Устройство для измерения концентрации механических примесей в средах


 


Владельцы патента RU 2489712:

Федеральное государственное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Изобретение относится к технике измерения качественных параметров воздушных и жидких сред и может быть использовано для измерения содержания механических примесей как в жидких, так и в газообразных средах. Устройство для измерения концентрации механических примесей в средах содержит трубопровод с контролируемой жидкостью, в который вмонтированы на некотором расстоянии друг от друга приемные пьезообразователи, выполненные в виде сплошных или разрезных колец с пьезочувствительными слоями, нанесенными на внутреннюю и наружную поверхность колец параллельно их центральной оси, электрически связанные с электронными блоками, излучающий пьезообразователь, соединенный с генератором электромагнитных колебаний, а также блок обработки и представления информации, связанный с выходами электронных блоков и генератором электромагнитных колебаний. Согласно изобретению в устройство дополнительно введены закрытая емкость для эталонной жидкости, емкость для улавливания твердых частиц с датчиком уровня и блок управления, при этом емкость для улавливания твердых частиц соединена трубопроводом через двухпозиционный электромагнитный клапан с закрытой емкостью для эталонной жидкости и трехпозиционным электрическим клапаном с трубопроводом с контролируемой жидкостью, на выходе которого установлен трехпозиционный электромагнитный клапан, а блок управления электрически соединен с электромагнитными клапанами, выходом блока обработки и представления информации и выходом датчика уровня. Изобретение обеспечивает расширение функциональных возможностей устройства за счет измерения содержания механических примесей в газе. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к технике измерения качественных параметров воздушных и жидких сред и может быть использовано для измерения содержания механических примесей как в жидких, так и в газообразных средах.

Известно устройство для измерения концентрации механических примесей в жидкости, основанное на ультразвуковом методе, в основу которого положено свойство фронта волны, проходящего через жидкость, отражаться при нарушении однородности жидкости (см., например, Беляков В.Л. Автоматизация промысловой подготовки нефти и воды - М.: Недра, 1988, с.158).

Недостаток - невозможность измерения концентрации механических примесей в газах.

Наиболее близким по технической сущности к заявляемому изобретению является устройство для измерения концентрации механических примесей в жидких средах, содержащее трубопровод с контролируемой жидкостью, в который вмонтированы на некотором расстоянии друг от друга приемные пьезообразователи, выполненные в виде сплошных или разрезных колец с пьезочувствительными слоями, нанесенными на внутреннюю и наружную поверхность колец параллельно их центральной оси, электрически связанные с электронными блоками, излучающий пьезообразователь, соединенный с генератором электромагнитных колебаний, а также блок обработки и представления информации, связанный с выходами электронных блоков и генератором электромагнитных колебаний (см., например, RU 2105300, 20.02.98). Вследствие эффекта Доплера ультразвуковые волны, отражаясь от частиц соответствующих размеров, регистрируются соответствующими пьезоприемниками. Идентификация природы частиц производится по их положению в определенной части пространства трубопровода, фиксируемому соответствующими пьезоприемниками.

Недостаток - устройство обеспечивает измерение механических примесей только в жидких средах.

Техническим результатом изобретения является расширение функциональных возможностей устройства за счет измерения содержания механических примесей в газе.

Указанный технический результат достигается тем, что в известном устройстве для измерения концентрации механических примесей в жидкости, содержащем трубопровод с контролируемой жидкостью, в который вмонтированы на некотором расстоянии друг от друга приемные пьезообразователи, выполненные в виде сплошных или разрезных колец с пьезочувствительными слоями, нанесенными на внутреннюю и наружную поверхность колец параллельно их центральной оси, электрически связанные с электронными блоками, излучающий пьезообразователь, соединенный с генератором электромагнитных колебаний, а также блок обработки и представления информации, связанный с выходами электронных блоков и генератором электромагнитных колебаний, дополнительно введены закрытая емкость для эталонной жидкости, емкость для улавливания твердых частиц с датчиком уровня и блок управления, при этом емкость для улавливания твердых частиц соединена трубопроводом через двухпозиционный электромагнитный клапан с закрытой емкостью для эталонной жидкости и трехпозиционным электрическим клапаном с трубопроводом с контролируемой жидкостью, на выходе которого установлен трехпозиционный электромагнитный клапан. Блок управления электрически соединен с электромагнитными клапанами, выходом блока обработки и представления информации и выходом датчика уровня. В блок обработки и представления информации введен датчик времени.

