Способ получения связующего для электродной массы

Изобретение относится к способу получения связующего для электродной массы. Способ включает подготовку шихты из продуктов нефтепереработки, термоокисление и гомогенизацию. При подготовке шихты осуществляют предварительное термоокисление и гомогенизацию продукта нефтепереработки - тяжелой смолы пиролиза при температуре 170-200°C в гидроударно-кавитационном импульсном эмульгаторе с частотой импульсов обработки 9,5 тыс об/сек в течение 3-4 часов, затем добавляют каменноугольный пек в соотношении 1:1 и проводят совместное перемешивание при температуре 200-250°C в течение 4-5 часов. Обеспечивается снижение расхода каменноугольного пека, а также выбросов канцерогенных полициклических ароматических углеводородов (ПАУ), источником которых и является каменноугольный пек.

 

Способ относится к цветной металлургии, в частности к электролитическому получению алюминия, а именно к альтернативному получению связующего для производства электродной массы.

Известен способ производства анодной массы (патент РФ № 2080418, C25C 3/12, 27.05.97), заключающийся в том, что в производстве анодной массы в качестве углеродсодержащего связующего используют гомогенную смесь, полученную путем смешивания каменноугольного пека с нефтяным пеком при соотношении 19:1-2:1. Смешивание каменноугольного пека с нефтяным пеком выполняют перекачиванием смеси из нижней зоны емкости в верхнюю из расчета 1-3-кратного обмена общим потоком в турбулентном режиме.

Недостатком данного способа является сложность его реального технологического осуществления, так как авторы, заявляя для гомогенной смеси достаточно широкий диапазон соотношений различных пеков (19:1-2:1), не конкретизировали, по какому принципу выбирается то или иное соотношение, по какому параметру осуществляется контроль, на стабилизацию какого технологического показателя направлена заявленная технология.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является способ производства анодной массы (патент RU №2196192, дата публикации 2003.01.10, МПК C25C 3/12), включающий подготовку шихты из пековых и/или нефтяных коксов, термостатирование, гомогенизацию углеводородного связующего из смеси каменноугольных и/или нефтяных пеков, дозирование коксов и пеков и смешивание их при нагреве.

Широкого распространения использование нефтяных пеков не получило, так как нефтяной пек обладает низкими пластифицирующими и спекающими свойствами из-за низкого коксового остатка, что затрудняет смешивание пека с коксовой шихтой и прессование коксопековой композиции, так же высокое содержание серы и связанного с нею ванадия в альтернативных пеках увеличивало экологические и технологические риски в производстве.

Задачей изобретения является разработка технологии смешения, обеспечивающей не только однородность конечного продукта, но и его химическую гомогенность на молекулярном уровне, а также снижение расхода каменноугольного пека при производстве анодной массы и выбросов канцерогенных полициклических ароматических углеводородов (ПАУ), источником которых и является каменноугольный пек.

Достигается это тем, что в способе получения связующего для анодной массы, включающем подготовку шихты из продуктов нефтепереработки, термоокисление и гомогенизацию, согласно изобретению, подготовку шихты осуществляют путем предварительного термоокисления и гомогенизации продукта нефтепереработки тяжелой смолы пиролиза при температуре 170-200°С в гидроударно-кавитационном импульсном эмульгаторе с частотой импульсов обработки 9,5 тыс об/сек в течение 3-4 часов, затем добавляют каменноугольный пек в соотношении 1:1 и проводят совместное перемешивание там же при температуре 200-250°С в течение 4-5 часов.

Тяжелая смола пиролиза обладает высоким содержанием ароматических углеводородов, высоким значением коксуемости 14-16%, склонностью к реакциям уплотнения с образованием продуктов, обладающих высокими связующими и спекающими свойствами.

Предлагается технология смешения с использованием следующих устройств: для интенсивного смешивания тяжелой смолы пиролиза и каменноугольного пека, а также коксообразующих добавок используется центробежный гидроударно-кавитационный эмульгатор с генерацией импульсов частотой 2-10 кГц, с которым через пекопровод соединена рециркуляционная емкость для загрузки и снятия пробы. Конструктивно данная установка собрана в лабораторных условиях на базе центробежного одноступенчатого насоса.

