Способ производства толстолистового штрипса для магистральных труб на реверсивном стане


 


Владельцы патента RU 2490336:

Открытое акционерное общество "Северсталь" (ОАО "Северсталь") (RU)

Изобретение относится к области обработки металлов давлением, в частности к способу производства толстолистового штрипса для магистральных труб на реверсивном стане, который включает расчет длины односторонней концевой технологической обрези, равной захоложенной зоне на конце листа, в зависимости от толщины и ширины листа из следующего соотношения:

Δ=(A1×h2-A2×h+A3)×(A4/S)l/2±200 мм,

где Δ - длина концевой технологической обрези с одной стороны листа, мм;

h - толщина листа, мм;

S - ширина листа, мм.

A1=0,024 мм-1; A2=70,918; А3=1909,3 мм, A4=3500 мм - эмпирические коэффициенты для толстолистового штрипса, определенные опытным путем, что позволяет оптимизировать длину концевой технологической обрези толстолистового штрипса для каждой сортаментной позиции магистральных труб и сохранить стабильное качество толстолистового штрипса. 1 пр.

 

Изобретение относится к области обработки металлов давлением, в частности к технологии и оборудованию листовой прокатки на реверсивном толстолистовом стане.

Известен способ производства толстолистового штрипса на реверсивном стане. Способ включает реверсивную прокатку заготовки до получения штрипса заданных размеров и прямоугольной конфигурации, охлаждение и резку на размер готовой продукции (Ю.В. Коновалов, К.Н. Савранский, А.П. Парамошин, В.Я. Тишков. Рациональные режимы прокатки толстых листов. К.: Тэхника, 1988, с.7-17).

При производстве штрипса в рамках этого технического решения размеры концевой обрези определяют исходя из конфигурации листа в плане, определяемой режимом деформации. Иначе говоря, при прокатке прямоугольного листа обрезь минимальна, а при отклонении от прямолинейной конфигурации концов листа длина обрези увеличивается. Однако в данном способе не учитывается, что помимо конфигурации концов проката величина обрези зависит также от необходимости отбора проб от концов прокатанного листа для проведения последующих механических испытаний. При этом механические свойства металла каждой пробы должны соответствовать свойствам металла готового листа, поставляемого Заказчику.

Наиболее близким по своей технической сущности и достигаемым результатам к предлагаемому изобретению является способ производства толстолистового проката для магистральных труб на реверсивном стане, включающий нагрев непрерывнолитой заготовки, ее реверсивную прокатку до получения заданных размеров штрипса, охлаждение и резку на размер готовой продукции, предусматривающую удаление концевой технологической обрези и последующий отбор проб для механических испытаний от материала листа (А.И. Рудской, В.А. Лунев. Теория и технология прокатного производства. СПб.: Наука, 2008, с.392-402). Как и в указанном ранее способе, длину концевой технологической обрези устанавливают исходя из конфигурации проката без учета неравномерности охлаждения по длине листа. В то же время, широкий, относительно тонкий и длинный прямоугольный лист после прокатки охлаждается неравномерно - его концы (особенно в угловых зонах) остывают гораздо быстрее, чем центральная зона, что приводит к их захолаживанию. Различная скорость охлаждения по зонам листа приводит к формированию различных механических свойств в этих зонах. Поэтому, чтобы свойства металла пробы соответствовали свойствам основного металла листа, место отбора пробы не должно попадать в захоложенную зону на его концах. Для этого длина концевой технологической обрези должна соответствовать длине захоложенной зоны на концах листа. Такой подход обеспечивает отсутствие погрешности при определении фактических механических свойств листа и повышение стабильности показателей качества металлопродукции. Однако в рамках данного способа не установлена методика расчета длины захоложенного конца листа, соответствующего концевой технологической обрези, и для каждого типоразмера штрипса ее величину определяют опытным путем. При этом действуют методом «проб и ошибок», что приводит к увеличению суммарного расходного коэффициента, поскольку на отладочную порезку для определения допустимой длины обрези, как правило, уходит 1-2 листа в партии. Очевидно, что длину односторонней концевой технологической обрези листа следует устанавливать в зависимости от его толщины и габаритов, что не учитывается в данном способе.

Таким образом, необходимость освоения производства новых видов высокопрочного штрипса для магистральных труб из низкоуглеродистых сталей обуславливает целесообразность разработки технического решения, обеспечивающего соответствие свойств металла в отбираемых от концов обрезанного листа пробах, предназначенных для изготовления аттестационных образцов, свойствам металла собственно штрипса. Это подтверждает актуальность разработки способа производства толстолистового штрипса для магистральных труб на реверсивном стане, обеспечивающего стабильно высокое качество продукции за счет оптимизации длины концевой обрези.

Задача, на решение которой направлено изобретение, заключается в повышении стабильности механических свойств толстолистового штрипса для магистральных труб при гарантированном соответствии результатов механических испытаний свойствам произведенного листа за счет оптимизации величины обрезаемых концов листа.

Техническим результатом данного изобретения является оптимизация длины концевой технологической обрези толстолистового штрипса для магистральных труб и снижение производственных расходов.

Указанный результат достигается тем, что в известном способе производства толстолистового штрипса для магистральных труб на реверсивном стане, включающем нагрев непрерывнолитой заготовки, ее реверсивную прокатку до получения заданных размеров листа, охлаждение и резку на размер готовой продукции, предусматривающую удаление концевой технологической обрези и последующий отбор проб для механических испытаний от материала листа, в соответствии с изобретением, длину односторонней концевой технологической обрези устанавливают в зависимости от толщины и ширины этого листа, исходя из следующего соотношения:

Δ=(A1×h2-A2×h+A3)×(A4/S)1/2±200 мм,

где Δ - длина концевой технологической обрези с одной стороны листа, мм;

h - толщина листа, мм;

S - ширина листа, мм.

A1=1,024 мм-1; А2=70,918; А3=1909,3 мм; А4=3500 мм - эмпирические коэффициенты для толстолистового штрипса, определенные опытным путем.

Сущность изобретения состоит в следующем. С увеличением толщины листа длина захоложенной концевой зоны будет уменьшаться и наоборот. Чем тоньше лист, тем быстрее остывают его концы и тем больше длина односторонней обрези (захоложенной зоны). В то же время, длина захоложенной концевой зоны зависит и от ширины листа. С увеличением ширины листа ее длина уменьшается и наоборот.В количественном виде эти зависимости реализованы в виде полученного эмпирическим путем соотношения: Δ=(A1×h2-A2×h+A3)×(A4/S)1/2±200 мм.

Его использование позволяет рассчитать оптимальную величину концевой обрези. Осуществляя порезку прокатанного листа в соответствии с результатами расчета, в обрезь отправляют именно захоложенный участок с нестабильными свойствами, но не затрагивают основную, незахоложенную часть листа, от которой в дальнейшем отбирают пробы для проведения механических испытаний. Иначе говоря, дальнейшее уменьшение длины обрези может приводить к отбору проб из захоложенной зоны и, соответственно, к нестабильному уровню механических свойств на испытанных образцах. В то же время дальнейшее увеличение длины обрези сопровождается повышением расходного коэффициента, что неблагоприятно сказывается на экономических показателях работы стана. Такой подход позволяет избежать излишнего расхода металла на отладочную порезку при определении допустимой длины обрези для каждой сортаментной позиции, позволяя сохранить стабильное качество толстолистового штрипса. Кроме того, достигается снижение производственных расходов за счет устранения операции отладочной порезки для определения допустимой длины обрези.

Применение способа поясняется примером его реализации при производстве штрипса размером 38×2800×11500 мм (после резки в меру), категории прочности К60. Использование приведенного соотношения для расчета величины односторонней концевой обрези показывает, что ее длина составляет:

Δ=(A1×h2-A2×h+A3)×(A4/S)1/2±200 мм = (1,024 мм-1 × 38 мм × 38 мм - 70,918 × 38 мм + 1909,3 мм)*(3500 мм/2800 мм)l/2±200 мм = 773±200 мм. Для данного сортамента устанавливают длину односторонней концевой обрези 900 мм, соответствующую расчетному диапазону. Испытания, проведенные на пробах, отобранных от листа после обрезки захоложенных концов, показывают стабильный уровень механических свойств, полностью соответствующий требованиям, предъявляемым к штрипсу категории прочности К60. В то же время испытания, проведенные на образцах, специально отобранных от обрези, характеризуются значительной нестабильностью. Это подтверждает правильность выбора длины обрезаемых концов листа в соответствии с приведенным соотношением.

Таким образом, применение предложенного способа производства толстолистового штрипса для магистральных труб на реверсивном стане обеспечивает достижение требуемого результата - оптимизацию длины концевой технологической обрези и снижение производственных расходов за счет устранения операции отладочной порезки листов для определения допустимой длины обрези.

Оптимальные параметры реализации способа были определены эмпирическим путем. Экспериментально установлено, что в случае выхода длины обрези за нижние границы расчетного диапазона возникает нестабильность механических свойств в металле листа, что приводит к увеличению отсортировки. В то же время в случае превышения верхней границы расчетного диапазона, определяемого приведенным соотношением, происходит неоправданное увеличение длины концевой обрези, что приводит к повышению расходного коэффициента. Таким образом, выход за границы расчетного диапазона длины односторонней концевой технологической обрези может сопровождаться снижением экономической эффективности производства.

Как следует из приведенного анализа, при реализации предложенного технического решения достигается требуемое качество штрипсового проката для магистральных труб за счет более рационального выбора длины концевой технологической обрези при прокатке на толстолистовом реверсивном стане. Однако, в случае выхода ее длины за установленные для этого способа границы, не всегда удается обеспечить соответствие полученных штрипсов действующим требованиям по стабильности механических свойств. Таким образом, полученные данные подтверждают правильность рекомендаций по выбору допустимых значений технологических параметров предложенного способа производства низколегированного штрипса для магистральных труб.

Технико-экономические преимущества предложенного способа заключаются в том, что при горячей прокатке толстолистового штрипса на реверсивном стане длину концевой обрези устанавливают в зависимости от толщины и габаритов листа с учетом неравномерного характера его охлаждения. Такой подход позволяет обеспечить соответствие механических свойств образцов, изготовленных из проб, отобранных от аттестуемого листа, свойствам самого листа. При этом удается избежать неоправданного расхода металла на отладочную порезку листов для определения допустимой длины обрези, при стабильном качестве продукции. Использование предложенного способа при производстве толстолистового штрипса для магистральных труб на реверсивном стане позволяет снизить расходный коэффициент на данном сортаменте.

Способ производства толстолистового штрипса для магистральных труб на реверсивном стане, включающий нагрев непрерывнолитой заготовки, ее реверсивную прокатку до получения заданных размеров листа, охлаждение, резку на размер готовой продукции, удаление концевой технологической обрези и отбор проб от материала листа для механических испытаний, отличающийся тем, что длину удаляемой односторонней концевой технологической обрези Δ выбирают равной захоложенной зоне на конце листа и определяют ее в зависимости от толщины и ширины листа из соотношения:
Δ=(A1×h2-A2×h+A3)×(A4/S)l/2±200 мм, где
h - толщина листа, мм;
S - ширина листа, мм,
при этом A1=1,024 мм-1; A2=70,918; А3=1909,3 мм, А4=3500 мм - эмпирические коэффициенты для толстолистового штрипса.



 

Похожие патенты:

Изобретение относится к области металлургии, преимущественно для получения штрипсов, используемых при строительстве магистральных нефтегазопроводов в районах Крайнего Севера.

Изобретение относится к прокатному производству и может быть использовано для получения холоднокатаных полос и лент, поставляемых потребителям в нагартованном состоянии, например, для упаковки грузов.

Изобретение относится к области металлургии, а именно к сплавам на основе железа, используемым для изготовления броневых элементов. .

Изобретение относится к высокопрочному стальному листу для изготовления труб высокопрочных трубопроводов, используемых для транспортировки сероводородсодержащих сред.

