Адаптивная дроссельно-ограничительная камера фильтра системы оканчивания скважины


 


Владельцы патента RU 2490435:

Общество с ограниченной ответственностью "ВОРМХОЛС" (RU)

Изобретение относится к области добычи полезных ископаемых, а именно к области добычи жидких текучих сред из буровых скважин. Устройство содержит круглый корпус, в котором расположен, по меньшей мере, один сегмент, в состав которого входит, по меньшей мере, одна секция дроссельных гребешков и секция ограничителя. К сегменту поток подводится с торца по каналам сбоку. Каждый узел входа выполнен с возможностью перекрытия цилиндрическим затвором заглушки с резьбой, вводимым через корпус камеры. Повышается нефтеотдача пласта. 11 з.п. ф-лы, 1 ил.

 

Изобретение относится к области добычи полезных ископаемых, а именно к области добычи жидких текучих сред из буровых скважин.

Разработанное устройство может быть использовано при регулировании потока добываемой жидкости, а именно нефти, из скважины, а также для замещения нефти в пласте или ее прогрева с использованием дополнительно вводимой текучей среды в частности воды, пара или пароводяной смеси.

Для добычи жидких полезных ископаемых применяют скважины, длина системы оканчивания (рабочего участка) которых может достигать 500 и более метров. На этой длине могут быть расположены пласты с разными геологическими характеристиками по проницаемости или притоку жидкой и/или газообразной фазы. Весь поток по длине рабочего участка скважины необходимо оптимальным образом собрать в сборную трубу. Для этого создают определенную эпюру давления по длине сборной трубы. При этом желательно поддерживать равномерным приток жидкой фазы по отдельным зонам рабочего участка. Равномерный приток уменьшает вероятность прорыва газа и, как следствие, увеличивает нефтеотдачу пласта.

Сборную трубу рабочего участка собирают из отдельных фильтров. У каждого фильтра есть камера, куда собирается поток со всей длины последнего. Для обеспечения равномерного притока необходимо по длине рабочего участка согласовать давление внутри сборной трубы. Это достигается за счет использования дроссельных устройств, расположенных внутри камеры фильтра. