Устройство для подачи реагента в скважину


 


Владельцы патента RU 2490427:

Закрытое акционерное общество "Новомет-Пермь" (RU)

Изобретение относится к автономным устройствам для доставки реагента в скважину и его дозирования в добываемую жидкость. Устройство состоит из заполненных реагентом цилиндрических контейнеров с торцевыми заглушками, соединенных муфтами, и дозаторов, сообщающихся с камерами смешения, гидравлически связанных со скважиной. В каждом контейнере установлен вал с резьбовыми окончаниями, завинченными в осевые резьбовые отверстия торцевых заглушек. Дозатор выполнен в верхней части вала в виде осевого канала и сообщающихся с ним радиальных отверстий, а камеры смешения расположены внутри муфт. Контейнер может быть выполнен из стеклопластиковой трубы или тонкостенной трубы из нержавеющей стали. Технический результат заключается в увеличении вместимости устройства без возрастания его веса для повышения продолжительности дозирования реагента в скважинную жидкость. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к нефтепромысловому оборудованию, в частности к автономным устройствам для доставки реагента в скважину и его дозирования в добываемую жидкость с целью предотвращения отложения солей и коррозии погружного оборудования.

Известно устройство для обработки скважинной жидкости, содержащее патрубок с радиальными каналами в верхней части, соединенный с башмаком лифтовых труб, и твердый реагент с открытой пористостью, размещенный в патрубке ниже радиальных каналов (Патент РФ №2165009, Е21В 37/06, 1999).

Известно устройство для подачи реагента в скважину, состоящее из нескольких отдельных камер с реагентом в виде полых цилиндров с отверстиями, гидравлически связанными со скважиной и выполняющими роль вторичных дозирующих устройств, фильтров в каждой камере, выполняющих роль первичных дозирующих устройств, при этом отверстия расположены только в емкости предварительного смешивания, которая образована между фильтром и глухой заглушкой камеры (Патент РФ №2342519, Е21В 37/06, 2008).

Известно устройство для подачи ингибитора, содержащее цилиндрический корпус с заглушкой, имеющий в верхней части отверстия, расположенные в верхнем и нижнем рядах, и ингибитор, размещенный в корпусе ниже отверстий, причем оси отверстий рядов направлены под углом и сходятся внутри корпуса (Патент РФ №2382177, Е21В 37/06, 2010).

Общими недостатками перечисленных устройств являются значительный вес из-за применения в качестве корпусов толстостенных металлических труб, характеризующихся низкой коррозионной стойкостью. К тому же увеличение длины и соответственно объема загружаемого реагента для повышения ресурса работы устройства возможно в ограниченных пределах из-за возрастания нагрузки на узел крепления устройства к УЭЦН.

Наиболее близким по технической сущности к заявляемому является устройство для подачи реагента в виде соединенных между собой по торцам с помощью муфт полых цилиндрических контейнеров с расположенными в торцах камерами смешения, снабженными отверстиями для гидравлической соединения со скважиной и отделенными от полости с реагентом дозаторами в виде фильтров (Патент РФ №2386791, Е21В 37/06, 2008).

Недостатками прототипа является малая вместимость металлических контейнеров из-за ограниченности веса спускаемой в скважину установки.

Настоящее изобретение решает задачу кратного увеличения вместимости устройства без возрастания его веса для повышения продолжительности дозирования реагента в скважинную жидкость.

Другой решаемой проблемой является повышение химической стойкости контейнера для его многоразового использования с промежуточными заправками реагентом.

Поставленная цель достигается тем, что в устройстве для подачи реагента в скважину, состоящем из цилиндрических контейнеров с торцевыми заглушками, соединительных муфт, камер смешения и дозаторов, сообщающихся с камерами смешения, согласно полезной модели, в каждом контейнере установлен вал с резьбовыми окончаниями, которые вворачиваются в осевые резьбовые отверстия торцевых заглушек, а дозатор выполнен в верхней части вала в виде осевого отверстия и сообщающихся с ним радиальных отверстий.

Контейнер может быть изготовлен из стеклопластиковой трубы или тонкостенной трубы из нержавеющей стали или другого материала, химически стойкого к применяемому реагенту и пластовой жидкости. Для этой же цели на поверхность контейнера может быть нанесено защитное покрытие.

На фиг.1 схематично изображено заявляемое устройство для подачи реагента в скважину, общий вид, разрез.

