Способ получения многоосновных карбоновых кислот адамантанового ряда



Способ получения многоосновных карбоновых кислот адамантанового ряда
Способ получения многоосновных карбоновых кислот адамантанового ряда
Способ получения многоосновных карбоновых кислот адамантанового ряда
Способ получения многоосновных карбоновых кислот адамантанового ряда
Способ получения многоосновных карбоновых кислот адамантанового ряда
Способ получения многоосновных карбоновых кислот адамантанового ряда

 


Владельцы патента RU 2489417:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный технический университет (RU)

Изобретение относится к способу получения многоосновных карбоновых кислот адамантанового ряда. В силу особенностей свойств, обусловленных наличием адамантанового фрагмента, материалы, полученные на основе многоосновных карбоновых кислот каркасного строения, обладают высокими эксплуатационными характеристиками и находят широкое применение в различных областях техники. Способ заключается во взаимодействии 1-гидроксизамещенных адамантанов с винилиденхлоридом в мольном соотношении 1:1-3 в присутствии концентрированной серной кислоты, выдерживании реакционной смеси при температуре 5-20°C в течение 1-2,5 ч, последующем добавлении дымящейся азотной кислоты в мольном соотношении 1:2-5 в расчете на адамантановый субстрат и дальнейшем добавлении муравьиной кислоты в мольном соотношении 1:1-10 в расчете на адамантановый субстрат и выдерживании в течение 1-12 ч при комнатной температуре. Упрощение технологического процесса и уменьшение стоимости производства достигается за счет использования более доступного сырья, проведения реакции в одном реакционном сосуде, упрощения аппаратурной схемы процесса, малого количества стоков и малой экологической нагрузки. Способ также позволяет получить целевые продукты с высоким выходом. 5 пр.

 

Изобретение относится к способу получения многоосновных карбоновых кислот каркасного строения. В силу особенностей свойств, обусловленных наличием адамантанового фрагмента, материалы, полученные на основе многоосновных карбоновых кислот каркасного строения, обладают высокими эксплуатационными характеристиками и находят широкое применение в различных областях техники.

Данным изобретением решена задача получения в том числе ранее неописанных многоосновных карбоновых кислот адамантанового ряда, а именно: карбоксиметилзамещенных по предмостиковым положениям адамантанкарбоновых кислот.

Известен способ получения 3-карбоксиметил-1-адамантанкарбоновой кислоты, основанный на взаимодействии 3-нитрокси-1-адамантанкарбоновой кислоты с винилиденхлоридом в среде концентрированной серной кислоты при температуре 5-15°С в течение 1 ч [1]. Выход продукта составляет 85%. Однако, исходное нитроксипроизводное адамантана является довольно дорогостоящим и трудно синтезируемым соединением и использование его в качестве сырьевой основы представляется экономически нецелесообразным.

Наиболее близким по технической сущности к заявляемому способу методом является взаимодействие 1-адамантилуксусной кислоты с муравьиной кислотой в присутствии серной и азотной кислот при температуре 28°С в течение 4 ч [2]. Выход продукта составляет 50%. Существенным недостатком данного способа является использование дорогостоящей 1-адамантилуксусной кислоты, синтез которой представляет собой отдельную технологическую проблему.

Техническим результатом изобретения является более простой в технологическом отношении, экономически эффективный и экологически менее опасный метод получения многоосновных карбоновых кислот адамантанового ряда.

Технический результат достигается тем, что синтез целевых соединений проводили взаимодействием 1-гидроксизамещенных адамантанов с винилиденхлоридом в мольном соотношении 1:1-3 в присутствии концентрированной серной кислоты, выдерживанием реакционной смеси при температуре 5-20°С в течение 1-2,5 ч, последующим добавлением дымящей азотной кислоты в мольном соотношении 1:2-5 в расчете на адамантановый субстрат и дальнейшим добавлением муравьиной кислоты в мольном соотношении 1:1-10 в расчете на адамантановый субстрат и выдерживанием в течение 1-12 ч при комнатной температуре.

