Способ прокатки сортовых профилей из труднодеформируемых сталей

Изобретение предназначено для повышения качества и выхода годных профилей и может быть использовано при прокатке сортовых профилей из труднодеформируемых сталей для изделий ответственного назначения. Способ включает нагрев непрерывно литой заготовки до температуры аустенитизации, многопроходное обжатие в валках с калибрами при черновых и чистовых проходах с регламентированными суммарной вытяжкой и температурой конца прокатки. Интенсификация механического измельчения кристаллитов без увеличения вытяжки с протеканием динамической и статической рекристаллизации деформированных аустенитных зерен обеспечивается за счет того, что прокатку в черновых проходах ведут в температурном диапазоне начала деформации от 1140-1290°C до окончания деформации 1000-1100°C с суммарной вытяжкой 2,2-8,4 при соотношении величин максимального и минимального относительных обжатий заготовки в каждом из проходов, составляющем не менее 1,2 и не более 1,6. 1 ил., 6 пр., 1 табл.

 

Изобретение относится к прокатному производству и может быть использовано при прокатке сортовых профилей из труднодеформируемых сталей для изделий ответственного назначения.

Известен способ производства проката, включающий получение непрерывно литых заготовок, нагрев заготовок до температуры аустенитизации 1150-1280°C, черновую прокатку с суммарной степенью обжатия 40-92%, и чистовую прокатку с суммарной степенью обжатия 50-70% и температурой конца прокатки 680-1050°C [1].

Недостатки известного способа состоят в том, что он не обеспечивает высокого качества профилей из труднодеформируемых сталей, следствием чего является снижение выхода годного.

Наиболее близким аналогом к предлагаемому изобретению является способ производства сортовых профилей, включающий нагрев, непрерывно литой заготовки до температуры аустенитизации, многопроходное обжатие в валках с калибрами при черновых и чистовых проходах с регламентированной суммарной вытяжкой от 4 до не менее 15 (в зависимости от группы стали) и температурой конца прокатки 860-1000°C [2].

Недостатки известного способа состоят в низком качестве сортовых профилей из труднодеформируемых сталей, что проявляется в виде трещин, разрывов, невыполнений профиля. В результате снижается выход годного.

Техническая задача предлагаемого изобретения состоит в повышении качества и выхода годных профилей из труднодеформируемых сталей.

Для решения поставленной технической задачи в известном способе прокатки сортовых профилей из труднодеформируемых сталей, включающем нагрев непрерывно литой заготовки до температуры аустенитизации, многопроходное обжатие в валках с калибрами при черновых и чистовых проходах с регламентированными суммарной вытяжкой и температурой конца прокатки, согласно изобретению, прокатку в черновых проходах ведут в температурном диапазоне от 1140-1290°C до 1000-1100°C с суммарной вытяжкой λ=2,2-8,4 при соотношении величин максимального и минимального относительных обжатий заготовки в каждом из проходов, составляющем не менее 1,2 и не более 1,6.

На фигуре 1 в качестве примера изображена схема преобразования поперечного профиля заготовки в системе калибровки «квадрат»-«овал». Заготовка квадратного сечения изображена пунктирной линией. На фигуре 2 показана эпюра распределения относительных обжатий е по ширине В овального калибра при обжатии по схеме на фиг.1.

Сущность изобретения состоит в следующем. Непрерывно литая заготовка из труднодеформируемой стали структурно состоит из крупных кристаллитов и характеризуется низкой технологической пластичностью. Для подавления негативного влияния литой структуры на качество готовых сортовых профилей необходимо увеличивать вытяжку в черновых проходах. Однако увеличение вытяжек приводит к появлению трещин и поперечных разрывов в прокатываемом металле, имеющего низкую технологическую пластичность.

В процессе экспериментов были определены условия деформирования в черновых проходах заготовок из труднодеформируемых непрерывно литых сталей, при которых одновременно обеспечивалось как разрушение кристаллитов и диспергирование микроструктурных составляющих, так и исключалось образования трещин и разрывов в металле. Установлено, что в температурном интервале от 1140-1290°C до 1000-1100°C при соотношении величин максимального и минимального относительных обжатий заготовки в каждом из проходов, составляющем не менее 1,2 и не более 1,6, за счет появления дополнительной сдвиговой компоненты деформации регламентированной величины интенсифицируется механическое измельчение кристаллитов без необходимости увеличения вытяжки, приводящей к появлению дефектов. В то же время, при указанном деформационно-термическом воздействии в стали протекают процессы динамической и статической рекристаллизации деформированных аустенитных зерен. Границы рекристаллизованных зерен сохраняют высокую прочность и не подвержены образованию зародышевых трещин и разрывов. Чередующаяся по черновым проходам многоцикловое деформационно-термическое воздействие со сдвиговыми компонентами деформации обеспечивает последовательное диспергирование и гомогенизацию исходной микроструктуры. В результате после достижения при черновых проходах суммарной вытяжки λ=2,2-8,4 труднодеформируемая сталь приобретает повышенную технологическую пластичность. Благодаря этому имеет место повышение качества и выхода годных профилей.

