Гальванический композиционный материал на основе никеля

Изобретение относится к области гальванотехники и может быть использовано в различных областях промышленности. Материал содержит, мас.%: кобальт 1,6-6,9, фторопласт 1,0-3,7, оксид кремния 0,8-2,2, никель остальное. Технический результат: получение материала в виде мелкокристаллических, равномерных, самосмазывающихся покрытий с высокой износостойкостью и микротвердостью. 2 табл.

 

Предлагаемое изобретение относится к получению композиционного материала электрохимическим способом в качестве износостойкого материала в различных отраслях промышленности.

В промышленности появилась необходимость увеличения износостойкости различных материалов на основе никеля.

Увеличение износостойкости материалов на основе никеля можно достигнуть за счет легирования их металлами и (или) неметаллами.

Известны композиционные материалы:

на основе никеля:

- с С, Si, SiC, TiC, ТаС, ZrC, WC, SiO2, TiO2, BeO, ZrO2, Cr2O3, MoS2, MoSi2 и т.д. (Сайфуллин P.С. Композиционные покрытия и материалы. - М.: Химия, 1977. - 272 с),

- с фторопластом (Балакай В.И., Балакай И.В., Герасименко Ю.Я. Электролит для осаждения композиционного покрытия никель-фторопласт. Пат. 2297476 Рос. Федерация, МПК7 C25D 15/00. - №2005130886/02; - заявл. 05.10.2005; опубл. 20.04.2007; Бюл. №11).

На основе сплавов никеля:

- никель-бор с фторопластом (Балакай В.И. Гальванический композиционный материал на основе никеля. Пат. 2213813 Рос. Федерация, МПК 7 С25Д 15/00. - №2002113887/02; заявл. 27.05.2002; опубл. 10.10.2003, Бюл. №28), обладающие повышенной износостойкостью по сравнению с чисто никелевыми покрытиями.

Существенным недостатком этих композиционных материалов и сплавов является то, что износостойкость является недостаточной.

Наиболее близким к предполагаемому изобретению по технической сущности относится композиционный материал никель-кобальт-фторопласт следующего состава, мас.%:

кобальт 1,7-7,1,
фторопласт 1,1-3,9,
никель остальное.

(Балакай В.И., Арзуманова А.В., Курнакова Н.Ю., Балакай И.В., Балакай К.В. Гальванический композиционный материал на основе никеля Балакай В.И., Арзуманова А.В., Курнакова Н.Ю., Балакай И.В., Балакай К.В. Пат. 2352693 Рос. Федерация, МПК С25Д 15/00 (2006.01). - №2008110628/02; заявл. 19.03.2008; опубл. 20.04.2009, Бюл. №11).

Однако данный композиционный материал имеет недостаточную износостойкости.

Задачей настоящего изобретения является повышение износостойкости микротвердости материалов на основе никеля легированием оксидом кремния.

Указанная задача достигается получением композиционного материала никель-кобальт-оксид кремния-фторопласт при следующем соотношении компонентов, мас.%:

кобальт 1,6-6,9,
фторопласт 1,0-3,7,
оксид кремния 0,8-2,2,
никель остальное.

Наличие оксида кремния в композиционном материале никель-кобальт-оксид кремния-фторопласт приводит к увеличении его износостойкости.

Увеличение содержания оксид кремния в композиции выше верхнего заявляемого предела приводит к увеличению внутренних напряжений, ухудшению качества.

Уменьшение содержания оксид кремния в композиции ниже нижнего заявляемого предела приводит к снижению износостойкости композиционного материала.

Для апробирования предложенного состава композиционного материала никель-кобальт-оксид кремния-фторопласт были изготовлены композиции, химический состав которых приведен в табл.1, где 2, 3, 4 содержание оксид кремния на нижнем, среднем и верхнем уровнях, соответственно, а 1 и 5 содержание оксида кремния в композиции за граничными значениями.

Композиционный материал никель-кобальт-оксид алюминия-фторопласт получали электрохимическим способом из электролита следующего состава, г/л:

хлорид никеля 200-350,
хлорид кобальта 2-10,
борная кислота 25-40,
хлорамин Б 1,5-3,0,
оксид кремния 1,0-30,

фторопластовая эмульсия

Ф-4Д (ТУ 6-05-041-508-79) 7-35.

