобретение предназначено для исключения образования дефектов на внутренней поверхности гильз в процессе их винтовой прокатки. Способ включает подачу смазки на внутреннюю поверхность гильз и прокатку гильз на короткой удерживаемой оправке. Предотвращение вытекания смазки из полости гильзы обеспечивается за счет того, что прокатку производят с расположением оси прокатки и оси гильзы с наклоном вниз по ходу прокатки на угол 3-10 минут к горизонтальной плоскости. 1 ил.

Изобретение относится к трубопрокатному производству, а именно к способу производства бесшовных горячекатаных труб размером 530×25-60 мм из стали марки 10Х9МФБ-Ш для паровых котлов, паропроводов и коллекторов установок с высокими и сверхкритическими параметрами пара. Способ включает выплавку слитков электрошлаковым переплавом, механическую обработку-обточку слитков в слитки-заготовки, сверление в слитках-заготовках центрального отверстия диаметром 100±5 мм, нагрев слитков-заготовок до температуры пластичности, прошивку их в стане поперечно-винтовой прокатки в гильзы-заготовки, охлаждение гильз-заготовок, ремонт гильз-заготовок при необходимости, повторный нагрев гильз-заготовок с холодного посада до температуры пластичности, прошивку-раскатку гильз-заготовок в стане поперечно-винтовой прокатки в гильзы, прокатку гильз на пилигримовых станах, отрезку пилой горячей резки технологических отходов, термическую обработку труб, травление, правку, ультразвуковой контроль и приемку товарных труб. Обеспечивается производство труб с механическими свойствами и геометрическими размерами, превышающими требования существующих технических условий при снижении расходного коэффициента металла и повышении производительности пилигримовой установки. 3 з.п. ф-лы, 1 табл.

Изобретение предназначено для снижения себестоимости товарных и передельных труб большого диаметра из легированных труднодеформируемых марок стали и сплавов. Технологический инструмент состоит из рабочих приводных валков, установленных на угол подачи и угол раскатки, оправки с носиком, выдвинутой за пережим и жестко насаженной на вращающийся стержень - дорновую штангу. Повышение производительности ТПУ с пилигримовыми станами обеспечивается за счет того, что инструмент снабжен дополнительной оправкой, которая надета на дорновую штагу за основной оправкой и имеет две степени свободы - вращения и скольжения по дорновой штанге до фиксирующего упора - и состоит из четырех участков, профиль поверхности которых регламентирован математическими зависимостями. 3 з.п. ф-лы, 2 ил., 1 табл.

Изобретение предназначено для улучшения проработки непрерывнолитой структуры заготовок при их прошивке в двухвалковых прошивных станах винтовой прокатки. Инструмент имеет биконические валки с пережимом между их конусами и установленную между ними прошивную оправку, носок которой выдвинут за пережим в сторону входа в очаг деформации, а также направляющие линейки, имеющие входной конический и выходной участки с гребнем между ними, который расположен в пережиме валков или сдвинут в сторону носка оправки. Повышение доли поперечной деформации за счет изменения характера овализации заготовки обеспечивается за счет того, что выходной участок линеек выполнен с продольным профилем, имеющим криволинейную вогнутость со стороны прошиваемых заготовок. 3 ил.

Изобретение относится к трубному производству. Способ включает нагрев слитков-заготовок до температуры пластичности и прошивку их в стане поперечно-винтовой прокатки в гильзы с разными вытяжками по длине µпр, µпр1 и µпр2. В стане поперечно - винтовой прокатки слитки-заготовки прошивают в гильзы, имеющие форму двух полых совмещенных усеченных конусов, один из которых имеет длину, равную (0,10-0,15) длины гильзы, и меньшее основание его расположено на переднем конце по ходу прошивки гильз, а второй конус имеет длину, равную (0,85-0,9) длины гильзы, и меньшее основание его расположено на заднем конце по ходу прошивки гильз. Гильзы i-го размера прокатывают на пилигримовом стане в трубы J-го размера с постоянной величиной подачи mij при установившемся процессе прокатки и вытяжками µпг1ij, µпг2ij, и µпг3ij, соответственно, при затравке, установившемся процессе и конце прокатки - при выведении пилигримовых головок из конусных частей гильз. Трубы-плети режут на трубы - краты и удаляют технологические отходы - пилигримовые головки и затравочные концы пилой горячей резки. Обеспечивается снижение расхода металла, поперечной разностенности труб, колебаний нагрузок на привод пилигримового стана при прокатке труб-плетей с фиксированной величиной подачи, повышение производительности и исключение смятия задних концов гильз. 2 з.п. ф-лы,1 табл.

Изобретение может быть использовано при производстве бесшовных горячедеформированных котельных и паропроводных труб для энергетического оборудования с суперсверхкритическими параметрами пара. Полые слитки ЭШП стали марки 10Х9К3В2МФБР-Ш размером 620хвн.180-260х2100±50 мм, с отношением диаметра к толщине стенки D/S=2,8-4,2 обтачивают и растачивают в полые слитки-заготовки размером 600хвн.200-280х2100±50 мм с отношением диаметра к толщине стенки D/S=3,0-4,6. Нагревают слитки-заготовки до температуры 1190-1210оС и прошивают-раскатывают в стане поперечно-винтовой прокатки в гильзы размером 600хвн.415-315х3160-2160 мм. Гильзы прокатывают на пилигримовом стане с вытяжками µn, равными 5,17-2,48 в трубы размером 426х21-70х13800-4900мм. Технологические отходы отрезают пилой горячей резки, трубы правят, подвергают термической обработке, травлению, ультразвуковому контролю и приемке. Обеспечивается увеличение суммарной вытяжки и повышение производительности ТПУ. 1 табл.

Изобретение относится к трубопрокатному производству, а именно к способу производства бесшовных труб для паровых котлов, паропроводов и коллекторов установок с высокими и сверхкритическими параметрами пара из слитков электрошлакового переплава стали марки 10Х9МФБ-Ш. Способ может применяться на трубопрокатных установках с пилигримовыми станами при производстве товарных труб размером 299×16-60 мм, передельных труб размером 377×22 и 325×20 мм для последующего переката их в товарные трубы размером 299×10-15 мм на стане ХПТ 450. Способ включает выплавку слитков электрошлаковым переплавом, механическую обработку - обточку слитков в слитки-заготовки, сверление в слитках-заготовках центрального отверстия диаметром 100±5 мм, нагрев слитков-заготовок до температуры пластичности, прошивку их в станах поперечно-винтовой прокатки в гильзы, прокатку гильз на пилигримовых станах в товарные трубы размером 299×16-60 мм, термическую обработку, травление, правку, ультразвуковой контроль и приемку труб. Обеспечивается производство на одном заводе труб всего размерного ряда 299×10-60 мм с механическими свойствами и геометрическими размерами, превышающими требования существующих технических условий, снижение расходного коэффициента металла при производстве тонкостенных труб за счет снижения поля допуска по толщине стенки. 1 з.п. ф-лы, 2 табл.

Изобретение относится к трубопрокатному производству и может быть использовано при производстве бесшовных горячекатаных труб из стали марки 10Х9МФБ-Ш для паровых котлов паропроводов и коллекторов установок с высокими и сверхкритическими параметрами пара. Полые слитки ЭШП растачивают и обтачивают в полые слитки-заготовки размером 660хвн.380х2100±50 мм, нагревают до температуры пластичности и прошивают-раскатывают в стане поперечно-винтовой прокатки в гильзы размером 670хвн.515х3170-3330 мм. На ТПУ 8-16” с пилигримовыми станами гильзы прокатывают в товарные трубы размером 550х31х7100-7500 - 550х45х5400-5700 мм. Обеспечивается повышение механических свойств и точность геометрических размеров труб. 1 з.п. ф-лы, 1 табл.
Наверх