На фигуре приведена структурная схема устройства, где обозначено:

1 - трубопровод;

2 - контролируемая жидкость;

3, 4, 5 - приемные (сплошные или разрезные) пьезопреобразователи;

6 - излучающий пьезопреобразователь;

7, 8, 9 - электронные блоки;

10 - генератор электромагнитных колебаний;

11 - блок обработки и представления информации;

12 - трубопровод;

13.1 - двухпозиционный электромагнитный клапан;

13.2, 13.3 - трехпозиционные электромагнитные клапаны;

14 - закрытая емкость для эталонной жидкости;

15 - емкость для улавливания твердых частиц;

16 - датчик уровня жидкости;

17 - блок управления.

Трубопровод 12 предназначен для соединения закрытой емкости для эталонной жидкости 14, емкости для улавливания твердых частиц 15 с трубопроводом 1.

Двухпозиционный электромагнитный клапан 13.1 предназначен для распределения жидкости между закрытой емкостью для эталонной жидкости 14 и емкостью для улавливания твердых частиц 15.

Трехпозиционный электромагнитный клапан 13.2 предназначен для распределения жидкости в трубопроводах 1, 12.

Трехпозиционный электромагнитный клапан 13.3 предназначен для распределения жидкости в трубопроводе 1 и вывода жидкости с уловленными твердыми частицами из устройства.

Закрытая емкость для эталонной жидкости 14 предназначена для размещения эталонной жидкости.

Емкость для улавливания твердых частиц 15 предназначена для улавливания находящейся в ней жидкостью твердых частиц из газа, оседающих на ее поверхность.

Датчик уровня жидкости 16 предназначен для контроля уровня жидкости в емкости для улавливания твердых частиц 15.

Блок управления 17 предназначен для управления переключением положений электромагнитных клапанов 13.1, 13.2, 13.3.

Устройство работает следующим образом. В датчик времени блока обработки и представления информации 11 оператором задаются временные параметры измерения, при этом выходной сигнал подается на блок управления 17. Блок управления 17 формирует сигналы на открытие двухпозиционного электромагнитного клапана 13.1 и закрытие трехпозиционного электромагнитного клапана 13.2, трехпозиционный электромагнитный клапан 13.3 переводится в положение, позволяющее контролируемой жидкости 2 вытечь из трубопровода 1, после чего трехпозиционный электромагнитный клапан 13.3 закрывается. Жидкость из закрытой емкости для эталонной жидкости 14 через трубопровод 12 с открытым двухпозиционным электромагнитным клапаном 13.1 перетекает в емкость для улавливания твердых частиц 15. При наполнении емкости для улавливания твердых частиц 15 на необходимый уровень датчик уровня жидкости 16 подает сигнал на блок управления 17, который формирует сигнал на закрытие двухпозиционного электромагнитного клапана 13.1. По истечении заданного оператором отрезка времени в датчик времени блок обработки и представления информации 11 формирует сигнал на блок управления 17, который формирует сигнал на перевод трехпозиционного электромагнитного клапана 13.2 в положение, обеспечивающее перетекание жидкости из трубопровода 12 в 1. Жидкость с уловленными твердыми частицами из емкости для улавливания твердых частиц 15 по трубопроводу 12 через трехпозиционный электромагнитный клапан 13.2 перетекает в трубопровод 1, после чего при подаче напряжения от генератора 10 на излучающий преобразователь 6 в результате взаимодействия ультразвуковой волны с механическими примесями происходит отражение волн от механических примесей. Отраженные волны фиксируются приемными пьезопреобразователями 3, 4, 5, которые передают сигнал в электронные блоки 7, 8, 9, где фиксируются волны, пропорциональные определенной группе частиц определенного размера. После получения сигнала с электронных блоков 7-9 блок обработки и представления информации 11 подает сигнал на блок управления 17, который формирует сигнал на переключение трехпозиционного электромагнитного клапана 13.3 в положение, обеспечивающее вытекание контролируемой жидкости 2 из трубопровода 1. После вытекания контролируемой жидкости 2 блок управления 17 формирует сигнал на переключение трехпозиционных электромагнитных клапанов 13.2, 13.3 в положение, обеспечивающее перетекание жидкости по трубопроводу 1, и устройство переходит на работу в штатном режиме.

Таким образом, использование изобретения позволит обеспечить измерение концентрации уловленных твердых частиц из воздушной среды.