Выделение целевых продуктов осуществляли путем выливания реакционной смеси на измельченный лед или в охлажденную воду и последующим фильтрованием выпавшего осадка.

Основные отличительные признаки предлагаемого способа можно сформулировать следующим образом:

1. Более высокие выходы целевых продуктов в расчете на адамантановое сырье.

2. В предлагаемом способе в качестве исходных соединений используются замещенные 1-гидроксиадамантаны, которые являются несравненно более коммерчески доступными по сравнению с карбоновыми кислотами адамантанового ряда.

3. Сочетание двух реакций (реакции Ботта и реакции Коха-Хаафа) в одном реакционном сосуде существенно упрощает аппаратурную схему процесса и, следовательно, делает этот способ более привлекательным с экономической точки зрения.

4. Малое количество стоков, малая экологическая нагрузка.

5. Возможность получения трехосновных карбоновых кислот адамантанового ряда.

Выполнение способа

Строение синтезированных соединений подтверждено данными ИК-и ЯМР 1Н-спектров, контроль над ходом реакции и индивидуальность соединения определялись с помощью ТСХ и ГЖХ. ГЖХ анализ проводился на газовом хроматографе «Кристалл 2000М», кварцевая капиллярная колонка ZB5MS 30 м × 0.32 мм толщина фазы 0.25 µм, газ-носитель гелий. ИК-спектр записан на спектрометре Shimadzu FTIR-8400S в таблетках бромида калия. Масс-спектр получен на хроматомасс-спектрометре «Finnigan Trace DSQ» при энергии ионизирующих электронов 70 эВ. Элементный анализ выполнен на автоматическом CHNS-анализаторе " Euro Vector ЕА-3000". Спектры ЯМР 1Н записаны на приборе Jeol JNM ЕСХ 400 (400 МГц), в CDCl3, ДМСО-d6.

Способ получения 3-карбоксиметил-1-адамантанкарбоновой кислоты

Пример 1. К раствору 5 г (0.033 моль) 1-адамантанола в 50 мл концентрированной серной кислоты при перемешивании при температуре не выше 15°С медленно по каплям добавляют 3.94 мл (0.0495 моль) винилиденхлорида. Полученную смесь выдерживают в течение 1 ч при заданной температуре. После этого по каплям добавляют 4.1 мл (0.1 моль) дымящей азотной кислоты таким образом, чтобы температура не поднималась выше 25-30°С. Реакционную массу выдерживают при заданной температуре в течение 1 ч и затем прикапывают 3.8 мл (0.1 моль) 100%-ной муравьиной кислоты. Полученный раствор выдерживают при комнатной температуре в течение 5 ч и затем выливают на 150 г измельченного льда. Полученный осадок отфильтровывают и сушат. Выход 4.15 г (53%). Т.пл. 235-236°С. [2]

Пример 2. К раствору 5 г (0.033 моль) 1-адамантанола в 50 мл концентрированной серной кислоты при перемешивании при температуре не выше 10°С медленно по каплям добавляют 7.88 мл (0.1 моль) винилиденхлорида. Полученную смесь выдерживают в течение 1 ч при заданной температуре. После этого по каплям добавляют 6.84 мл (0.165 моль) дымящей азотной кислоты таким образом, чтобы температура не поднималась выше 25-30°С. Реакционную массу выдерживают при заданной температуре в течение 30 мин и затем прикапывают 3.8 мл (0.1 моль) 100%-ной муравьиной кислоты. Полученный раствор выдерживают при комнатной температуре в течение 10 ч и затем выливают на 200 г измельченного льда. Полученный осадок отфильтровывают и сушат. Выход 4.38 г (56%).

