Способ термообработки полуфабрикатов абразивных инструментов на органических термореактивных связках


 


Владельцы патента RU 2490114:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" (RU)

Изобретение относится к технологии изготовления абразивных инструментов (АИ) на органических термореактивных связках (ОТС), предназначенных для обработки заготовок из различных металлов и сплавов. Способ включает стадию предварительного нагрева группы полуфабрикатов АИ в микроволновом поле СВЧ-камеры частотой 2450 МГц для АИ толщиной до 100 мм и частотой 890…915 МГц для АИ толщиной свыше 100 мм до достижения температуры полной полимеризации ОТС. После чего проводят стадию последующей выдержки при этой температуре при равномерном принудительном удалении из свободного объема термостата в процессе термообработки в СВЧ-камере выделяющихся из полуфабрикатов летучих веществ потоком воздуха, создаваемым системой вытяжной вентиляции, которой оборудована СВЧ-камера, через щели, выполненные в передней и задней стенках термостата, исключающем возможность достижения парами летучих веществ состояния насыщения при сохранении максимального эффекта теплоизоляции рабочей зоны термостата и обеспечении разброса температуры полуфабрикатов внутри термостата не более ±10% от ее среднего уровня. При этом осуществляют управление температурой нагрева полуфабрикатов в СВЧ-камере с помощью газоанализатора, установленного на выходе потока воздуха из упомянутой камеры, в зависимости от состава и концентрации летучих веществ в нем. Технический результат: повышение качества АИ на ОТС. 1 табл.

 

Изобретение относится к машиностроению, а именно к технологии изготовления абразивных инструментов (АИ) на органических термореактивных связках (ОТС), предназначенных для обработки заготовок из различных металлов и сплавов. Данное изобретение распространяется на все типоразмеры АИ на ОТС, изготовленных из любых абразивных материалов.

Известен способ изготовления АИ на ОТС, включающий дозирование и перемешивание компонентов формовочной смеси (абразивных зерен, фенолоформальдегидной смолы и наполнителей), формование АИ, извлечение его из пресс-формы, сушку на воздухе, термическую обработку в печах с конвективным принципом нагрева, последующую механическую обработку и контроль качества (см. Бакуль В.Н. Основы проектирования и технология изготовления абразивного и алмазного инструмента. - М.: Машиностроение, 1975. - С.132-133).

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа изготовления АИ на ОТС, относится то, что указанная технология предусматривает достаточно длительный и энергоемкий процесс полимеризации связующего АИ в печах, в которых теплоносителем является воздух.

Наиболее близким по технической сущности к заявляемому изобретению является выбранный в качестве прототипа способ изготовления АИ на ОТС (патент на изобретение №2349688, МКП С30В 33/02 / С.М. Михайлин, Л.В. Худобин, Н.И. Веткасов, А.И. Капустин, С.В. Жданов, Н.А Трефилов. Опубл. 20.03.09. Бюл. №8), включающий стадию предварительного нагрева группы полуфабрикатов АИ в микроволновом поле сверхвысокочастотной СВЧ-камеры частотой 2450 МГц для АИ толщиной до 100 мм и частотой 890…915 МГц для АИ толщиной свыше 100 мм до достижения температуры полной полимеризации ОТС и стадию последующей выдержки полуфабрикатов при этой температуре и равномерном принудительном удалении из свободного объема термостата в процессе термообработки в СВЧ-камере выделяющихся из полуфабрикатов летучих веществ (горячей парога-зовой смеси) потоком воздуха, создаваемым системой вытяжной вентиляции, которой оборудована СВЧ-камера, через щели, выполненные в передней и задней стенках термостата, исключающем возможность достижения парами летучих веществ состояния насыщения при сохранении максимального эффекта теплоизоляции рабочей зоны термостата и обеспечении разброса температуры полуфабрикатов внутри термостата не более ±10% от ее среднего уровня.

К причинам, препятствующим достижению указанного ниже технического результата при использовании указанного способа, относится то, что в процессе термообработки полуфабрикатов АИ отсутствует система управления циклом термообработки, что приводит к ухудшению качества абразивного инструмента (коробление, вспучивание и др.).