Наличие эмульгатора с плавной регулировкой частоты вращения обеспечивает интенсивное разрушение углерод-углеродных связей алифатических молекул с одновременным окислительным дегидрированием, что приводит к конденсации радикалов в ароматические соединения и увеличению коксового остатка. Предварительное термоокисление тяжелой смолы пиролиза производится при температуре 170-200°С в течение 3-4 часов, т.к. именно при данной температуре и времени проявляются значительные изменения свойств смолы, таких как: повышение вязкости с 2 до 200 сП, плотности с 1,046 до 1,078 г/см3, коксового остатка с 9,1 до 14,3%, а также выхода легких фракций, которые препятствуют достижению оптимального температурного диапазона для совместного окисления ТСП и КУП. Поэтому проведена предварительная подготовка смолы термоокислением. Совместное термоокисление тяжелой смолы пиролиза и каменноугольного пека производим при температуре 200-250°С в течение 4-5 часов, т.к. именно такая температура и время обеспечивают увеличение коксообразующих свойств (содержание а-фракции с 15,3 до 31,1% и коксового остатка с 38,6 до 50,2%) с сохранением вязкости продукта, приемлемой для технологии, а также гомогенизацию конечного продукта. Дальнейшее увеличение времени и температуры приводит к повышению вязкости, плотности, а следовательно, и к закоксованию смеси, чего нельзя допустить в данных технологиях.

Способ осуществляют следующим образом.

Тяжелая смола пиролиза (ТСП) заливается в рециркуляционную емкость гидроударно-кавитационного эмульгатора с подачей воздуха 100-200 л/ч с частотой импульсов обработки 9,5 тыс об/сек, и с помощью нагревателей разогревается до температуры 170-200°С, происходит окисление смолы в течение 3-4 часов. После окисления смолы (повышения вязкости и плотности) производим загрузку каменноугольного пека при соотношении смолы и пека 1:1 в емкость, и производим совместное перемешивание при температуре 200-250°С в течение 4-5 часов, по истечению которых свойства массы стабилизируются и получается связующее.

Представленная технология получения связующего для электродной массы позволяет:

- уменьшить расход каменноугольного пека;

- снизить количество выбросов канцерогенных полициклических ароматических углеводородов (ПАУ), источником которых и является каменноугольный пек;

- обеспечить получение не только однородности конечного продукта, но и его химическую гомогенность на молекулярном уровне.

Способ получения связующего для анодной массы, включающий подготовку шихты из продуктов нефтепереработки, термоокисление и гомогенизацию, отличающийся тем, что при подготовке шихты осуществляют предварительное термоокисление и гомогенизацию продукта нефтепереработки - тяжелой смолы пиролиза при температуре 170-200°C в гидроударно-кавитационном импульсном эмульгаторе с частотой импульсов обработки 9,5 тыс. об/с в течение 3-4 ч, затем добавляют каменноугольный пек в соотношении 1:1 и проводят совместное перемешивание при температуре 200-250°C в течение 4-5 ч.



 

Похожие патенты:

Изобретение относится к анодному устройству алюминиевых электролизеров. .

Изобретение относится к способу производства анодной массы для самообжигающихся анодов алюминиевых электролизеров и может быть использовано в производстве обожженных анодов.

Изобретение относится к конструкции анодного устройства алюминиевого электролизера с механизмом перемещения анодной ошиновки. .

Изобретение относится к конструкции анодного токоподвода электролизера для получения алюминия. .

Изобретение относится к изготовлению инертных анодов для электролитического получения алюминия в криолит-глиноземном расплаве. .

Изобретение относится к области производства алюминия электролизом расплавленных солей, в частности к производству анодной массы для формирования самообжигающегося анода алюминиевого электролизера, и может быть использовано при производстве обожженных анодов для тех же целей.

Изобретение относится к цветной металлургии, в частности к производству алюминия электролизом, а именно к конструкции инертных анодов электролизеров для производства алюминия.
Изобретение относится к обслуживанию анода электролизера с верхним токоподводом при электролитическом получении алюминия из расплавленных солей, а именно к способу управления формированием анода на электролизере с верхним токоподводом путем увеличения плотности тока в аноде.
Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия, а именно к герметизации электролизера. .

Изобретение относится к цветной металлургии, в частности к производству алюминия электролитическим способом в электролизерах с обожженными анодами. .

Изобретение относится к способу удаления за один этап чугунных заливок, закрепленных на ниппелях, связанных с ножками анодной штанги. Способ включает следующие этапы: а) размещают ножку анодной штанги между упорным устройством и устройством воздействия, причем устройство воздействия может быть перемещено при помощи приводного механизма в направлении упорного устройства, которое охватывает, по меньшей мере частично, каждый из n ниппелей анодной штанги и представляет собой упорную поверхность, блокирующую поступательное перемещение соответствующей чугунной заливки, b) перемещают устройство воздействия в направлении упорного устройства таким образом, чтобы устройство воздействия входило в контакт с ножкой анодной штанги и увлекало ее за собой вплоть до того момента, когда ножка анода войдет в контакт с упорным устройством, с) продолжают перемещения устройства воздействия таким образом, чтобы каждая чугунная заливка, заблокированная связанной с ней упорной поверхностью, была отсоединена от соответствующего ниппеля, d) останавливают и отводят назад устройство воздействия. При этом используют упорное устройство, содержащее по меньшей мере две упорные поверхности, отделенные одна от другой таким расстоянием в осевом направлении, чтобы чугунные заливки, заблокированные при помощи первой упорной поверхности, были отсоединены от круглых электродов до того, как другие чугунные заливки будут заблокированы другой упорной поверхностью. Обеспечивается возможность отделения чугунных заливок и ниппелей ножки анодной штанги за один этап с использованием одного устройства без повреждения анода. 4 н. и 18 з.п. ф-лы, 4 ил.

Изобретение относится к металлическому аноду выделения кислорода для электрохимического извлечения алюминия разложением глинозема, растворенного в расплавленном электролите на основе криолита. Анод выполнен из сплава, содержащего, предпочтительно, 64-66 вес.% Ni, 25-27 вес.% Fe, 7-9 вес.% Mn, 0-0,7 вес.% Cu и 0,4-0,6 вес.% Si. Весовое отношение Ni/Fe составляет в диапазоне от 2,1 до 2,89, предпочтительно от 2,3 до 2,6, весовое отношение Ni/(Ni+Cu) составляет более 0,98, весовое отношение Cu/Ni составляет менее 0,01, а весовое отношение Mn/Ni составляет от 0,09 до 0,15. Поверхность сплава может содержать феррит никеля, полученный предварительным окислением сплава. Сплав, необязательно с предварительно окисленной поверхностью, может быть покрыт наружным покрытием, содержащим оксид кобальта СоО. Описаны также электролизер и способ получения алюминия в электролизере. Обеспечивается возможность работы при анодных плотностях тока от 1,1 до 1,3 А/см2. 3 н. и 11 з.п. ф-лы, 4 ил., 1 табл., 5 пр.

Изобретение относится к анододержателю анодного устройства алюминиевых электролизеров. Анододержатель содержит кронштейн с двумя и более ниппелями, расположенными равномерно или с разным шагом вдоль продольной оси обожженного угольного блока и закрепленными в выполненных в нем ниппельных гнездах, при этом ниппели имеют сужения с площадью поперечного сечения, равными 0,3÷0,9 площади поперечного сечения ниппеля в заделке анодного блока, выполненные над поверхностью угольного блока на расстоянии от 0,01-0,2 до 0,21-0,9 расстояния от поверхности угольного анода до горизонтальной части кронштейна. Обеспечивается снижение теплового потока от электролизера через анододержатель и снижение падения напряжения в самом анододержателе, за счет чего снижаются тепловые потери и повышается энергоэффективность электролизера в целом. 1 ил.

Изобретение относится к способу обслуживания алюминиевого электролизера с самообжигающимся анодом в процессе его эксплуатации. Способ включает загрузку анодной массы в анодный кожух, перемещение анодного кожуха, перемещение анодной рамы относительно зеркала катодного металла и перестановку анодных штырей, при этом для перемещения анодной рамы определяют зависимость порога магнитогидродинамической (МГД) устойчивости электролизера от положения анодной рамы относительно зеркала катодного металла с построением графика, на котором определяют нижнее и верхнее положения анодной рамы относительно зеркала катодного металла, и при достижении анодной рамой позиции, соответствующей равенству упомянутых положений рамы относительно зеркала катодного металла, определяющему заданный порог МГД-устойчивости, осуществляют перемещение анодной рамы. Перемещение анодной рамы осуществляют при достижении нижней части анодной рамы относительно зеркала катодного металла от 245 см до 275 см. Обеспечивается более стабильная работа электролизера. 2 з.п. ф-лы, 1 ил.

Изобретение относится к способу подготовки анодной массы для формирования сырых анодов электролизера производства алюминия электролизом расплавленных солей. Способ включает приготовление шихты зерновых и пылевых фракций кокса, регулирование гранулометрического состава фракций кокса, нагрев шихты и смешивание шихты с пеком-связующим, охлаждение полученной анодной массы, формирование полученных сырых анодов. При приготовлении шихты регулируют гранулометрический состав пылевых фракций кокса путем определения суммарной удельной поверхности пылевых фракций кокса, производят расчет отклонений о заданного значения суммарной удельной поверхности, расчет величины поправки и времени внесения поправок, проводят корректировку относительно заданного значения суммарной удельной поверхности и корректировку дозирования пылевых фракций кокса, после формирования сырого анода определяют кажущуюся плотность сырого анода и корректируют дозирование пека-связующего в зависимости от величины и знака отклонения кажущейся плотности сырого анода от заданного значения кажущейся плотности. Все корректировки осуществляют в онлайновом режиме. Обеспечивается повышение качества сырых анодов и срока службы обожженных анодов. 1 з.п. ф-лы, 3 ил.

Изобретение относится к способу производства анодной массы для анодов алюминиевого электролизера, включающий регулирование процесса производства анодной массы путем изменения соотношения компонентов в коксопековой композиции. Способ характеризуется тем, что определяют содержание примесей натрия и серы в пеке и коксе и ведут процесс производства анодной массы при соотношении компонентов, удовлетворяющих условию C N a C S в  пеке C N a C S в  коксе < 4, где C N a C S в  пеке - отношение содержания натрия и серы в связующем пеке, C N a C S в  коксе - отношение содержания натрия и серы в коксе. Использование предлагаемого способа получения анодной массы позволяет снизить реакционную способность в воздухе в среднем на 23%, реакционную способность в CO2 на 19%. 3 табл., 5 пр.
Изобретение относится к способам формирования вторичного анода алюминиевого электролизера с самообжигающимся анодом. Способ включает использование связующего нефтекаменноугольного пека с удельной плотностью 1,25-1,30 г/см3, преимущественно 1,27-1,29 г/см3, и содержанием бенз(а)пирена не более 7 мг/г пека, приготовление подштыревой анодной массы с содержанием связующего 30-40%, преимущественно 32-36%, формирование вторичного анода из приготовленной подштыревой анодной массы. Обеспечивается снижение выбросов бенз(а)пирена на 48% при производстве алюминия.

Изобретение может быть использовано при изготовлении композиционного оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности, алюминия. Состав шихты для изготовления указанного анода включает смесь оксидной и металлической составляющих, взятых в следующем соотношении, мас.%: металлическая - 10-30, оксидная - остальное. Оксидная составляющая включает смесь двух или более микроразмерных порошков оксидов, выбранных из ряда: оксид никеля, оксид железа, оксид меди, оксид хрома. Металлическая составляющая включает микроразмерные порошки меди или сплава на основе меди, а также содержит 2-10 мас.% наноразмерного порошка меди или сплава на основе меди с размером частиц до 100 нм. Изобретение позволяет увеличить удельную электропроводность анода при температуре 750-850 °C и снизить скорость его коррозии при низкотемпературном электролитическом получении алюминия из оксидно-фторидного расплава. 4 ил., 2 табл., 1 пр.

Изобретение относится к электролизеру с обожженными анодами для производства алюминия. Электролизер содержит угольные аноды с вертикальными отверстиями и катодное устройство со слоем жидкого алюминия на подине, при этом внутренняя поверхность каждого отверстия анода защищена корундовой трубкой, высота которой превышает высоту анода, отношение этих высот удовлетворяет условию h:H=(1,05÷l,15):1, где: h - высота корундовой трубки; H - высота анода и количество отверстий в аноде составляет не менее одного. Обеспечивается уменьшение удельного потребления электроэнергии электролизером с обожженным анодом на 300-400 кВт·ч/т Al и исключение риска загрязнения производимого электролизером алюминия примесями при растворении корундовой трубки в электролите. 1 з.п. ф-лы, 1 ил.

Изобретение относится к анодному блоку из углерода для предварительно обожженного анода электролизера по производству алюминия. Анодный блок имеет верхнюю сторону, нижнюю сторону, размещаемую напротив верхней стороны катода, четыре боковые стороны и по меньшей мере одну канавку, выходящую на по меньшей мере одну из боковых сторон, на которой упомянутая канавка имеет максимальную длину Lmax в плоскости, параллельной нижней стороне, при этом упомянутая канавка не выходит на упомянутые нижнюю или верхнюю стороны или выходит на упомянутые верхнюю или нижнюю стороны на длину L0, меньшую половины максимальной длины Lmax. Раскрыты также способ изготовления анодного блока, обожженный анод, электролизер для производства алюминия электролизом в расплавленных солях и способ производства алюминия. Обеспечиваются возможность устранения отвода анодного газа из-под анода без нарушения целостности последнего и повышение срока службы анода. 5 н. и 9 з.п. ф-лы, 8 ил.
Наверх