Пример 3. К раствору 5 г (0.033 моль) 1-адамантанола в 50 мл концентрированной серной кислоты при перемешивании при температуре не выше 15°С медленно по каплям добавляют 3.94 мл (0.0495 моль) винилиденхлорида. Полученную смесь выдерживают в течение 1,5 ч при заданной температуре. После этого по каплям добавляют 4.1 мл (0.1 моль) дымящей азотной кислоты таким образом, чтобы температура не поднималась выше 25-30°С. Реакционную массу выдерживают при заданной температуре в течение 15 мин и затем прикапывают 3.8 мл (0.1 моль) 100%-ной муравьиной кислоты. Полученный раствор выдерживают при комнатной температуре в течение 12 ч и затем выливают на 150 г измельченного льда. Полученный осадок отфильтровывают и сушат. Выход 5.3 г (68%).

Пример 4. К раствору 5 г (0.033 моль) 1-адамантанола в 50 мл концентрированной серной кислоты при перемешивании при температуре не выше 5°С медленно по каплям добавляют 3.94 мл (0.0495 моль) винилиденхлорида. Полученную смесь выдерживают в течение 2,5 ч при заданной температуре. После этого по каплям добавляют 2.73 мл (0.066 моль) дымящей азотной кислоты таким образом, чтобы температура не поднималась выше 25-30°С. Реакционную массу выдерживают при заданной температуре в течение 45 мин и затем прикапывают 12.44 мл (0.33 моль) 100%-ной муравьиной кислоты. Полученный раствор выдерживают при комнатной температуре в течение 8 ч и затем выливают на 200 г измельченного льда. Полученный осадок отфильтровывают и сушат. Выход 5.5 г (71%).

Пример 5. К раствору 5 г (0.033 моль) 1-адамантанола в 50 мл концентрированной серной кислоты при перемешивании при температуре не выше 20°С медленно по каплям добавляют 2.63 мл (0.033 моль) винилиденхлорида. Полученную смесь выдерживают в течение 1,5 ч при заданной температуре. После этого по каплям добавляют 4.1 мл (0.1 моль) дымящей азотной кислоты таким образом, чтобы температура не поднималась выше 25-30°С. Реакционную массу выдерживают при заданной температуре в течение 30 мин и затем прикапывают 6.22 мл (0.165 моль) 100%-ной муравьиной кислоты. Полученный раствор выдерживают при комнатной температуре в течение 12 ч и затем выливают на 150 г измельченного льда. Полученный осадок отфильтровывают и сушат. Выход 5.3 г (73%).

Способ получения 5,7-диметил-3-карбоксиметил-1-адамантанкарбоновой кислоты

Пример 1. К раствору 5 г (0.028 моль) 3,5-диметил-1-адамантанола в 50 мл концентрированной серной кислоты при перемешивании при температуре не выше 15°С медленно по каплям добавляют 3.34 мл (0.042 моль) винилиденхлорида. Полученную смесь выдерживают в течение 1 ч при заданной температуре. После этого по каплям добавляют 3.48 мл (0.084 моль) дымящей азотной кислоты таким образом, чтобы температура не поднималась выше 25-30°С. Реакционную массу выдерживают при заданной температуре в течение 1 ч и затем прикапывают 3.16 мл (0.084 моль) 100%-ной муравьиной кислоты. Полученный раствор выдерживают при комнатной температуре в течение 5 ч и затем выливают на 150 г измельченного льда. Полученный осадок отфильтровывают и сушат. Выход 3.7 г (50%). Т.пл. 200-202°С. ИК-спектр, см-1: v 3260 (ОН), 2800, 2950 (CHAd), 1730 (С=O). Спектр ЯМР 1Н, δ, м.д.: 1.04-1.50 м (12Н, Ad), 0.82 с (6Н, CH3), 2.03 с (2Н, СН2), 12.00 с (2Н, СООН). Найдено, %: С 68.04, Н 9.25. C16H26O4. Вычислено, %: С 68.06, Н 9.28. Масс-спектр диметилового эфира 5,7-диметил-3-карбоксиметил-1-адамантанкарбоновой кислоты, полученного метилированием раствором диазометана, m/z (Iотн., %): 338 (16) [М+]; 279 (100) [М+-59]; 265 (43) [М+-73]; 205 (53) [М+-133].