Режимы электролиза: рН 1,5-5,5, температура 18-40°С, катодная плотность тока 0,5-11 А/дм2 при перемешивании механической мешалкой (50-100 об/мин).

Таблица 1
Химический состав композиционного материала никель-кобальт-оксид кремния-фторопласт и прототипа - никель-кобальт-фторопласт
Композиционный материал и прототип Никель Кобальт Оксид кремния Фторопласт
Предложенный 1 98,7 0,5 0,4 0,5
2 97,2 1,6 0,8 1,0
3 92,9 4,4 1,5 2,3
4 89,0 6,9 2,2 3,7
5 86,8 9,1 4,3
Известный 97,1 4,6 - 2,5

Наличие оксида кремния в композиционных электролитических покрытиях позволяет увеличить износостойкость покрытий.

Сплав никель-кобальт является хорошим конструкционным материалом, и поэтому большое значение имеет разработка на его основе покрытий обладающих дающих высокой износостойкостью и низким коэффициентом трения. С целью увеличения износостойкости сплава никель-кобальт было предложено дополнительно вводить в покрытие фторопласт (так называемый самосмазывающий материал), который образует на поверхности композиционных покрытий никель-кобальт-фторопласт тонкую пленку из фторопласта в результате трения двух поверхностей друг о друге и раздавливанию фторопласта находящегося в покрытии (получены патенты №2352693, 2352694). Однако из-за того, что покрытие обычно не имеют идеально гладкую поверхностью, то более твердое покрытие в последнем случае своими выступами должно разрушать самосмазывающий материал, который образуется на поверхности покрытий в виде фторопласта с большей скоростью и тем самым снижать износостойкость покрытий и их коэффициент трения. Кроме того основа должна иметь более высокую микротвердость. Поэтому было предложено с целью увеличения износостойкости покрытий и снижения коэффициента трения наносить на трущиеся изделия не композиционное покрытие никель-кобальт-фторопласт, а композиционное покрытие никель-кобальт-оксид кремния-фторопласт, т.к. покрытия при введении в электролит оксида кремния получаются более мелкокристаллическими, равномерными и имеют более высокую микротвердость. В настоящее время износостойкие и самосмазываемые покрытия представляют определенный практический интерес.

Пример 1. Композиционный материал химического состава, мас.%: кобальт 0,5, оксид кремния 0,4, фторопласт 0,5, никель остальное, осаждали из электролита состава, г/л: хлорид никеля 150, хлорид кобальта 1, борная кислота 20, хлорами Б 1,0, оксид кремния 0,5, фторопластовая эмульсия Ф-4Д 5,0 при рН 5,5, температуре 17°С и катодной плотности тока 0,5 А/дм2. Электролит готовили следующим образом. В электролитической ванне, заполненной до ¾ необходимого объема водопроводной водой, при температуре 60-70°С растворяли борную кислоту, хлорамин Б и хлорид никеля, после того как довели уровень электролита до необходимого объема вводили оксид кремния и фторопластовую эмульсию. рН электролита доводили либо соляной кислотой, либо гидроокисью натрия или калия (100-150 г/л).

Пример 2. Композиционный материал химического состава, мас.%: кобальт 1,6, оксид кремния 0,8, фторопласт 1,0, никель остальное, осаждали из электролита состава, г/л: хлорид никеля 200, хлорид кобальта 2, борная кислота 25, хлорамин Б 1,5, оксид кремния 1, фторопластовая эмульсия Ф-4Д 7,0 при рН 5,3, температуре 19°С и катодной плотности тока 1 А/дм2. Электролит готовили по методике описанной выше.

Пример 3. Композиционный материал химического состава, мас.%: кобальт 4,4, оксид кремния 1,5, фторопласт 2,3, никель остальное, осаждали из электролита состава, г/л: хлорид никеля 250, хлорид кобальта 6, борная кислота 32, хлорамин Б 2,2, оксид кремния 16, фторопластовая эмульсия Ф-4Д 20 при рН 3,0, температуре 30°С и катодной плотности тока 5 А/дм2. Электролит готовили по методике описанной выше.