Устройство для подачи реагента в скважину состоит из нескольких, например, стеклопластиковых цилиндрических контейнеров 1, основания которых перекрыты верхней 2 и нижней 3 торцевыми заглушками. В каждой заглушке выполнено осевое резьбовое отверстие 4. В контейнере 1 размещен вал 5 с резьбовыми окончаниями 6, которые вворачиваются в осевые резьбовые отверстия 4 торцевых заглушек 2 и 3, которые плотно прижимаются к основаниям контейнера 1, обеспечивая его герметичность. В верхней части вала 5 выполнены осевой канал 7 и сообщающиеся с ним радиальные отверстия 8, которые в совокупности образуют дозатор 9.

Контейнер 1 заполнен реагентом, состав и агрегатное состояние которого подбирается под проявляющиеся в скважине осложняющие факторы. Заполнение реагентом осуществляется через осевой канал 7 с радиальными отверстиями 8 в валу 5 и специальные технологические отверстия в торцевых заглушках (не показаны). Контейнеры 1 соединены между собой посредством муфт, в которых выполнены нижние входные и верхние выходные отверстия, ориентированные под острым углом к оси вниз и вверх, соответственно. Внутри муфт образуются камеры смешения. Диаметры осевого канала 7 с отверстиями 8 в валу 5 и отверстий в муфте определяются необходимой точностью и продолжительностью дозирования реагента в добываемую жидкость с учетом внутрискважинных условий.

Устройство для подачи реагента работает следующим образом.

Заполненные реагентом контейнеры 1, например из стеклопластика, при спуске в скважину соединяют друг с другом муфтами. Количество одновременно спускаемых контейнеров задается дебитом скважины.

При включении погружного насоса скважинная жидкость течет снизу вверх вдоль устройства для подачи реагента и попадает через входные отверстия муфты в камеру смешения. Из контейнера 1 через радиальные отверстия 8 и осевой канал 7 дозатора 9 в камеру смешения по диффузионному механизму поступает концентрированный реагент и растворяется в скважинной жидкости. Вытекший из корпуса 1 реагент замещается скважинной жидкостью, движущейся в обратном направлении из камеры смешения через осевой канал 7 и радиальные отверстия 8.

Основной поток добываемой жидкости, движущийся вверх вдоль муфты, создает в выходных отверстиях вихревые течения. Под их действием насыщенная реагентом скважинная жидкость вытекает из камеры смешения в затрубное пространство, смешивается с восходящим потоком добываемой жидкости и попадает на прием погружного насоса (не показан). Благодаря наличию реагента в скважинной жидкости предотвращается отложение солей на рабочих органах насоса.

В заявляемом устройстве весовую нагрузку от реагента воспринимает вал, обладающий высокими прочностными свойствами, в то время как стенки контейнера остаются ненагруженными. Это позволяет изготавливать контейнер из тонкостенной цилиндрической оболочки, например, из стеклопластика или нержавеющей стали. За счет низких удельных весовых характеристик стеклопластика возможно кратное увеличение длины и вместимости контейнера без увеличения его веса, что, в свою очередь, увеличивает ресурс непрерывной работы устройства. Применение стеклопластика, химически инертного по отношению к пластовым жидкостям и концентрированным жидким или твердым реагентам, обеспечивает возможность многократной заправки и использования контейнера без ухудшения его несущей способности. Вал не только снимает нагрузку со стенок контейнера, но и выполняет также функцию дозатора, это упрощает и повышает надежность устройства в целом.

1. Устройство для подачи реагента в скважину, состоящее из заполненных реагентом цилиндрических контейнеров с торцевыми заглушками, соединенных муфтами, и дозаторов, сообщающихся с камерами смешения, гидравлически связанных со скважиной, отличающееся тем, что в каждом контейнере установлен вал с резьбовыми окончаниями, завинченными в осевые резьбовые отверстия торцевых заглушек, дозатор выполнен в верхней части вала в виде осевого канала и сообщающихся с ним радиальных отверстий, а камеры смешения расположены внутри муфт.

2. Устройство для подачи реагента в скважину по п.1, отличающееся тем, что контейнер выполнен из стеклопластиковой трубы.

3. Устройство для подачи реагента в скважину по п.1, отличающееся тем, что контейнер выполнен из тонкостенной трубы из нержавеющей стали.



 

Похожие патенты:

Изобретение относится к нефтяной промышленности и может быть использовано для предупреждения образования отложений неорганических соединений солей в процессе добычи нефти в скважинах с исправным состоянием обсадных колонн и оборудованных УЭЦН.