Устройство промышленно применимо, так как оно может быть выполнено на базе известных элементов. Так, например, блок управления может быть выполнен на базе интегральных микросхем, а электромагнитные клапаны на базе серийно выпускаемых электромагнитных клапанов «Burket». Емкость для улавливания твердых частиц и закрытая емкость для эталонной жидкости могут быть изготовлены с использованием электродуговой сварки.

1. Устройство для измерения концентрации механических примесей в средах, содержащее трубопровод с контролируемой жидкостью, в который вмонтированы на некотором расстоянии друг от друга приемные пьезообразователи, выполненные в виде сплошных или разрезных колец с пьезочувствительными слоями, нанесенными на внутреннюю и наружную поверхность колец, параллельно их центральной оси, электрически связанные с электронными блоками, излучающий пьезообразователь, соединенный с генератором электромагнитных колебаний, а также блок обработки и представления информации, связанный с выходами электронных блоков и генератором электромагнитных колебаний, отличающееся тем, что дополнительно введены закрытая емкость для эталонной жидкости, емкость для улавливания твердых частиц с датчиком уровня и блок управления, при этом емкость для улавливания твердых частиц соединена трубопроводом через двухпозиционный электромагнитный клапан с закрытой емкостью для эталонной жидкости и трехпозиционным электрическим клапаном с трубопроводом с контролируемой жидкостью, на выходе которого установлен трехпозиционный электромагнитный клапан, а блок управления электрически соединен с электромагнитными клапанами, выходом блока обработки и представления информации и выходом датчика уровня.

2. Устройство для измерения концентрации механических примесей в жидкости и воздухе по п.1, отличающееся тем, что в блок обработки и представления информации введен датчик времени.



 

Похожие патенты:

Изобретение относится к ракетно-космической технике и может быть использовано при проведении физического моделирования процессов газификации остатков жидкого топлива в баках отделяющихся частей (ОЧ) ступеней ракет-носителей (РН) в условиях малой гравитации с использованием экспериментальных модельных установок в земных условиях, а также и при натурных пусках РН с системами газификации.

Изобретение относится к ультразвуковой технике, а именно к способам контроля свойств жидких сред, подвергаемых воздействию ультразвуковых колебаний высокой интенсивности, и предназначено для повышения эффективности технологических процессов, реализуемых в жидких и жидкодисперсных средах в докавитационном и кавитационном режимах.

Изобретение относится к исследованиям дизельных топлив с помощью электрических средств и может быть использовано в нефтеперерабатывающей промышленности, при хранении и реализации топлив в различных областях, где необходим оперативный контроль его качества.

Изобретение относится к измерительной технике и может быть использовано в информационно-измерительных системах нефтеперерабатывающей, нефтедобывающей, химической, пищевой и других отраслях промышленности.

Изобретение относится к области медицины, в частности к способам исследования или анализа материалов с использованием акустической эмиссии. .

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения вида многофазного потока в трубопроводе в ходе его эксплуатации.

Описан способ акустического определения изменения состояния потока текучей среды в трубопроводе, снабженном расходомером. Способ включает установку, по меньшей мере, одного акустического датчика в трубопроводе измерительной станции, запись базовой акустической конфигурации с акустического датчика посредством контролируемого пропускания текучей среды через измерительную станцию, при идеальных условиях. Способ также включает запись акустической конфигурации с акустического датчика в реальном времени посредством пропускания текучей среды через измерительную станцию, при нормальных условиях, сравнение базовой акустической конфигурации с акустической конфигурацией, полученной в реальном времени, определение разницы между базовой акустической конфигурацией и акустической конфигурацией, полученной в реальном времени, для определения изменения состояния потока и регистрацию изменения состояния потока. Система включает акустические датчики, установленные в трубопроводе, расходомер, компьютер для сбора акустической информации от акустических датчиков и сравнения акустической информации с базовыми значениями для определения отклонения от нормального состояния потока текучей среды. Технический результат - повышение точности и надежности измерительной станции и передачи продукта потребителю, а также выявление эксплуатационных проблем. 2 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к области исследования состава жидкостей и материалов с содержанием не менее двух компонентов, в частности к способам определения количественного состава многокомпонентных сред. В соответствии со способом определения количественного состава многокомпонентной среды, состоящей из по меньшей мере двух известных несмешивающихся компонентов, предварительно определяют температурные зависимости удельной теплоемкости каждого из компонентов и взвешивают образец многокомпонентной среды. Определяют удельную теплоемкость образца при по меньшей мере i-1 уровнях температур, где i - количество компонентов многокомпонентной среды. На основе результатов определения удельной теплоемкости при различных температурах и температурных зависимостей удельной теплоемкости компонентов рассчитывают весовые коэффициенты для каждого компонента среды. Количественное содержание каждого из компонентов многокомпонентной среды определяют на основе полученных значений весовых коэффициентов компонентов. Техническим результатом является обеспечение возможности определения количественного состава многокомпонентной среды с высокой точностью и без разрушения образца, а также при известной пористости предлагаемый способ позволяет определить насыщенность материала различными флюидами. 13 з.п. ф-лы, 1 ил., 1 табл.