Экспериментально установлено, что если температура начала черновой прокатки Тн будет выше 1290°C, то это не исключает окисления межкристаллитных границ литой труднодеформируемой стали. Это приводит к образованию трещин и разрывов при прокатке. При температуре Тн ниже 1140°C в стали сохраняются нерастворенные в аустените крупные неметаллические включения, что снижает ее пластичность и механические свойства сортовых профилей.

При температуре окончания черновых проходов Ткч ниже 1000°C труднодеформируемая сталь имеет низкую технологическую пластичность, что приводит к невыполнению профиля в калибрах. Повышение Ткч более 1100°C способствует увеличению разнобалльности микроструктуры, снижению комплекса механических свойств сортовых профилей.

Если суммарная вытяжка λ после черновых проходов будет менее 2,2, то в микроструктуре стали готовых профилей сохранятся фрагменты литых кристаллитов, произойдет ухудшение их качества. При λ более 8,4 не исключается появление на заготовке трещин и разрывов.

В случаях, когда соотношение величин максимальных εmax и минимальных εmin относительных обжатий в калибре будет менее 1,2, сдвиговые деформации не достаточны для разрушения фрагментов кристаллитов. При отношении εmax к εmin более 1,6, неравномерность деформации в калибре приведет к образованию трещин и разрывов заготовки, снижению качества и выхода годного.

Примеры реализации способа

Непрерывно литую заготовку квадратного сечения 150×150 мм из труднодеформируемой жаропрочной стали марки 40X10C2M (ГОСТ 5945-95) нагревают в методической печи с газовым отоплением до температуры аустенитизации Тн=1215°C и выдают на печной рольганг сортопрокатного стана 350. Затем нагретую заготовку транспортируют к черновой 5-клетевой группе осуществляют ее многократное обжатие в валках с системой калибров «квадрат»-«овал» (Фиг.1) с суммарной вытяжкой λ=5,3. В каждом из овальных и квадратных калибров заготовку прокатывают с переменным обжатием ε по ширине В калибра. Величина максимального обжатия в калибре составляет εmax=14%, а минимального εmin=10%. При этом соотношение максимального и минимального относительных обжатий заготовки равно:

εmaxmin=1,4

Требуемые значения εmax и εmin задают глубиной врезов ручьев на валках, образующих калибр.

Переменная величина обжатия λ, по ширине B калибра обеспечивает рост сдвиговой компоненты пластической деформации заготовки, которая способствует механической проработке литой структуры, измельчению и гомогенизации структурных составляющих.

Черновую прокатку завершают при температуре Ткч=1050°C. В температурном диапазоне черновой прокатки от Тн=1215°C до Ткч=1050°C за счет измельчения микроструктуры от действия сдвиговой деформации и управляемой рекристаллизации обеспечивается повышение технологической пластичности труднодеформируемой жаропрочной стали, исключается образование трещин и разрывов, достигается выполнение заданного профиля.

После завершения черновой прокатки полученную полосу овального сечения задают в чистовую группу клетей, в которых обжимают в системе калибров «овал»-«круг» в полосу круглого поперечного сечения диаметром 20 мм.

Готовая полоса характеризуется высокой точностью размеров, отсутствием дефектов в виде трещин и закатов, высокими механическими свойствами, обусловленными мелкозернистой гомогенной микроструктурой трудно-деформируемой стали. В результате достигается повышение выхода годного до величины Y=99,6%.

Варианты реализации предложенного способа прокатки профилей из труднодеформируемых сталей и показатели их эффективности приведены в таблице.