Пример 2. К раствору 5 г (0.028 моль) 3,5-диметил-1-адамантанола в 50 мл концентрированной серной кислоты при перемешивании при температуре не выше 10°C медленно по каплям добавляют 6.68 мл (0.084 моль) винилиденхлорида. Полученную смесь выдерживают в течение 1 ч при заданной температуре. После этого по каплям добавляют 5.80 мл (0.14 моль) дымящей азотной кислоты таким образом, чтобы температура не поднималась выше 25-30°C. Реакционную массу выдерживают при заданной температуре в течение 30 мин и затем прикапывают 3.16 мл (0.084 моль) 100%-ной муравьиной кислоты. Полученный раствор выдерживают при комнатной температуре в течение 10 ч и затем выливают на 200 г измельченного льда. Полученный осадок отфильтровывают и сушат. Выход 3.92 г (53%).

Пример 3. К раствору 5 г (0.028 моль) 3,5-диметил-1-адамантанола в 50 мл концентрированной серной кислоты при перемешивании при температуре не выше 15°C медленно по каплям добавляют 3.34 мл (0.042 моль) винилиденхлорида. Полученную смесь выдерживают в течение 1,5 ч при заданной температуре. После этого по каплям добавляют 3.48 мл (0.084 моль) дымящей азотной кислоты таким образом, чтобы температура не поднималась выше 25-30°C. Реакционную массу выдерживают при заданной температуре в течение 15 мин и затем прикапывают 3.16 мл (0.084 моль) 100%-ной муравьиной кислоты. Полученный раствор выдерживают при комнатной температуре в течение 12 ч и затем выливают на 150 г измельченного льда. Полученный осадок отфильтровывают и сушат. Выход 4.43 г (60%).

Пример 4. К раствору 5 г (0.028 моль) 3,5-диметил-1-адамантанола в 50 мл концентрированной серной кислоты при перемешивании при температуре не выше 5°C медленно по каплям добавляют 3.34 мл (0.042 моль) винилиденхлорида. Полученную смесь выдерживают в течение 2,5 ч при заданной температуре. После этого по каплям добавляют 2.32 мл (0.056 моль) дымящей азотной кислоты таким образом, чтобы температура не поднималась выше 25-30°C. Реакционную массу выдерживают при заданной температуре в течение 45 мин и затем прикапывают 10.56 мл (0.28 моль) 100%-ной муравьиной кислоты. Полученный раствор выдерживают при комнатной температуре в течение 8 ч и затем выливают на 200 г измельченного льда. Полученный осадок отфильтровывают и сушат. Выход 4.8 г (65%).

Пример 5. К раствору 5 г (0.028 моль) 3,5-диметил-1-адамантанола в 50 мл концентрированной серной кислоты при перемешивании при температуре не выше 20°C медленно по каплям добавляют 2.23 мл (0.028 моль) винилиденхлорида. Полученную смесь выдерживают в течение 1,5 ч при заданной температуре. После этого по каплям добавляют 3.48 мл (0.084 моль) дымящей азотной кислоты таким образом, чтобы температура не поднималась выше 25-30°C. Реакционную массу выдерживают при заданной температуре в течение 30 мин и затем прикапывают 5.27 мл (0.14 моль) 100%-ной муравьиной кислоты. Полученный раствор выдерживают при комнатной температуре в течение 12 ч и затем выливают на 150 г измельченного льда. Полученный осадок отфильтровывают и сушат. Выход 5.17 г (70%).

Синтез 3,5-бис(карбоксиметил)-1-адамантанкарбоновой кислоты

Пример 1. К раствору 5 г (0.024 моль) 3-гидрокси-1-адамантилуксусной кислоты в 50 мл концентрированной серной кислоты при перемешивании при температуре не выше 15°C медленно по каплям добавляют 2.87 мл (0.036 моль) винилиденхлорида. Полученную смесь выдерживают в течение 1 ч при заданной температуре. После этого по каплям добавляют 3.00 мл (0.072 моль) дымящей азотной кислоты таким образом, чтобы температура не поднималась выше 25-30°C. Реакционную массу выдерживают при заданной температуре в течение 1 ч и затем прикапывают 2.10 мл (0.072 моль) 100%-ной муравьиной кислоты. Полученный раствор выдерживают при комнатной температуре в течение 5 ч и затем выливают на 150 г измельченного льда. Полученный осадок отфильтровывают и сушат. Выход 3.8 г (54%). Т.пл. 269-271°C. ИК-спектр, см-1: v 3286 (ОН), 2858, 2958 (CHAd), 1730 (С=0). Спектр ЯМР 1Н, δ, м.д.: 1.37-1.6 м (12Н, CH2Ad), 1.98 м (4Н, СН2), 2.04 с (1Н, CHAd), 11.95 с (3Н, СООН). Найдено, %: С 60.77, Н 6.78. C15H20O6. Вычислено, %: С 60.80, Н 6.80. Масс-спектр триметилового эфира 3,5-бис(карбоксиметил)-1-адамантанкарбоновой кислоты, полученного метилированием раствором диазометана, m/z (Iотн., %): 338 (17) [М+]; 299 (55) [М+-ОН]; 298 (30) [М+-Н20]; 283 (62) [М+-33].

Пример 2. К раствору 5 г (0.024 моль) 3-гидрокси-1-адамантилуксусной кислоты в 50 мл концентрированной серной кислоты при перемешивании при температуре не выше 10°C медленно по каплям добавляют 5.73 мл (0.072 моль) винилиденхлорида. Полученную смесь выдерживают в течение 1 ч при заданной температуре. После этого по каплям добавляют 5.00 мл (0.12 моль) дымящей азотной кислоты таким образом, чтобы температура не поднималась выше 25-30°C. Реакционную массу выдерживают при заданной температуре в течение 30 мин и затем прикапывают 2.71 мл (0.072 моль) 100%-ной муравьиной кислоты. Полученный раствор выдерживают при комнатной температуре в течение 10 ч и затем выливают на 200 г измельченного льда. Полученный осадок отфильтровывают и сушат. Выход 4.1 г (58%).

Пример 3. К раствору 5 г (0.024 моль) 3-гидрокси-1-адамантилуксусной кислоты в 50 мл концентрированной серной кислоты при перемешивании при температуре не выше 15°C медленно по каплям добавляют 2.87 мл (0.036 моль) винилиденхлорида. Полученную смесь выдерживают в течение 1,5 ч при заданной температуре. После этого по каплям добавляют 3.00 мл (0.072 моль) дымящей азотной кислоты таким образом, чтобы температура не поднималась выше 25-30°C. Реакционную массу выдерживают при заданной температуре в течение 15 мин и затем прикапывают 2.10 мл (0.072 моль) 100%-ной муравьиной кислоты. Полученный раствор выдерживают при комнатной температуре в течение 12 ч и затем выливают на 150 г измельченного льда. Полученный осадок отфильтровывают и сушат. Выход 4.5 г (64%).

Пример 4. К раствору 5 г (0.024 моль) 3-гидрокси-1-адамантилуксусной кислоты в 50 мл концентрированной серной кислоты при перемешивании при температуре не выше 5°C медленно по каплям добавляют 2.87 мл (0.036 моль) винилиденхлорида. Полученную смесь выдерживают в течение 2,5 ч при заданной температуре. После этого по каплям добавляют 2.00 мл (0.048 моль) дымящей азотной кислоты таким образом, чтобы температура не поднималась выше 25-30°C. Реакционную массу выдерживают при заданной температуре в течение 45 мин и затем прикапывают 9.00 мл (0.24 моль) 100%-ной муравьиной кислоты. Полученный раствор выдерживают при комнатной температуре в течение 8 ч и затем выливают на 200 г измельченного льда. Полученный осадок отфильтровывают и сушат. Выход 5.1 г (72%).

Пример 5. К раствору 5 г (0.024 моль) 3-гидрокси-1-адамантилуксусной кислоты в 50 мл концентрированной серной кислоты при перемешивании при температуре не выше 20°C медленно по каплям добавляют 1.91 мл (0.024 моль) винилиденхлорида. Полученную смесь выдерживают в течение 1,5 ч при заданной температуре. После этого по каплям добавляют 3.00 мл (0.072 моль) дымящей азотной кислоты таким образом, чтобы температура не поднималась выше 25-30°C. Реакционную массу выдерживают при заданной температуре в течение 30 мин и затем прикапывают 4.52 мл (0.12 моль) 100%-ной муравьиной кислоты. Полученный раствор выдерживают при комнатной температуре в течение 12 ч и затем выливают на 150 г измельченного льда. Полученный осадок отфильтровывают и сушат. Выход 5.42 г (77%).

Литература

[1] Моисеев И.К., Стулин Н.В., Юдашкин А.В., Климочкин Ю.Н. Адамантилнитраты в реакции Ботта. // Ж. Общ. Химии, 1985, т.55, №7, с.1655-1656.

[2] Butenko L.N., Protopopov Р.А., Derbisher V.E., Khardin A.P. Synthesis of functional derivatives of tricyclic hydrocarbons. // Synth. Commun., vol.14, №2., 1984, p.113-120.

Класс соединений: каркасные соединения, содержащие карбоксильную группу

Способ получения многоосновных карбоновых кислот адамантанового ряда путем взаимодействия 1-гидроксизамещенных адамантанов с винилиденхлоридом в мольном соотношении 1: 1-3 в присутствии концентрированной серной кислоты, выдерживания реакционной смеси при температуре 5-20°С в течение 1-2,5 ч с последующим добавлением дымящей азотной кислоты в мольном соотношении 1: 2-5 в расчете на адамантановый субстрат, дальнейшим добавлением муравьиной кислоты в мольном соотношении 1: 1-10 в расчете на адамантановый субстрат и выдерживанием в течение 1-12 ч при комнатной температуре.



 

Похожие патенты:

Изобретение относится к способу получения производных норборнана общей формулы (где R1=H; R2=CN, СООН; или R 1R2=-СН2-СН2-СН2 -), которые находят применение в органическом синтезе в качестве полупродуктов, например, для синтеза адамантана.

Изобретение относится к способу получения производных норборнана общей формулы где R=H, R1=CN, или R-R 1=-CH=CH-CH2-. .

Изобретение относится к области фармацевтической химии, а именно к способу получения 1-адамантанкарбоновой кислоты, основного промежуточного продукта в производстве противовирусного препарата ремантадина.

Изобретение относится к насыщенным карбоксилсодержащим соединениям, в частности к литиевой соли 1-адамантанкарбоновой кислоты (ЛС), которая обладает психостимулирующей активностью.

Изобретение относится к усовершенствованному способу получения неочищенной терефталевой кислоты для применения на стадии гидрогенизационной очистки посредством проведения жидкофазного окисления кислородсодержащим газом в реакторе окисления, снабженном мешалкой, с использованием в качестве исходного материала пара-ксилола в растворителе - уксусной кислоте, в присутствии металлсодержащего катализатора, включающего кобальт (Co), марганец (Mn) и бром (Br) в качестве промотора окисления, где температуру реакции окисления регулируют так, что она находится в интервале от 185 до 197°С, среднее время пребывания в реакторе исходной смеси для жидкофазного окисления составляет от 0,7 до 1,5 часов, содержание воды в реакционном растворителе регулируют так, чтобы оно составляло от 8 до 15 мас.%, а состав катализатора в растворе регулируют в интервале содержания, определенного в зависимости от температуры реакции так, что он включает: (1) каталитически активный металл (Co+Mn) в количестве от 2650 част./млн.