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройствам для дозированной подачи жидких реагентов в нефте- или газопроводы при обработке призабойной скважины.

Изобретение относится к нефтедобывающей промышленности, в частности к технологиям очистки скважинного насоса от отложений. .

Изобретение относится к нефтегазодобывающей отрасли и может найти применение для очистки нефтяных и газовых скважин от отложений. .

Изобретение относится к нефтегазодобывающей отрасли, а именно к устройствам для подачи химических реагентов в скважинную жидкость для предотвращения отложения солей на рабочих органах электроцентробежных насосов.

Изобретение относится к нефтедобывающей промышленности, в частности к способам удаления неорганических солей, отложившихся в скважинах и на поверхности нефтепромыслового оборудования.

Изобретение относится к области нефтегазодобычи, в частности к строительству, заканчиванию и капитальному ремонту скважин. .

Изобретение относится к скважинной добыче нефти, газа, газоконденсата и других полезных ископаемых. .

Изобретение относится к нефтяной промышленности и может быть использовано для очистки призабойной зоны пласта. .

Изобретение относится к способу удаления отложений из трубопроводов и может быть использовано в нефтегазодобывающей промышленности для очистки нефтесборных трубопроводов от отложений с помощью растворителей.

Изобретение относится к нефтяной промышленности

Изобретение относится к нефтяной и газовой промышленности и может использоваться при защите от внутренней коррозии трубопроводов системы сбора нефти с высокой обводненностью на поздней стадии разработки нефтяного месторождения. Производят дозирование ингибитора коррозии перед насосами, производящими периодическую откачку продукции скважин из резервуаров по мере их заполнения. После заполнения резервуара производят автоматическую откачку разделившейся на нефть и воду продукции скважин насосом, при этом производят дозирование ингибитора коррозии в приемный коллектор насоса для откачки продукции скважин насосом-дозатором. Запуск насоса-дозатора производят автоматически и синхронизируют с запуском насоса для откачки продукции скважин. Остановку насоса-дозатора производят автоматически при снижении обводненности перекачиваемой продукции скважин до 30%. Для контроля обводненности откачиваемой продукции скважин на напорный нефтепровод устанавливают поточный прибор для измерения содержания воды. Техническим результатом является уменьшение расхода ингибитора коррозии и увеличение защитного эффекта от коррозии. 1 ил.

Изобретение относится к нефтегазовой промышленности, а именно к способам борьбы с асфальтено-смоло-парафиновыми отложениями при добыче парафинистой нефти. Способ депарафинизации нефтедобывающей скважины включает создание в зоне отложения парафина температуры, превышающей температуру плавления парафина, путем закачки в скважину взаимодействующих с выделением тепла компонентов, вынос продуктов реакции и расплавленного парафина из насосно-компрессорных труб. Предварительно строят кривые распределения температуры скважинного потока в интервалах эксплуатационной колонны от забоя до приема насоса и колонны насосно-компрессорных труб от насоса до устья с учетом определения температуры жидкости на выкиде насоса, кривые распределения давления в скважине в указанных выше интервалах и кривые распределения температуры насыщения нефти парафином в скважине с учетом изменения давления в скважине и газосодержания нефти в процессе подъема газожидкостной смеси согласно формуле: tнi=tнд+A1·Pi/Pнас-A2Гi/Г0, где tнi - температура насыщения нефти парафином в скважине; tнд - температура насыщения дегазированной нефти; Pi - ряд последовательных значений давления в заданном интервале, МПа; Pнас - давление насыщения нефти газом; Гi - газонасыщенность нефти при соответствующих значениях давления Pi и температуре Ti, м3/м3; Г0 - газосодержание нефти при давлении Pнас; A1 и A2 - корреляционные коэффициенты, зависящие от состава и свойств нефти. По построенным кривым распределения в точке пересечения температуры скважинного потока и температуры насыщения нефти парафином определяют глубину и термодинамические условия интенсивной парафинизации в скважине. Далее с учетом определяемых условий подбирают количество и концентрацию компонентов для выноса расплавленного парафина. Технический результат - повышение эффективности борьбы с асфальтено-смоло-парафиновыми отложениями. 1 ил., 1 табл.