Таблица.
Деформационно-термические режимы прокатки сортовых профилей из труднодеформируемых сталей и их эффективность
№ п/п Тн, °C εmaxmin Ткч, °C µ Мех. св-ва Дефекты профиля Y, %
1. изо 900 2,1 неуд. присутств. 85,5
2. 1140 1,2 1000 2,2 удвл. отсутств. 99,5
3. 1215 1,4 1050 5,3 удвл. отсутств. 99,6
4. 1290 1,6 1100 8,4 удвл. отсутств. 99,4
5. 1300 1,7 1200 8,6 неуд. присутств. 83,9
6. 1180 -- не регл 19,9 неуд. присутств. 85,5

Сортовые профили, не удовлетворяющие по механическим свойствам требованиям, предъявляемым к жаропрочной стали марки 40X10C2M, используют для изделий менее ответственного назначения.

Из данных, представленных в таблице, следует, что при реализации предложенного способа (варианты №2-4) достигается повышение качества и выхода годных профилей из труднодеформируемых сталей. При запредельных значениях заявленных параметров (варианты №1 и №5), а также в способе-прототипе (вариант №6) имеет место снижение качества и выхода годного.

Технико-экономические преимущества предложенного способа состоят в том, что реализация предложенных деформационно-термических режимов с применением экспериментально определенных значений неравномерности обжатия по ширине калибра, способствует появлению дополнительных регламентированных сдвиговых деформаций, улучшающих проработку литой структуры стали, что повышает качество сортовых профилей из труднодеформируемых сталей и выход годного. Побочным эффектом является расширение сортамента прокатываемых профилей из непрерывно литых заготовок в сторону увеличения площади поперечного сечения готовых профилей.

В качестве базового объекта принят известный способ [2]. Использование предложенного способа обеспечит повышение рентабельности производства сортовых профилей ответственного назначения на 15-20%.

Литературные источники

1. Патент РФ №2041962, МПК B21B 1/46, 1995;

2. Патент РФ №2243834, МПК B21B 1/46, 2005.

Способ прокатки сортовых профилей из труднодеформируемых сталей, включающий нагрев непрерывно-литой заготовки до температуры аустенитизации, многопроходное обжатие в валках с калибрами при черновых и чистовых проходах с регламентированными суммарной вытяжкой и температурой конца прокатки, отличающийся тем, что прокатку в черновых проходах ведут в температурном диапазоне от 1140-1290°С до 1000-1100°С с суммарной вытяжкой 2,2-8,4 при соотношении величин максимального и минимального относительных обжатий заготовки в каждом из проходов, составляющем не менее 1,2 и не более 1,6.



 

Похожие патенты:

Изобретение относится к изготовлению горячекатаных полуфабрикатов в совмещенной установке разливки и прокатки. .

Изобретение относится к области металлургии, и может быть использовано при производстве листов из высокопрочных термически упрочняемых алюминиевых сплавов, легированных скандием и цирконием.
Изобретение относится к области черной металлургии, а именно к производству горячекатаной сортовой полосовой стали. .

Изобретение относится к области металлургии, в частности к получению листа из электротехнической стали с ориентированной зеренной структурой. .

Изобретение относится к области металлургии и может быть использовано при производстве непосредственно из расплава холоднокатаных лент из алюминия и его сплавов на литейно-прокатных агрегатах.

Изобретение относится к области металлургии и может быть использовано при производстве непосредственно из расплава горячекатаных лент из алюминия и его сплавов на литейно-прокатных агрегатах.

Изобретение относится к области металлургии и может быть использовано при производстве непосредственно из расплава горячекатаных лент из алюминия и его сплавов на литейно-прокатных агрегатах.

Изобретение относится к области металлургии и может быть использовано при производстве непосредственно из расплава горячекатаных лент из алюминия и его сплавов на литейно-прокатных агрегатах, включающем непрерывное литье заготовки из расплава, прокатку заготовки в подкат, затем в готовую ленту на нескольких клетях с приложением к раскату усилий его переднего и заднего натяжений по клетям, измерение усилий прокатки в последней клети, подачу на подкат охлаждающей жидкости, холодную прокатку ленты в последней клети и намотку готовой ленты в бунт, при этом при прокатке переднего конца ленты заднее натяжение, создаваемое перед валками последней клети, поддерживают равным нулю, а холодную прокатку ленты в последней клети производят при толщине ленты, определяемой по математическому выражению.

Изобретение относится к способу аустенитного проката изготовленной в процессе непрерывной отливки в установке непрерывного литья с толщиной отливки меньше 300 мм, предпочтительно с толщиной отливки меньше 150 мм черновой полосы с помощью стадий уменьшения толщины, по меньшей мере, в одном, образованном из нескольких следующих друг за другом прокатных клетей прокатном стане, в горячекатаную полосу с конечной толщиной прокатки между 0,5 и 15 мм и последующего поперечного разделения горячекатаной полосы с величиной рулона, соответственно, длиной рулона перед намоткой в устройстве накопления.

Изобретение относится к области металлургии. .

Изобретение относится к области металлургии и может быть использовано при горячей прокатке полос на комбинированном полунепрерывном стане

Изобретение относится к прокатному производству и может быть использовано при получении стальных профилей из непрерывнолитых заготовок
Изобретение относится к области металлургии, в частности к изготовлению горячекатаной полосы из свободной от превращений ферритной стали. Для создания в горячекатаной полосе мелкозернистой структуры расплав, полученный из стали, содержащей, мас.%: <1,5 С, <30 Cr, >2 Al, <30 Mn, <5 Si, остальное железо и неизбежные примеси разливают в горизонтальной установке для непрерывной разливки с успокоенным течением и без изгибов в полосовую заготовку толщиной 6-20 мм, а затем осуществляют прокатку заготовки в горячекатаную полосу со степенью деформации, по меньшей мере, 50%. 2 н. и 14 з.п. ф-лы.

Изобретение относится к способу восстановления поверхности непрерывно-литого сляба (1), в частности из стали, перед его прокаткой и устройству для его осуществления. Литой сляб (1) направляют через печь (2), подвергают операции удаления окалины. По меньшей мере на одном участке (3) печи (2) поверхность сляба (1) подвергают восстановлению тем, что на участке (3) печи (2) поддерживают атмосферу, которая состоит из инертного газа и водорода (Н2) или из чистого водорода. При этом в направлении (F) транспортировки перед и/или после по меньшей мере одного участка (3) печи (2) с восстановительной атмосферой расположен примыкающий участок (4) печи (2), в котором поверхность сляба (1) подвергают окислению. Технический результат заключается в уменьшении окалины на поверхности сляба. 2 н. и 15 з.п. ф-лы, 2 ил.

Изобретение может быть использовано при производстве мелкосортных прокатных профилей на металлургическом мини-заводе. Сталепрокатный комплекс включает сталеплавильный и прокатный участки. Сталеплавильный участок содержит дуговую сталеплавильную печь, установку внепечной обработки «печь-ковш» и радиальную машину непрерывного литья заготовок. Передаточный рольганг машины непрерывного литья заготовок введен в прокатный участок, содержащий печь для нагрева заготовок под прокатку, полунепрерывный прокатный стан, непрерывную группу клетей, установку ускоренного охлаждения проката, холодильник прокатного стана с подводящим рольгангом, неподвижным упором и отводящим рольгангом, ножницы для резки проката и устройство для формирования пачек готовой продукции. Печь для нагрева заготовок под прокатку расположена перпендикулярно оси прокатки прокатного стана и параллельно передаточному рольгангу. Отводящий рольганг установлен вдоль холодильника на противоположной стороне относительно подводящего рольганга и направлен противоположно относительно него. Повышается эффективность использования производственных площадей и эффективность производства. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области металлургии. Жидкий металл подают в промежуточную кольцевую емкость, установленную в кольцевую полость вращающегося кристаллизатора, образованную двумя горизонтально сопряженными консольными валками с вогнутыми торцевыми поверхностями, с зонами формирования и раскатки слитка. Промежуточная кольцевая емкость состоит из двух частей в виде кольцевых вставок из теплоизолирующего материала. Через кольцевой канал-дозатор промежуточной кольцевой емкости, ширину которого изменяют перемещением вдоль оси вращения кристаллизатора нижней части емкости, металл подают в зону формирования кольцевого слитка под действием центробежных сил. Требуемый уровень жидкого металла hм в зоне формирования определяют по математическим зависимостям и поддерживают его во время разливки постоянным. Кристаллизующиеся участки кольцевого слитка направляют в зазор, образованный перемещением и поворотом одного консольного валка относительно другого. В зоне раскатки слиток обжимают до сваривания и раскатывают до получения заготовки требуемых размеров, и отделяют заготовку от кольцевого слитка. Обеспечивается повышение качества и точности размеров заготовки. 2 н. и 1 з.п. ф-лы, 2 пр., 4 ил.