Изобретение относится к усовершенствованным способам производства ароматических карбоновых кислот, включающим контактирование сырья, содержащего по меньшей мере один исходный замещенный ароматический углеводород, заместители которого способны окисляться до групп карбоновой кислоты, с газообразным кислородом в реакционной смеси жидкофазного окисления, содержащей монокарбоновую кислоту в качестве растворителя и воду, в присутствии каталитической композиции, содержащей по меньшей мере один тяжелый металл, эффективный для катализации окисления замещенного ароматического углеводорода до ароматической карбоновой кислоты, в секции реакции при повышенной температуре и давлении, эффективных для поддержания в жидком состоянии реакционной смеси жидкофазного окисления и образования ароматической карбоновой кислоты и примесей, содержащих побочные продукты окисления исходного ароматического углеводорода, растворенные или суспендированные в реакционной смеси жидкофазного окисления, и паровой фазы высокого давления, содержащей растворитель - монокарбоновую кислоту, воду и небольшие количества исходного ароматического углеводорода и побочных продуктов; перенос паровой фазы высокого давления, отведенной из секции реакции в секцию разделения, орошаемую жидкой флегмой, содержащей воду и способную практически полностью разделить растворитель - монокарбоновую кислоту и воду в паровой фазе высокого давления с образованием жидкости, обогащенной растворителем - монокарбоновой кислотой и обедненной водой, и газа высокого давления, содержащего водяной пар; перенос газа высокого давления, содержащего водяной пар, отведенного из секции разделения, без обработки для удаления органических примесей в секцию конденсации и конденсацию газа высокого давления с образованием жидкого конденсата, содержащего воду, и отходящего газа из секции конденсации под давлением, содержащего неконденсируемые компоненты газа высокого давления, перенесенного в секцию конденсации; выделение из секции конденсации жидкого конденсата, содержащего воду и пригодного для использования без дополнительной обработки в качестве по меньшей мере одной жидкости, содержащей воду, в способе очистки ароматических карбоновых кислот; и подачу жидкого конденсата, содержащего воду, выделенного в секции конденсации, в процесс очистки ароматической карбоновой кислоты, в котором по меньшей мере одна стадия включает: (а) приготовление реакционного раствора очистки, содержащего ароматическую карбоновую кислоту и примеси, растворенные или суспендированные в жидкости, содержащей воду; (b) контактирование реакционного раствора очистки, содержащего ароматическую карбоновую кислоту и примеси в жидкости, содержащей воду, при повышенных температуре и давлении с водородом в присутствии катализатора гидрирования с образованием жидкой реакционной смеси очистки; (с) выделение твердого очищенного продукта, содержащего карбоновую кислоту, из жидкой реакционной смеси очистки, содержащей ароматическую карбоновую кислоту и примеси в жидкости, содержащей воду; и (d) промывку по меньшей мере одной жидкостью, содержащей воду, полученной очищенной твердой ароматической карбоновой кислоты, выделенной из жидкой реакционной смеси очистки, содержащей ароматическую карбоновую кислоту, примеси жидкость, содержащую воду; так что жидкость, содержащая воду, по меньшей мере на одной стадии способа очистки включает жидкий конденсат, содержащий воду и не требующий обработки по удалению органических примесей.

Изобретение относится к усовершенствованному способу получения, по меньшей мере, одного из продуктов акролеина и акриловой кислоты путем частичного окисления пропилена, при котором а) предварительно очищенный пропан превращают на первой стадии реакции в присутствии и/или при исключении молекулярного кислорода, по меньшей мере, одного дегидрирования из группы, включающей гомогенное дегидрирование, гетерогенное каталитическое дегидрирование, гомогенное оксидегидрирование и гетерогенное каталитическое оксидегидрирование, причем получают газовую смесь 1, содержащую не превращенный пропан и образованный пропилен, и b) при необходимости, из общего количества или из частичного количества газовой смеси 1 отделяют частичное количество содержащихся в ней отличных от пропана и пропилена составляющих, например, таких как водород, моноокись углерода, водяной, пар, и/или, при необходимости, превращают его в другие соединения, например, такие как вода и двуокись углерода, и причем получают газовую смесь 1', содержащую пропан и пропилен, и на, по меньшей мере, одной следующей стадии реакции, с) газовую смесь 1, или газовую смесь 1', или смесь из образованной газовой смеси 1' и оставшейся газовой смеси 1 в качестве составляющей газовой смеси 2 подвергают гетерогенному каталитическому газофазному частичному окислению пропилена, содержащегося в газовой смеси 1 и/или газовой смеси 1', причем получают газовую смесь 3, содержащую, по меньшей мере, один продукт, d) на, по меньшей мере, одной стадии отделения из газовой смеси 3 отделяют продукт и от при этом оставшегося остаточного газа, по меньшей мере, пропан возвращают на первую стадию реакции, где предварительно очищенный пропан из сырого пропана, который содержит 90% масс.

Изобретение относится к тонкому органическому синтезу. .

Изобретение относится к усовершенствованному непрерывному способу получения терефталевой кислоты, включающему (а) подачу пара-ксилола в реактор окисления; (b) окисление, по меньшей мере, части упомянутого пара-ксилола в жидкой фазе многофазной реакционной среды, содержащейся в упомянутом реакторе окисления, до получения таким образом сырой неочищенной терефталевой кислоты, где упомянутое окисление приводит к получению диоксида углерода, монооксида углерода и/или метилацетата; и выдерживание во время упомянутого окисления соотношения между молями полученных оксидов углерода и молями подаваемого упомянутого пара-ксилола в диапазоне от 0,02:1 до 0,24:1.

Изобретение относится к усовершенствованному способу снижения температуры горячей точки неподвижного слоя катализатора в процессе получения акролеина или акриловой кислоты или их смеси гетерогенно катализируемым частичным окислением в газовой фазе пропена, при котором исходную смесь 2 реакционного газа, содержащую пропилен и молекулярный кислород, а также молекулярный азот и пропан в качестве инертных газов-разбавителей, в которой молярное отношение молекулярного кислорода к пропилену O2:С 3Н6 1, при повышенной температуре пропускают через неподвижный слой катализатора, активная масса которого представляет собой, по меньшей мере, один полиметаллический оксид, содержащий элементы Мо, Fe и Bi, в котором исходная смесь 2 реакционного газа, в пересчете на общий объем, содержит от 7 до 9 об.% пропилена, от 9,8 до 15,5 об.% молекулярного кислорода, от 10,5 до 15,5 об.% пропана и от 40 до 60 об.% молекулярного азота, при условии, что молярное отношение V1 содержащегося в исходной смеси 2 реакционного газа пропана к содержащемуся в исходной смеси 2 реакционного газа пропилену составляет от 1,5 до 2,2, молярное отношение V2 содержащегося в исходной смеси 2 реакционного газа молекулярного азота к содержащемуся в исходной смеси 2 реакционного газа молекулярному кислороду составляет от 3,5 до 4,5, а молярное отношение V3 содержащегося в исходной смеси 2 реакционного газа молекулярного кислорода к содержащемуся в исходной смеси 2 реакционного газа пропилену составляет от 1,4 до 2,14.

Изобретение относится к способам получения ароматических карбоновых кислот. .

Изобретение относится к способу разделения акриловой кислоты, содержащейся в качестве основного продукта, и глиоксаля, содержащегося в качестве побочного продукта, в смеси продуктов частичного гетерогенно катализируемого парофазного окисления соединения-предшественника акриловой кислоты, содержащего 3 атома углерода, при котором получают жидкую фазу Р, которая по меньшей мере на 70% от своей массы состоит из акриловой кислоты, а также, в пересчете на молярное количество содержащейся в ней акриловой кислоты, содержит по меньшей мере 200 мол. м.д. глиоксаля, при котором это отделение глиоксаля от акриловой кислоты осуществляется путем кристаллизации из жидкой фазы Р. Способ позволяет предотвратить нежелательную полимеризацию акриловой кислоты. 24 з.п. ф-лы.
Наверх