Изобретение относится к прокатному производству и может быть использовано для охлаждения стальных горячекатаных полос на отводящем рольганге непрерывного широкополосного стана перед смоткой в рулоны.

Изобретение относится к области прокатного производства и может быть использовано при производстве широких горячекатаных листов, предназначенных для изготовления труб магистральных газопроводов.

Изобретение относится к области металлургии и может быть использовано при производстве широких горячекатаных листов для изготовления труб магистральных газопроводов.

Изобретение относится к области черной металлургии, а именно к производству термически обработанного листового проката из низкоуглеродистой низколегированной стали, используемого, в частности, для изготовления электросварных нефтегазопроводных труб.
Изобретение относится к области металлургии, а именно к производству холоднокатаных и горячеоцинкованных стальных полос, обладающих эффектом упрочнения при сушке лакокрасочного покрытия на штампованном изделии (ВН-эффектом).

Изобретение относится к области металлургии

Изобретение относится к способу получения катаной микролегированной стали, в частности трубной стали, причем сляб (1) проводят через установку (2), которая в направлении перемещения (F) сляба (1) содержит в указанном порядке: разливочную машину (3), первую печь (4), по меньшей мере один черновой прокатный стан (5), вторую печь (6), по меньшей мере один чистовой прокатный стан (7) и участок охлаждения (8), при этом способ включает в себя: а) определение желаемого температурного профиля сляба (1) по ходу его движения через установку (2); b) размещение в производственной линии (L) установки (2) по меньшей мере одного воздействующего на температуру элемента (9, 10) для поддержания температуры сляба (1) в соответствии с определенным температурным профилем, причем воздействующий на температуру элемент (9, 10) вводят между первой печью (4) и по меньшей мере одним черновым прокатным станом (5) и/или между второй печью (6) и по меньшей мере одним чистовым прокатным станом (7); с) получение сляба (1) в указанной установке (2), причем по меньшей мере один воздействующий на температуру элемент (9, 10) работает так, чтобы определенный температурный профиль по меньшей мере в основном выдерживался, что обеспечивает управление ходом температуры согласно заданному профилю по времени или по пути движения для лучшего контроля и управления формированием структуры

Изобретение относится к прокатному производству, в частности производству листового проката для изготовления электросварных труб

Изобретение относится к области металлургии, а именно к толстолистовой высокопрочной горячекатаной стали. Нагревают сталь, содержащую в расчете на мас.%: 0,02-0,08 С, 0,01-0,50 Si, 0,5-1,8 Mn, 0,025 или менее Р, 0,005 или менее S, 0,005-0,10 Al, 0,01-0,10 Nb, 0,001-0,05 Ti, остальное - Fe и неизбежные примеси, при этом содержание С, Ti и Nb удовлетворяет соотношению (Ti+(Nb/2))/С<4. Выполняют горячую прокатку, включающую черновую прокатку и чистовую прокатку, ускоренное охлаждение при средней скорости охлаждения в середине стального листа в направлении толщины 10°С/с или более до достижения температуры прекращения охлаждения и сматывают в рулон при температуре намотки. Сталь обладает микроструктурой, содержащей ферритную фазу, выступающую в качестве основной фазы и включающую бейнитный феррит, бейнит и их смешанную фазу, и вторую фазу, включающую перлит, мартенсит, аустенитно-мартенситную составляющую и их смешанную фазу. Разница ΔD между средним размером зерна (мкм) ферритной фазы на расстоянии 1 мм от поверхности стального листа в направлении толщины и средним размером зерна (мкм) ферритной фазы в середине стального листа на расстоянии 2 мкм или менее в направлении толщины, а также разница ΔV между долей содержания (об.%) второй фазы на расстоянии 1 мм от поверхности стального листа в направлении толщины и долей содержания (об.%) второй фазы в середине стального листа в направлении толщины составляет 2% или менее. Сталь обладает высокой прочностью на разрыв TS в 521 МПа и улучшенной низкотемпературной ударной вязкостью, в частности, улучшенными показателями DWTT и CTOD. 2 н. и 12 з.п. ф-лы, 7 ил., 12 табл.

Изобретение относится к области металлургии, а именно к трубам из высокопрочной стали, пригодным для транспортировки природного газа и сырой нефти. Для повышения прочности трубы при продольном изгибе и ударной прочности зоны термического влияния при сварке часть основного материала содержит, в мас.%: С более 0,03-0,08, Si 0,01-0,5, Mn 1,5-3,0, P 0,015, S≤0,005, Al 0,01-0,08, Nb 0,005-0,025, Ti 0,005-0,025, N 0,001-0,010, 0≤0,005, В 0,0003-0,0020, дополнительно включает один или более из элементов: Cu, Ni, Cr, Мо и V, остальное Fe и неизбежные примеси. Предел прочности составляет 760-930 МПа, относительное удлинение - 5% или более и отношение предела текучести к пределу прочности 85% или менее. Часть металла сварного шва содержит, в мас.%: С более 0,03-0,08, Si≤0,5, Mn 1,5-3,0, P≤0,015, S≤0,005, Al≤0,05, Nb 0,005-0,05, Ti 0,005-0,03, N≤0,010, O 0,015-0,045, В 0,0003-0,0020, дополнительно включает один или более из элементов: Cu, Ni, Cr, Мо и V, остальное Fe и неизбежные примеси. В микроструктуре зоны термического влияния при сварке размер первичного аустенитного зерна составляет 50 мкм или более, а структура состоит из нижнего бейнита или многофазной структуры, содержащей нижний бейнит с долей фракции 50% или более и верхний бейнит и/или мартенсит. 5 н. и 14 з.п. ф-лы, 1 ил., 8 табл., 2 пр.

Изобретение относится к стальным плитам, используемым для изготовления сварных конструкций, таких как трубопроводы, мосты и архитектурные сооружения, которым необходима структурная безопасность. Сляб, имеющий состав, мас.%: C: от 0,02 до 0,2, Si: от 0,01 до 0,5, Mn: от 0,5 до 2,5, P: 0,05 или менее, S: 0,05 или менее, Al: 0,1 или менее, N: 0,01 или менее и остальное Fe и неизбежные примеси, нагревают до 1000°C или выше. Выполняют прокатку до получения плиты, проводимую таким образом, чтобы степень обжатия прокатки в температурном диапазоне 900°C или выше составляла 50% или более, а конечная температура прокатки была в пределах от точки Ar3 до Ar3-50°C. Начинают охлаждать водой при температуре в пределах от Ar3-10°C до Ar3-70°C и заканчивают охлаждение водой при 500°C или ниже. Плиты имеют микроструктуру в положении 1/4 своей толщины, содержащую феррит в качестве мягкой фазы и бейнит, мартенсит или смешанную бейнит/мартенситную составляющую в качестве твердой фазы, долю по площади твердой фазы от 50 до 90% и среднее аспектное отношение зерен феррита 1,5 или более. Повышается стойкости к инициированию вязких трещин как основного металла, так и зоны, подвергнутой действию сварочного тепла. 2 н. и 3 з.п. ф-лы, 4 ил., 4 табл., 1 пр.

Изобретение относится к области металлургии, в частности к нержавеющей стали для нефтяной скважины и трубе из нержавеющей стали для нефтяной скважины. Нержавеющая сталь для нефтяной скважины содержит, % по массе: С не более 0,05, Si не более 0,5, Mn от 0,01 до 0,5, Р не более 0,04, S не более 0,01, Cr свыше 16,0 и не более 18,0, Ni свыше 4,0 и не более 5,6, Мо от 1,6 до 4,0, Cu от 1,5 до 3,0, Al от 0,001 до 0,10, и N не более 0,050, причем остальное составляют Fe и примеси. Микроструктура стали содержит мартенситную фазу и ферритную фазу, имеющую объемную долю от 10 до 40%. Коэффициент распределения ферритной фазы превышает 85%. Сталь обладает высокой прочностью и коррозионной стойкостью. 3 н. и 4 з.п. ф-лы, 4 ил., 2 табл., 44 пр.
Изобретение относится к области металлургического и термического производства, а именно к обработке стали с получением структуры естественного феррито-мартенситного композита - структура, включающая пластичную ферритную матрицу и дискретные твердые волокна - слои мартенсита, и может быть использовано для получения материала, используемого для броневой защиты воинского персонала, БТР, БМП, блокпостов, от поражения при стрельбе из стрелкового оружия и гранатометов. Техническим результатом является получение композита с объемной долей упрочняющей мартенситной фазы ~20-25%, а также с длиной вытянутых серных включений (Fe, Mn) S 1≥80 мкм, и направленностью слоев мартенсита и феррита, разориентировка которых не превышает 15 угловых градусов, что обеспечивает более высокие характеристики трещиностойкости. Технический результат достигается тем, что заготовку из доэвтектоидной углеродистой или малолегированной стали с содержанием серы на верхнем уровне марочного состава подвергают горячей прокатке со степенью обжатия (δ)≥70%, последующему охлаждению в межкритический интервал температур (МКИ), выдержке в этом интервале температур в течение времени, обеспечивающем рафинирование феррита за счет перехода примесей из α-твердого раствора в γ-твердый раствор, и последующей закалке. 1 табл., 4 ил., 1 пр.
Изобретение относится к металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении толстых листов и штрипсов с применением контролируемой прокатки. Для повышения прочностных свойств листа толщиной 30-40 мм до уровня DNV 485 IFD при сохранении достаточной пластичности и хладостойкости выплавляют сталь со следующим соотношением элементов, мас.%: С 0,04-0,08, Si 0,1-0,25, Mn 1,2-1,6, Ni 0,3-0,5, Mo 0,15-0,25, Cr≤0,12, Cu 0,15-0,45, Al≤0,05, V 0,03-0,06, Nb 0,02-0,05, Ti 0,01-0,03, остальное - железо и примеси при содержании каждого менее 0,03% и с параметром стойкости против растрескивания, составляющем Pcm<0,23%, разливают сталь на заготовки, нагревают и производят черновую прокатку при температуре ее начала не ниже 970°C с переходом от продольной к поперечной прокатке с разбивкой ширины и с относительными обжатиями за проход не менее 10%. до толщины, составляющей 3,5-5,2 толщины готового листа, затем проводят чистовую прокатку при температуре ее начала не ниже 740°C, на первых проходах которой осуществляют разбивку ширины с обжатием не более 10% и заканчивают чистовую прокатку проглаживающим проходом при температуре не ниже 720°C, после чего производят ускоренное охлаждение листа до температуры, определяемой из соотношения T=(717°C-0,11*h2)±15°C, где 0,11 - эмпирический коэффициент, °C/мм2; h - толщина готового листа, мм. 1 пр.

Изобретение относится к области металлургии. Для обеспечения в толстолистовой стали низкого соотношения между пределом текучести и пределом прочности, высокой прочности, ударной вязкости и стойкости к последеформационному старению, эквивалентной классу API 5L Х60 и менее, толстолистовая сталь содержит, мас.%: от 0,03% до 0,06% C, от 0,01 до 1,0 Si, от 1,2 до 3,0 Mn, 0,015 и менее Р, 0,005 и менее S, 0,08 и менее Al, от 0,005 до 0,07 Nb, от 0,005 до 0,025 Ti, 0,010 и менее N, 0,005% и менее О, остальное Fe и неизбежные примеси, имеет трехфазную микроструктуру, состоящую из бейнита, мартенсито-аустенитного компонента (М-A) и квазиполигонального феррита, при этом доля площади бейнита составляет от 5% до 70%, доля площади компонента М-А - от 3% до 20%, остальную долю площади составляет квазиполигональный феррит, а эквивалентный диаметр круга для компонента М-А составляет 3,0 мкм и менее. Толстолистовая сталь характеризуется соотношением между пределом текучести и пределом прочности, равным 85% и менее, и поглощенной энергией в испытании на ударную вязкость по Шарли при -30°C, равной 200 Дж и более, до и после проведения обработки в виде последеформационного старения при температуре, равной 250°C и менее, в течение 30 минут и менее. 2.н. и 2 з.п. ф-лы, 3 ил., 3 табл., 1 пр.
Наверх