Изобретение относится к металлургии. Способ предназначен для получения полосы толщиной от 0,7 мм до 20 мм из сортов стали, позволяющих производить тонкие слябы толщиной от 30 мм до 140 мм. Прокатный агрегат (10) содержит устройство (11) непрерывной разливки, туннельную печь (15) для поддержания или выравнивания температуры и возможного нагрева, прокатную линию, состоящую из линии терновой прокатки, содержащей от 1 до 4 клетей (18а, 18b, 18с) прокатного стана, и линии чистовой прокатки, содержащей от 3 до 7 клетей (21а-21е) прокатного стана. Между линией черновой прокатки и линией чистовой прокатки расположен агрегат (20) быстрого нагрева, который содержит элементы, обеспечивающие его выборочное включение. Для каждой компоновки прокатного агрегата (10) положение агрегата (20) быстрого нагрева, определяющего число клетей (18а, 18b, 18с) черновой группы и число клетей (21а-21е) чистовой группы, рассчитывают в зависимости от произведения толщины тонкого сляба и скорости его движения, является функцией требуемой часовой производительности (т/ч). Способ осуществляют либо в порулонном режиме, либо в полунепрерывном режиме, либо в непрерывном режиме. Предусматривается возможность временной остановки прокатного агрегата, не прерывая процесса разливки, и не снижая производительность процесса. 2 н. и 7 з.п. ф-лы, 11 ил.

Изобретение относится к производству мелкосортного проката из металлолома в литейно-прокатных агрегатах. Жидкую сталь получают переплавкой металлолома в плавильной печи. Разливку стали производят во вращающийся с угловой скоростью 10-100 сек-1 водоохлаждаемый кольцевой кристаллизатор машины литья с получением исходной литой кольцевой заготовки, толщину и ширину сечения которой определяют предварительно. По окончании кристаллизации кольцевую заготовку при температуре 115-1250°C удаляют из кристаллизатора, не останавливая его вращение. В правильно-деформирующей машине заготовку разрезают на ножницах и разгибают на гидравлическом разгибе с величиной деформации изгиба поперечного сечения кольцевой заготовки не более 0,5-0,9%. Полученную заготовку С-образной формы правят в прямолинейную полосу между двух валков прокаткой в один проход. Величина относительного обжатия при этом составляет 12-15%. Полученную прямолинейную полосу задают в непрерывную группу прокатного стана и ведут прокатку с продольным разделением полосы с величиной суммарной вытяжки при прокатке 2,5-3,5 и получением на выходе из последней чистовой прокатной клети проката заданной длины. Обеспечивается формирование плотной мелкокристаллической структуры литой заготовки, а также снижение суммарной вытяжки при прокатке. 2 н. и 6 з.п. ф-лы, 7 ил., 3 пр.

Изобретение относится к изготовлению горячекатаной полосы из легированных кремнием сталей для дальнейшей обработки в электротехническую полосовую сталь с ориентированной зернистой структурой. Для повышения магнитных свойств и качества полосы способ, который выполняют в установке совмещенного процесса непрерывной разливки и прокатки, включает следующие стадии: а) плавление стали с химическим составом, мас.%: Si - 2-7, C - 0,01-0,1, Mn<0,3, Cu - 0,1-0,7, Sn<0,2, S<0,05, Al<0,09, Cr<0,3, N<0,02, P<0,1, остальное Fe и неизбежные примеси, b) отливку заготовки с толщиной 25-150 мм в установке непрерывной разливки металла, c) прокатку полосы с количеством проходов до 4 непосредственно после отливки заготовки, при этом по меньшей мере в одном проходе степень деформации составляет больше 30% или общая степень деформации всех проходов составляет больше 50%, d) нагрев полосы до конечной температуры 1050-1250°C, предпочтительно 1100-1180°C, e) чистовую прокатку полосы на втором прокатном стане, f) охлаждение и намотку полосы. 10 з.п. ф-лы, 1 табл., 2 ил., 2 пр.

Изобретение относится к области металлургии и может быть использовано при прокатке полосы на совмещенной литейно-прокатной установке. Совмещенная литейно-прокатная установка содержит литейную установку для разливки жидкой стали, ножницы для резки продукта литья, установленные после литейной установки, обжимную и чистовую группы прокатных клетей и моталку. Осуществление резки продукта литья толщиной 90 мм, предпочтительно 110 мм, при скорости транспортировки, равной 0,1 м/с, и выведение хвостовой части отрезка черновой полосы из обжимной группы клетей до вхождения головной части черновой полосы в чистовую группу клетей позволяют ускорить введение в эксплуатацию чистовой группы клетей. 2 н. и 11 з.п. ф-лы, 2 ил.
Наверх