Использование: для обнаружения газовых пустот в жидкости, протекающей по трубе. Сущность изобретения заключается в том, что размещают первый преобразователь с внешней стороны на верхней части трубы и второй преобразователь с внешней стороны на нижней части трубы по существу под первым преобразователем, причем ультразвуковая энергия проходит по поперечной траектории между первым и вторым преобразователями, при этом обеспечивают посредством мультиплексора и контроллера генерирование передач ультразвуковых сигналов первым ультразвуковым преобразователем, размещенным на верхней части трубы с внешней стороны, и вторым ультразвуковым преобразователем, размещенным на нижней части трубы с внешней стороны по существу под первым преобразователем, причем эти передачи происходят последовательно следующим образом: передача от первого преобразователя второму преобразователю, причем если передача принята вторым преобразователем, что определено посредством приемника и контроллера, то пустоты нет, а если передача от первого преобразователя не принята вторым преобразователем, то пустота имеется; и передача от второго преобразователя, которая отражена или от верхней стенки трубы, если пустоты нет, или от поверхности жидкости, если пустота имеется, с возвращением к второму преобразователю. Технический результат: обеспечение возможности непрерывного обнаружения газовых пустот в текучей среде, а также определение их количества. 2 н. и 20 з.п. ф-лы, 7 ил., 2 табл.

Использование: для одновременного определения обводненности и газосодержания в нефте-водогазовой смеси. Сущность изобретения заключается в том, что определяют скорость звука в среде, причем при определении скорости звука раздельно определяют групповую и фазовую скорости, по групповой и/или фазовой скорости определяют обводненность, а по разности групповой и фазовой скорости определяют газосодержание. Технический результат: обеспечение возможности одновременного определения обводненности и газосодержания эмульсии при одновременном улучшении точности определения обводненности. 2 н.п. ф-лы.

Изобретение относится к нефтедобывающей промышленности, а именно к способам измерения влажности нефти без предварительной сепарации газа из продукции скважины. В процессе проведения экспериментальных работ находится зависимость средней абсолютной погрешности проверочных точек от средней абсолютной погрешности экспериментальных точек обучающей выборки. Находится интервал средней абсолютной погрешности обучающих точек, при котором имеют место сравнительно низкие значения средней абсолютной погрешности проверочных точек. В процессе эксплуатации нефтяной скважины фиксируются показания датчиков многофазного расходомера, и расчет влажности нефти проводится в интервале средней абсолютной погрешности обучающих точек, при котором наблюдаются сравнительно низкие значения средней абсолютной погрешности проверочных точек. Техническим результатом является повышение точности измерения влажности нефти, а также снижение погрешности определения влажности нефти при использовании многофазного расходомера. 1 ил.

Использование: для измерения продольного и сдвигового импендансов жидкостей. Сущность изобретения заключается в том, что с помощью ультразвукового преобразователя возбуждают в двух тонких волноводах различные нулевые моды нормальных волн, измеряют коэффициенты затухания каждого типа волны в волноводах и рассчитывают продольный и сдвиговый импедансы исследуемой жидкости, при этом волноводы акустического блока изготавливают в виде тонких полос различной толщины, возбуждают в них нулевую моду волны Лэмба, калибруют акустический блок путем последовательного измерения в обоих волноводах коэффициентов затухания нулевой моды волны Лэмба при их последовательном погружении в две жидкости с известными продольным и сдвиговым импедансами, из полученных уравнений рассчитывают коэффициенты, связывающие импедансы жидкости с коэффициентом поглощения волны Лэмба в волноводах, затем погружают волноводы в исследуемую жидкость, измеряют коэффициенты затухания нулевой моды волны Лэмба в обоих волноводах и с помощью найденных численных значений коэффициентов по известным соотношениям рассчитывают продольный и сдвиговый импедансы исследуемой жидкости. Технический результат: обеспечение возможности автоматического контроля состояния жидкостей в условиях их эксплуатации без измерения нулевой моды горизонтально поляризованной нормальной волны. 2 ил.

Изобретение относится к области физической акустики и предназначено для изучения акустических свойств жидкостей, таких как морская вода и различные технические жидкости. Метод включает излучение и прием сигналов как минимум двух разных частот, прошедших через измерительный участок, одним излучателем, работающим в режиме излучение-прием. Интервал времени между импульсами выбирают таким, чтобы затух предыдущий импульс. Измерительный участок представляет собой расстояние между поверхностью излучателя и расположенной соосно с ним в параллельной плоскости отражающей поверхностью. Осуществляют фильтрацию сигналов на разностной частоте, измеряют амплитуды давления волн разностной частоты и затем определяют параметр нелинейности по величине нелинейного акустического параметра (ε) согласно формуле ε=ε0[PΩ(r)/PΩ0(r)], где ε - значение нелинейного акустического параметра в исследуемой среде, PΩ(r) - амплитуды давления волны разностной частоты на расстоянии r в исследуемой среде, а ε0 и PΩ0(r) - значения нелинейного акустического параметра и амплитуды давления волны разностной частоты на расстоянии (r) в известной среде, соответственно, определенные предварительно калибровкой. Технический результат - повышение разрешающей способности по пространству, чувствительности к проявлению слабых нелинейных эффектов, а также увеличение достоверности измерений на малой измерительной базе благодаря возможности накапливать нелинейные эффекты на большом расстоянии пробега волн накачки, которое ограничено только длиной затухания звукового импульса. 2 н.п. ф-лы, 3 ил.

Изобретение относится к аналитическому приборостроению и может быть использовано для физико-химического анализа жидких и газообразных сред. Достигаемый технический результат - повышение избирательности мод колебаний при увеличении числа датчиков возбуждаемых мод. Мультиплексорная акустическая решетка содержит плоскопараллельную пластину из пьезоэлектрического кристалла, имеющую кристаллографическую ось, лежащую в плоскости пластины и проходящую через условный центр пластины, встречно-штыревые преобразователи (ВШП), которые размещены симметрично парами на рабочей стороне пластины с образованием совокупности акустических каналов, направления распространения акустических волн в которых пересекаются в условном центре пластины, где имеется зона вокруг условного центра в форме круга для пробы, акустические каналы выполнены с возможностью возбуждения в пластине семейства пластинчатых мод колебаний с длиной волны, меньшей или равной толщине пластины. 7 з.п. ф-лы, 12 ил.

Использование: для контроля и измерения уровня загрязнения воды. Сущность изобретения заключается в том, что ультразвуковой датчик грязи (УДГ) содержит металлический нержавеющий фланец с отверстиями и приспособлениями для герметичного крепления к стенке резервуара, на фланце закреплен водонепроницаемый электронный блок с ультразвуковыми приемниками и ультразвуковыми излучателями, соединенными герметично проложенными проводниками внутри направляющих измерительного и опорного каналов, и сосуд (стакан) опорного канала, выполненный из тонкого нержавеющего металла, при этом сосуд (стакан) опорного канала заполняется чистой дистиллированной водой только один раз на предприятии-изготовителе и герметично запаивается. Технический результат: упрощение в обслуживании, повышение надежности, безопасности работы датчика, повышение точности измерений загрязнения воды и расширение области применения. 3 з.п. ф-лы, 2 ил.

Изобретение относится к акустическим измерениям и может быть использовано для измерения скорости звука в естественных водоемах. Предложен способ акустического мониторинга изменчивости параметров морских акваторий, заключающийся в формировании в морской среде акустической трассы распространения звука и обработке принятого приемным элементом трассы акустического сигнала, которой включает измерение скорости распространения звука, температуры и давления в образцовой зоне водоема на фиксированных горизонтах, свободной от загрязнений техногенного характера, при этом полученные значения измеренной скорости распространения звука являются эталонными значениями для данного водоема и заносятся в память вычислительного устройства средства акустического мониторинга, при формировании в морской среде акустической трассы распространения звука и обработке принятого приемным элементом трассы акустического сигнала, измерения скорости распространения звука выполняют при температуре и давлении, соответствующих температуре и давлению полученных эталонных значений скорости распространения звука на фиксированных горизонтах акватории исследуемого водоема. Технический результат заключается в повышении достоверности способа акустического мониторинга изменчивости параметров морских акваторий, а также расширении функциональных возможностей. 1 ил.
Наверх