Изобретение относится к нефтепромысловому оборудованию, в частности к устройствам для подачи химических реагентов в скважину. Устройство содержит цилиндрический корпус с заглушкой и отверстиями в верхней части, заполненный ниже уровня отверстий реагентом с образованием свободной полости. В заглушке выполнено сквозное отверстие, снаружи перекрытое дозатором, а со стороны свободной полости - рукавным фильтром из полимерного материала. На корпусе установлена муфта с отверстиями для выноса разбавленного реагента, поступающего из свободной полости через дозатор. Изобретение обеспечивает продолжительное равномерное поступление реагента в пластовую жидкость. 2 з.п. ф-лы, 1 ил.

Изобретение относится к способам ингибирования образования гидратов углеводородов в прискважинной зоне или в участках трубопровода при добыче и транспорте природных и попутных газов и может быть использовано в процессах добычи, транспорта и хранения нефти. В способе ингибирования образования гидратов углеводородов, включающем закачку в прискважинную зону или в участок трубопровода водной композиции полимера, указанная композиция содержит водный раствор полимера из группы, включающей: сополимер пирролидона или капролактама, терполимер на основе N-винил-2-пирролидона, диметиламиноэтилметакрилат, гидроксиэтилцеллюлозу, поливинилпирролидон, поливинилкарбоксилат, полиакрилат, поливинилкапролактам, акриламидометилпропансульфонат полиакриламид, гипан, полиоксипро в масле полимера из группы, включающей: полиакриламид, карбоксиметилцеллюлозу, эфир оксиэтилцеллюлозы, полиметакрилат, поливинилацетат или поливиниловый спирт или их сополимеры, и дополнительно - карбамидоформальдегидный концентрат КФК и гидрофобизирующую добавку при следующем соотношении компонентов, масс.%: указанные водный раствор или эмульсия 0,05-5,0, КФК 0,1-5,0, гидрофобизирующая добавка 0,1-5,0, вода - остальное, а перед закачкой указанной композиции дополнительно закачивают оторочку КФК в количестве 0,1-5,0 мас.% от массы указанной композиции и осуществляют выдержку не менее 3-5 часов. Изобретение развито в зависимом пункте формулы. Технический результат - повышение ингибирующей способности. 1 з.п. ф-лы, 19 пр., 2 табл., 1 ил.

Изобретение относится к нефтедобывающей промышленности и направлено на повышение эффективности эксплуатации скважинных глубинных электроцентробежных насосов, осложненных образованием асфальтосмолопарафиновых отложений на рабочих органах насоса. В качестве растворяющего отложения реагента предложено использовать горячую нефть по технологии динамического воздействия. С этой целью выше и ниже глубинного насоса предварительно устанавливают камеры одинакового объема с электронагревательным элементом и датчиками температуры. Скважинную нефть после остановки ЭЦН нагревают до необходимой температуры в нижней камере и перемещают через полость насоса самим же насосом в верхнюю камеру нагрева. Для снижения скорости движения горячей нефти через полость насоса производительность последнего снижают с помощью частотного регулятора тока. При наличии клапана обратного трехпозиционного (КОТ) над верхней камерой нагрева горячую нефть возвращают обратно в нижнюю камеру с устья скважины с помощью передвижного насосного агрегата типа ЦА-320. При отсутствии выше насоса и верхней камеры нагрева обратного клапана типа КОТ горячая нефть самотеком под действием сил гравитации спускается в нижнюю камеру. Общее время циклического воздействия горячей нефти на отложения в полости глубинного электроцентробежного насоса должно быть равным времени, необходимому для полного растворения АСПО. Это время предварительно определяется в лабораторных условиях с моделированием скважинных условий. Периодическое применение способа на осложненных скважинах позволит повысить сроки их безаварийной эксплуатации. 2 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам для подачи химических реагентов в скважинную жидкость.Устройство содержит соединенные по торцам с помощью муфт цилиндрические контейнеры с реагентом, камеры смешения и фильтры-дозаторы, расположенные в муфтах, имеющих, по крайней мере, по одному ряду входных и выходных отверстий. Верхние торцы цилиндрических контейнеров перекрыты фильтрами-дозаторами, а нижние торцы - заглушками. Муфты снаружи оснащены уплотнительными манжетами. Фильтры-дозаторы помещены в цилиндрический корпус, оснащенный сверху калиброванным отверстием. Выше фильтра-дозатора в муфте установлен струйный насос, а ниже струйного насоса в муфте установлен эжектор, сообщенный с рядом входных отверстий муфт патрубками. Камера смешения расположена в муфте на выходе струйного насоса. Выше струйного насоса в муфте размещены диафрагмы с центральными щелевыми отверстиями. Каждое отверстие последующей диафрагмы смещено на угол 25-30° по направлению часовой или против часовой стрелки. Проходные сечения отверстий диафрагм выполнены уменьшающимися снизу вверх. Повышается эффективность работы устройства за счет повышения качества смешивания реагента и точности дозирования. 3 ил.

Изобретение относится к горнодобывающей промышленности. Технический результат - повышение добычи углеводородов и обеспечение бесперебойной работы скважин без остановок добычи на время ремонтов. В способе в скважины закачивают рабочие жидкости для обработки призабойных зон и вытеснения нефтей из пластов, производят ремонт скважин и антикоррозийную обработку труб и оборудования в них, очищают трубы в верхних частях добывающих скважин от асфальтеновых и смолопарафиновых отложений АСПО. В качестве рабочей жидкости используют комплексный органический растворитель, состоящий из производных ароматических углеводородов, сложных эфиров карбоновых и органических кислот, у которого изменяют плотность и вязкость в зависимости от изменяющихся условий конкретных месторождений. Процесс обработки пластов указанным растворителем из всех добывающих скважин на месторождениях повторяют многократно через заданные промежутки времени и поддерживают требуемый уровень добычи нефтей и газов на месторождениях. Для очистки от АСПО многократно прокачивают указанный растворитель с введенными в него антикоррозийными добавками в виде фосфатов по трубам из забоев скважин на поверхность и обратно по замкнутому циклу. Для добычи газа из месторождений с высокой обводненностью пластов и низким пластовым давлением плотность комплексного органического растворителя изменяют для вытеснения пластовых вод вглубь пластов. Для увеличения объемов добычи нефтей одновременно с обработкой комплексным органическим растворителем призабойных зон всех добывающих скважин осуществляют глушение им всех нагнетательных скважин и вытесняют нефти в сторону добывающих скважин, при этом чередуют объемы закачки в нагнетательные скважины комплексного органического растворителя с объемами закачиваемых вслед за ним пластовых вод в соотношениях от 1:1 в начале закачки в пласты и до не менее 1:20 в конце по мере увеличения общего объема закачки в пласты этого состава. 2 ил.

В настоящем изобретении предложены способы обработки углеводородных текучих сред с целью уменьшения кажущейся вязкости углеводородных текучих сред, встречающихся в операциях с нефтью, уменьшения количества отложений в затрубном пространстве скважины или в трубопроводе. Способ уменьшения кажущейся вязкости углеводородной текучей среды, встречающейся в операциях с нефтью, включает: приведение в контакт углеводородной текучей среды с эффективным эмульгирующим количеством композиции, содержащей, по меньшей мере, один гидрофобно-модифицированный неионогенный полимер, имеющий приведенную общую формулу. Способ уменьшения количества отложений в затрубном пространстве скважины или в трубопроводе включает: приведение в контакт углеводородной текучей среды, встречающейся в операциях с нефтью, внутри затрубного пространства или трубопровода с эффективным эмульгирующим количеством композиции, содержащей, по меньшей мере, один гидрофобно-модифицированный неионогенный полимер, имеющий приведенную общую формулу. Изобретение развито в зависимых пунктах формулы. Технический результат - повышение производительности и эффективности выделения нефти после транспортировки. 2 н. и 1 3 з.п. ф-лы, 4 табл., 7 пр., 3 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для предотвращения коррозии и отложений на оборудовании. Устройство содержит установку дозировочную электронасосную, линию нагнетания в виде жесткого шланга, соединенную с помощью устройства ввода, выполненного в устьевой арматуре с капиллярным трубопроводом, проходящим по наружной поверхности колонны насосно-компрессорных труб и насосного агрегата, на нижнем конце которого размещены подвесное устройство, распылитель и центратор. Устройство ввода капиллярного трубопровода смонтировано в боковом отводе устьевой арматуры в виде патрубка с заглушкой, оснащенной центральным каналом. Снаружи канал заглушки сообщен с линией нагнетания, а изнутри - с верхним концом капиллярного трубопровода, имеющим возможность герметизации в заглушке. Между боковым отводом и заглушкой патрубок оснащен отводом с угловым вентилем. Капиллярный трубопровод выполнен в виде полимерного армированного кабеля и в подвесном устройстве соединен с полой штангой, жестко присоединенной сверху к подвесному устройству. На нижнем конце полой штанги установлен распылитель, оснащенный регулируемым обратным клапаном. Повышается надежность, эффективность, снижается металлоемкость. 2 ил.
Наверх