Технический результат - повышение качества АИ на ОТС.

Указанный технический результат при осуществлении изобретения достигается тем, что в известном способе изготовления АИ на ОТС, включающем стадию предварительного нагрева группы полуфабрикатов АИ в микроволновом поле СВЧ-камеры частотой 2450 МГц для АИ толщиной до 100 мм и частотой 890…915 МГц для АИ толщиной свыше 100 мм до достижения температуры полной полимеризации ОТС и стадию последующей выдержки при этой температуре при равномерном принудительном удалении из свободного объема термостата в процессе термообработки в СВЧ-камере выделяющихся из полуфабрикатов летучих веществ потоком воздуха, создаваемым системой вытяжной вентиляции, которой оборудована СВЧ-камера, через щели, выполненные в передней и задней стенках термостата, исключающем возможность достижения парами летучих веществ состояния насыщения при сохранении максимального эффекта теплоизоляции рабочей зоны термостата и обеспечении разброса температуры полуфабрикатов внутри термостата не более ±10% от ее среднего уровня, особенность заключается в том, что осуществляют управление температурой нагрева полуфабрикатов в СВЧ-камере с помощью газоанализатора, установленного на выходе потока воздуха из упомянутой камеры, в зависимости от состава и концентрации летучих веществ в нем.

Газоанализатор, установленный на выходе потока летучих веществ из термостата, непрерывно контролирует состав и концентрацию веществ и подает соответствующие сигналы на блок задания режимов (БЗР) работы магнетронов, которые определяют режим нагрева полуфабрикатов, обеспечивая управление циклом термообработки, что приводит к улучшению качества АИ.

Заявляемое изобретение представляет собой способ термообработки АИ на ОТС. При реализации предлагаемого способа термообработки АИ на ОТС выполняют нагрев группы полуфабрикатов АИ в микроволновом поле СВЧ-камеры частотой 2450 МГц для АИ толщиной до 100 мм и частотой 890…915 МГц для АИ толщиной свыше 100 мм до достижения температуры полной полимеризации ОТС. Выдерживают полуфабрикаты при этой температуре. При этом в течении всего цикла термообработки осуществляют удаление из свободного объема термостата в процессе термообработки в СВЧ-камере выделяющихся из полуфабрикатов летучих веществ потоком воздуха, создаваемым системой вытяжной вентиляции, которой оборудована СВЧ-камера, через щели, выполненные в передней и задней стенках термостата, исключающем возможность достижения парами летучих веществ состояния насыщения при сохранении максимального эффекта теплоизоляции рабочей зоны термостата и обеспечении разброса температуры полуфабрикатов внутри термостата не более ±10% от ее среднего уровня. Для обеспечения высокого качества АИ в процессе СВЧ-термообработки осуществляют управление температурой нагрева полуфабрикатов в СВЧ-камере с помощью газоанализатора, установленного на выходе потока воздуха из упомянутой камеры, в зависимости от состава и концентрации летучих веществ в нем.

Пример реализации способа.

Выполняли термообработку полуфабрикатов шлифовальных кругов на бакелитовой связке (органическая термореактивная связка) 1 - 300*40*76 24А25НСМ1 7Б3 35 м/с на опытно-промышленной установке УМБ1Э, оснащенной 8 магнетронами мощностью 900 Вт каждый. Термообработку вели при частоте микроволнового излучения 2450 мГц. Общая масса садки (масса загруженных в СВЧ-камеру полуфабрикатов кругов) составила 160 кг.

С целью обеспечения равномерного прогрева всех полуфабрикатов, находящихся в СВЧ-камере, и создания условий для эффективной эвакуации при этом летучих веществ термообработку вели по схеме «набор температуры - пауза - набор» и т.д., а скоростью набора температуры по ходу операции термообработки управляли, согласовывая ее со скоростью полимеризации связки и составом и концентрацией выделяющихся летучих продуктов, контролируемых с помощью газоанализатора, установленного на выходе потока воздуха из СВЧ-камеры.