Пример 4. Композиционный материал химического состава, мае, %: кобальт 6,9, оксид кремния 2,2, фторопласт 3,7, никель остальное, осаждали из электролита состава, г/л: хлорид никеля 350, хлорид кобальта 10, борная кислота 40, хлорамин Б 3,0, оксид кремния 30, фторопластовая эмульсия Ф-4Д 35 при рН 1,5, температуре 40°С и катодной плотности тока 11 А/дм2. Электролит готовили по методике описанной выше.

Пример 5. Композиционный материал химического состава, мас.%: кобальт 9,1, оксид кремния 2,7,фторопласт 4,3, никель остальное осаждали из электролита состава, г/л: хлорид никеля 370, хлорид кобальта 15, борная кислота 40, хлорамин Б 3,5, оксид кремния 35, фторопластовая эмульсия Ф-4Д 38 при рН 0,9, температуре 45°С и катодной плотности тока 10 А/дм2. Электролит готовили по методике описанной выше.

Прототип осаждали из электролита по (Балакай В.И., Арзуманова А.В., Курнакова Н.Ю., Балакай И.В., Балакай К.В. Гальванический композиционный материал на основе никеля Балакай В.И., Арзуманова А.В., Курнакова Н.Ю., Балакай И.В., Балакай К.В. Пат. 2352693 Рос. Федерация, МПК С25Д 15/00 (2006.01). - №2008110628/02; заявл. 19.03.2008; опубл. 20.04.2009, Бюл. №И).

В табл.2 приведены физико-механические свойства предложенного композиционного материала никель-кобальт-оксид кремния-фторопласт и прототип - никель-кобальт-фторопласт.

Таблица 2
Физико-механические свойства предложенного композиционного материала никель-кобальт-оксид кремния-фторопласт и прототипа - никель-кобальт-фторопласт
Физико-механические свойства композиционного материала никель-кобальт-оксид кремния-фторопласт и никель-кобальт-фторопласт (прототип) Предложенный состав композиции Прототип
1 3 2 4 5
Износостойкость в условиях граничного трения со сталью Ст 45 при нагрузке 20-30 кгс/см2, мкм/ч 0,34 0,29 0,25 0,22 0,24 0,33
Микротвердость, ГПа 7,1 7,9 8,4 8,8 9,1 6,4
Внутренние напряжения, МПа 64,2 65,2 67,6 71,0 85,3 67,2

Как видно из табл.2 износостойкость композиционного материала никель-кобальт-оксид кремния-фторопласт превышает износостойкость композиционного материала никель-кобальт-фторопласт (прототипа) в 1,3-1,4.

Гальванический композиционный материал, содержащий никель, кобальт и фторопласт, отличающийся тем, что он дополнительно содержит оксид кремния при следующем соотношении компонентов, мас.%:

кобальт 1,6-6,9
фторопласт 1,0-3,7
оксид кремния 0,8-2,2
никель остальное



 

Похожие патенты:
Изобретение относится к области гальванотехники и может быть использовано в различных отраслях промышленности. .

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, автомобилестроении, морском транспорте и в других отраслях промышленности для увеличения коррозионной стойкости покрытий на основе сплава олово-цинк.
Изобретение относится к получению гальванических композиционных покрытий, в частности на основе никеля с дисперсной фазой в виде наноалмазных порошков. .

Изобретение относится к области электрохимической обработки поверхности изделий из вентильных металлов и их сплавов и может быть использовано в машиностроении и других отраслях промышленности для получения гидрофобных покрытий, обладающих высокой износостойкостью, а также антифрикционными свойствами и коррозионной стойкостью.
Изобретение относится к области гальванотехники, а именно к получению покрытий из электролитов никелирования с использованием в качестве второй фазы нанодисперсного порошка диборида хрома.

Изобретение относится к электролитическому осаждению твердых износостойких покрытий, а именно композиционных электрохимических покрытий на основе железа с металлокерамическими частицами, применяемых для восстановления и упрочнения поверхностей деталей.

Изобретение относится к области гальванотехники и может быть использовано для получения никелевых композиционных покрытий. .

Изобретение относится к области гальванотехники и может быть использовано для повышения износостойкости инструмента, снижения трения в подшипниках и в качестве защитных несмачиваемых покрытий в различных отраслях промышленности, в частности, для предотвращения обледенения проводов линий электропередач.
Изобретение относится к области гальванотехники и может быть использовано для нанесения композиционных покрытий. .

Изобретение относится к области металлургии и может быть использовано при разработке и изготовлении износостойких покрытий. .

Изобретение относится к области электрохимии и может быть использовано в условиях воздействия агрессивных сред, в том числе в условиях морского и тропического климата. Электролит содержит, моль/л: сульфат олова 0,08-0,09, сульфат цинка 0,065-0,085, лимонную кислоту 0,31-0,33, цитрат щелочного металла 0,65-0,68, препарат OC-20 0,70-0,80 г/л, дифениламин 0,20-0,32 г/л, фторопластовую эмульсию Ф-4Д-Э 0,25-0,30 г/л. Технический результат: повышение коррозионной стойкости, снижение экологической опасности при сохранении основных физико-механических параметров покрытий. 2 табл., 2 ил., 1 пр.
Изобретение относится к области гальванотехники и может быть использовано в ювелирной, часовой, медицинской, радио- и электронно-технической промышленности, а также в производстве сувениров и бижутерии. Электролит содержит на 1000 мас. частей состава: дицианоаурат калия 5-22; лимоннокислый калий 30-95; блескообразующую добавку 0,5-5; ультрадисперсный алмаз 10-42; ультрадисперсный оксид кремния 80-90; воду остальное. Для приготовления электролита в половине рассчитанного количества дистиллированной воды растворяют заданные количества дицианурата калия, лимоннокислого калия и блескообразующей добавки, затем к полученному раствору прибавляют водную суспензию ультрадисперсного алмаза, перемешивают, вводят остальное количество дистиллированной воды, при необходимости корректируют значение pH до 3,6-3,8 и затем при перемешивании вводят ультрадисперсный оксид кремния. Технический результат - по истечении пяти лет хранения электролита оседания компонентов не наблюдалось, а покрытия после 3-5 лет сохраняли прочность и блеск. 2 н.п. ф-лы, 2 пр.

Изобретение относится к восстановлению изношенных деталей машин и механизмов путем нанесения на их поверхность гальванических железных покрытий в проточном электролите. Способ нанесения гальванического железного покрытия в проточном электролите включает помещение восстанавливаемой детали и растворимого анода в электролитическую ячейку, подключение их к источнику тока, прокачку через электролитическую ячейку электролита, содержащего соли двухвалентного железа, соляную кислоту, а также крупные твердые дисперсные частицы размером 100-300 мкм, которые дополнительно вводят в состав электролита, при этом электролиз ведут при плотности катодного тока более 1 кА/дм2 и скорости гетерофазного потока 9-11 м/с. Изобретение позволяет повысить скорость осаждения и увеличить максимальную толщину гладкого покрытия. 1 ил.
Изобретение относится к способу, а также к устройству для изготовления на металлической поверхности твердого покрытия с низкой степенью износа, содержащего никель и бор, которое может быть использовано при изготовлении деталей, которые подвергаются высоким механическим нагрузкам. Твердое покрытие осаждают из содержащего никель электролита, который включает частицы бора или частицы соединений бора в виде диспергата. При этом частицы диспергата удерживаются в дисперсном состоянии с помощью протекающего через электролит газа, который протекает от дна резервуара, в котором происходит осаждение покрытия, до поверхности электролита. Газ протекает через герметичную для жидкости часть дна резервуара, которое выполнено герметичным для жидкости и пропускающим газ. Преимуществом способа является возможность регулирования степени осаждения покрытия, а также степени дисперсности находящихся в электролите дисперсных частиц. 3 н. и 10 з.п. ф-лы.
Изобретение относится к области электролитического осаждения твердых, износостойких покрытий, в частности железо-дисульфид молибденовых покрытий, применяемых для восстановления и упрочнения поверхностей деталей. Способ включает осаждение из электролита, содержащего, кг/м3: сернокислое железо 400-600, дисульфид молибдена 100-200, соляную кислоту 0,5-1,5, на переменном асимметричном токе с коэффициентом асимметрии β=1,2-6,0 и катодной плотностью 20-80 А/дм2 при механическом перемешивании электролита с температурой 20-40°C и кислотностью pH 0,8-1,0. Технический результат: повышение производительности процесса за счет использования переменного ассиметричного тока и повышение износостойкости покрытия за счет увеличения композитного компонента дисульфида молибдена в покрытии до 5%.

Изобретение относится к области гальванотехники и может быть использовано для нанесения композиционных износостойких покрытий. Самосмазывающееся покрытие (7) состоит из металлического слоя (8), в который включен смазочный материал (1), способный высвобождаться при износе, при этом смазочный материал (1) состоит по меньшей мере из одного однократно разветвленного органического соединения (2), имеющего по меньшей мере одну функциональную группу (5), обладающую аффинностью к металлическому слою (8) и представляющую собой тиоловую группу (6). Способ нанесения самосмазывающегося покрытия (7) включает добавление по меньшей мере одного смазочного материала (1), состоящего из по меньшей мере одного однократно разветвленного органического соединения (2), в раствор электролита, содержащий металл (9) по меньшей мере одного вида, растворенный в виде иона или комплекса, и осаждение растворенного металла (9) и смазочного материала (1) из раствора электролита в виде покрытия (7) на детали (11). Технический результат: увеличение износостойкости на более длительное время. 4 н.п. и 8 з.п. ф-лы, 4 ил.

Изобретение относится к алмазно-абразивному инструменту, используемому для обработки особо твердых и хрупких материалов, преимущественно кремния, сапфира, гранатов, кварца, керамики, стекла и т.п., в частности к алмазному проволочному инструменту. Способ включает изолирование от электролита части электропроводящей основы и гальваническое нанесение на неизолированные части основы алмазно-абразивного режущего слоя. Изолирование части основы от электролита осуществляют путем прикрепления к основе нерастворимого в электролите неэлектропроводящего материала в виде последовательно расположенных дискретных кольцеобразных элементов или спирали, соосных с основой, а после гальванического нанесения на неизолированные части основы алмазно-абразивного режущего слоя изолирующий неэлектропроводящий материал удаляют. Технический результат: повышение ресурса работоспособности инструмента и улучшение качества обработки. 1 з.п. ф-лы, 6 ил., 2 пр.

Изобретение относится к области гальванотехники и может быть использовано в радиотехнике и электротехнике. Покрытие равномерно по всему объему серебра содержит астралены в количестве от 0,005 мас % до 0,5 мас %. Способ включает электрохимическое осаждение серебра из электролита серебрения в виде водной суспензии, содержащей астралены в количестве 0,15-0,5 г/л, и поддержание их во взвешенном состоянии в электролите во время электрохимического осаждения путем воздействия на электролит ультразвуковыми колебаниями. Технический результат: повышение эксплуатационных характеристик покрытия - износостойкости и коррозионной стойкости. 2 н.п. ф-лы, 6 ил.
Изобретение относится к области гальванотехники и может быть использовано для создания композиционных электрохимических покрытий различного назначения. Способ получения композиционного покрытия включает осаждение металлического покрытия из водного электролита-суспензии с ультрадисперсными частицами алмаза. Осаждение проводят при постоянном восстановлении отработанной суспензии по размерам ультрадисперсных частиц воздействием ультразвуковых колебаний путем замены отработанной суспензии на восстановленную каждые 15-20 минут принудительной циркуляцией между сообщающимися ваннами гальванического осаждения и восстановления электролита. Технический результат: способ позволяет поддерживать электролит-суспензию в рабочем состоянии в течение всего срока эксплуатации электролита без седиментации частиц. 2 пр.

Изобретение относится к области гальванотехники и может быть использовано в различных областях промышленности, в частности в машиностроении, производстве монет, столовых приборов, дорожных ограждений и других изделий, подверженных истиранию, коррозии и эрозии. Способ включает электрохимическое осаждение из цинкатного электролита, содержащего твердые частицы ультрадисперсных алмазов в количестве 10,0-15,0 г/л, при этом электролит содержит твердые частицы ультрадисперсных алмазов с размером частиц 0,0005÷0,0009 мкм и с удельной поверхностью 250-550 м2/г, при этом в качестве электролита используют цинкатный электролит, в который добавляют поверхностно-активное вещество в количестве 0,2-3,0 г/л. Техническим результатом является повышение антикоррозионных свойств, микротвердости, износоустойчивости покрытия с ровным матовым цветом. 2 з.п. ф-лы, 1 табл., 6 пр.

Изобретение относится к области гальванотехники и может быть использовано в различных областях промышленности

Наверх