Для обеспечения выпуска продукции требуемого качества с максимальной производительностью, реализовали многоступенчатые циклы термообработки в СВЧ-камере, чередуя этапы быстрой накачки энергии с паузами, длящимися несколько минут. Эти паузы необходимы для пассивного обезгаживания, а также для выравнивания температуры по всему объему каждого полуфабриката, между полуфабрикатами в каждой стопке и во всей садке. В качестве примера в таблице приведена программа многоступенчатого цикла термообработки полуфабрикатов стандартных и композиционных шлифовальных кругов 1-300*40*76 24А25НСМ1 7Б3 35 м/с.

Как видно из таблицы, на первом этапе нагрева полуфабрикатов в СВЧ-камере энергия вводится небольшими дозами. Паузы длительностью 3…5 минут на участках программы до 60°С позволяют плавно прогреть полуфабрикаты и активизировать выделение летучих веществ (фенола и формальдегида), чтобы стабилизировать на последующих этапах процесс полимеризации связки и избежать недопустимых деформаций полуфабрикатов. Все это занимает 28… 31 мин (см. таблицу).

Начиная с 60°С, процесс выделения летучих веществ интенсифицируется, что фиксирует газоанализатор, без возникновения давления, способного разрушить размягчающиеся полуфабрикаты. Для выделения возрастающих объемов летучих веществ требуется больше времени, поэтому паузы удлиняют до 20 минут. Наибольшая скорость выделения возрастающих объемов летучих веществ наблюдается в интервале температур от 80 до 90°С, начинается испарение воды. Полуфабрикаты в этот период времени размягчаются в наибольшей степени и возрастает риск их разрушения, что требует увеличения времени пауз (см. таблицу). При дальнейшем повышении температуры до 120°С полуфабрикаты твердеют, а время пауз сокращают.

При повышении температуры от 120 до 220…245°С происходит и завершается процесс полимеризации связки, сопровождающийся выделением аммиака. Так как в это время полуфабрикаты находятся в твердом агрегатном состоянии, это выделение не оказывает влияния на их геометрическую форму, что позволяет вести процесс термообработки в СВЧ-камере на максимально возможной для данной камеры скорости набора температуры без пауз.

Таблица
Программа СВЧ-бакелизации полуфабрикатов стандартных и композиционных шлифовальных кругов 1-300×40×76
№ участка прогр. Температура, °С Пауза, мин Накачка СВЧ-энергии, мин Время от начала программы, мин
1 30 3 3
2 36 3 2
3 42 3 2
4 48 5 2
5 54 5 2 30
6 60 12 0
7 63 5 1
8 66 5 0 53
9 70 16 1
10 73 5 1
11 76 5 1 82
12 80 20 1
13 83 5 0
14 86 5 0 113
15 90 20 1
16 93 5 1
17 96 5 2 147
18 100 20 1
19 103 4 0
20 106 4 0 176
21 110 14 1
22 113 4 1
23 116 4 0 200
24 120 12 102
25 220 5 - -
26 230 5 0 324
27 245 - - -
Итого, мин - 324
Максимальная скорость нагрева, °С/мин 1,1…1,3
Максимальная масса, садки, кг 160
Температура полуфабрикатов после выгрузки, °С 187…209
Производительность, кг/ч 29,6

Способ термообработки абразивного инструмента (АИ) на органических термореактивных связках (ОТС), включающий стадию предварительного нагрева группы полуфабрикатов АИ в микроволновом поле СВЧ-камеры частотой 2450 МГц для АИ толщиной до 100 мм и частотой 890…915 МГц для АИ толщиной свыше 100 мм до достижения температуры полной полимеризации ОТС и стадию последующей выдержки при этой температуре при равномерном принудительном удалении из свободного объема термостата в процессе термообработки в СВЧ-камере выделяющихся из полуфабрикатов летучих веществ потоком воздуха, создаваемым системой вытяжной вентиляции, которой оборудована СВЧ-камера, через щели, выполненные в передней и задней стенках термостата, исключающем возможность достижения парами летучих веществ состояния насыщения при сохранении максимального эффекта теплоизоляции рабочей зоны термостата и обеспечении разброса температуры полуфабрикатов внутри термостата не более ±10% от ее среднего уровня, отличающийся тем, что осуществляют управление температурой нагрева полуфабрикатов в СВЧ-камере с помощью газоанализатора, установленного на выходе потока воздуха из упомянутой камеры, в зависимости от состава и концентрации летучих веществ в нем.



 

Похожие патенты:
Изобретение относится к машиностроению и может быть использовано при изготовлении металлокерамических и алмазосодержащих элементов для различных инструментов, например буровых коронок, элементов для камнеобработки, резцов и других подобных изделий.

Изобретение относится к абразивным изделиям и может быть использовано для окончательной обработки и шлифования. .

Изобретение относится к области машиностроения, в частности к инструментам для абразивной обработки, и может быть использовано при изготовлении отрезных алмазных кругов.

Изобретение относится к структурированному абразивному материалу с верхним слоем и может быть использовано, например, с вращающимся инструментом. .
Изобретение относится к технологии изготовления абразивных инструментов (АИ) на органических термореактивных связках (ОТС), предназначенных для обработки заготовок из различных металлов и сплавов.

Изобретение относится к машиностроению и может быть использовано при изготовлении алмазного или эльборового инструмента, в частности алмазной шлифовальной фрезы, предназначенного для обработки деталей из неметаллических материалов, например бетона, природного камня, в том числе для их обработки без использования охлаждающей среды.
Изобретение относится к машиностроению и может быть использовано при изготовлении абразивного инструмента на органической термореактивной связке, предназначенного для шлифования заготовок из различных металлов и сплавов.

Изобретение относится к области абразивной обработки и может быть использовано при изготовлении абразивного инструмента, предназначенного для установки на станке.
Изобретение относится к области абразивной обработки и может быть использовано при изготовлении абразивного инструмента из сверхтвердых материалов (алмаза, нитрида бора) на металлической связке.

Изобретение относится к изготовлению универсального абразивного инструмента для чистовой обработки. .
Изобретение относится к машиностроению и может быть использовано при изготовлении абразивного инструмента на органической термореактивной связке, предназначенного для обработки заготовок из различных металлов и сплавов

Изобретение относится к машиностроению и может быть использовано при упрочнении абразивных кругов, работающих на повышенных скоростях, или при силовом шлифовании. Круг формообразуют, подвергают термической обработке и создают остаточные напряжения сжатия путем нанесения на боковые поверхности круга детонационного покрытия. Толщину покрытий выбирают таким образом, чтобы создаваемые напряжения сжатия компенсировали растягивающие напряжения, возникающие во вращающемся круге. В результате обеспечивается гарантированная конструктивная прочность. 2 ил., 1 пр.

Изобретение относится к области абразивной обработки и может быть использовано при изготовлении отрезных кругов. Круг содержит множество абразивных зерен, органический связующий материал и материал активного наполнителя. Материал активного наполнителя содержит активный эндотермический наполнитель в количестве от 12% до 50% от объема связующего материала. В результате улучшаются условия удерживания зерен в абразивном отрезном круге и увеличивается срок его службы. 11 з.п. ф-лы, 3 ил., 2 пр.

Изобретение относится к изготовлению фасонных абразивных частиц, которые могут быть использованы для абразивной обработки, отделки или шлифования широкого диапазона материалов. Абразивные частицы включают фасонные абразивные частицы, каждая из которых имеет боковую поверхность и выполнена из альфа-оксида алюминия, а также первую и вторую торцевые поверхности, разделенные боковой поверхностью, причем фасонные абразивные частицы имеют максимальную толщину Т, и фасонные абразивные частицы, на второй грани которых выполнено множество канавок. Инструмент для изготовления абразивных частиц выполнен с множеством полостей литейной формы, состоящих из нижней и боковой полимерной поверхности литейной формы. Боковая стенка литейной формы имеет высоту Нс. Нижняя поверхность литейной формы имеет множество выступов. Использование вышеуказанных абразивных частиц позволяет осуществлять резку с равномерной интенсивностью. 3 н. и 20 з.п. ф-лы, 17 ил., 1 табл., 1 пр.

Изобретение относится к абразивным изделиям. Абразивное изделие содержит вытянутое тело, связующий слой, содержащий металл, расположенный на поверхности вытянутого тела, и покрывающий слой, содержащий полимерный материал, расположенный на связующем слое. Абразивное изделие, кроме того, содержит абразивные зерна, содержащиеся в связующем слое и покрывающем слое, и где связующий слой имеет среднюю толщину (tb1) по меньшей мере приблизительно 40% от средней зернистости абразивных зерен. В результате обеспечивается повышение срока эксплуатации и уменьшение изнашивания. 3 н. и 9 з.п. ф-лы, 8 ил.

Изобретение относится к абразивному изделию. Абразивный материал со связкой, выполненный в виде абразивного круга, содержит керамические фасонные абразивные частицы, удерживаемые связующим веществом. Каждая из керамических фасонных частиц ограничена многоугольным основанием, многоугольной вершиной и множеством граней, соединяющих основание и вершину, при этом соседние грани соединены соответствующими ребрами, имеющими средний радиус кривизны менее 50 микрометров. Изобретение поддерживает низкую рабочую температуру, позволяющую избежать термического повреждения изделия. 14 з.п. ф-лы, 4 ил., 6 табл.

Изобретение относится к области абразивной обработки и может быть использовано при изготовлении инструментов для резания и шлифования строительных материалов. Абразивное изделие содержит основание и абразивную деталь, включающую три различные фазы, связанные одна с другой и включающие абразивные частицы, металлическую матрицу и пропитывающий материал. Предусмотрена также область подложки между абразивной деталью и основанием, включающая сварной шов. В результате повышается долговечность абразивных изделий. 3 н. и 12 з.п. ф-лы, 4 ил., 3 табл., 1 пр.

Изобретение относится к области абразивной обработки и может быть использовано при изготовлении абразивных изделий для шлифования деталей из различных материалов. Абразивное изделие имеет абразивное тело, включающее абразивные зерна, выполненные из микрокристаллического оксида алюминия и содержащиеся в стекловидном связующем материале. Последний имеет фактор растворения абразивного зерна не более чем приблизительно 1,5 вес.%. В результате обеспечивается целостность абразивных зерен в абразивном изделии и улучшаются эксплуатационные характеристики процесса шлифования. 2 н. и 25 з.п. ф-лы, 3 ил., 2 пр., 2 табл.

Изобретение относится к области абразивной обработки и может быть использовано при изготовлении абразивных кругов и других абразивных изделий с дискретной режущей поверхностью. На режущую поверхность инструмента наносят радиальные отверстия строками, параллельными оси инструмента. Нанесение осуществляют посредством гидроабразивной струи высокого давления в направлении каждой строки радиальных отверстий за один проход. Приведены режимы проведения дискретизации поверхности инструмента, включающие величины давления воды в рабочем контуре, расхода абразива, скорости перемещения режущей головки с гидроабразивной струей и размера частиц абразива. В результате повышается производительность процесса дискретизации абразивного инструмента и сохраняется его исходная структура. 4 ил.

Изобретение относится к области абразивной обработки и может быть использовано при изготовлении абразивных инструментов. Абразивное изделие содержит абразивное тело, имеющее абразивные зерна в связующем материале. Абразивное тело дополнительно включает область пассивации, содержащую шпинельный материал, покрывающий, по меньшей мере, 60% абразивных зерен. Предусмотрен вариант расположения шпинельного материала на границе раздела между абразивными зернами и связующей матрицей. В результате снижается растворение и разрушение абразивных зерен во время формирования абразивного изделия. 3 н. и 20 з.п. ф-лы, 7 ил., 4 табл., 3 пр.
Наверх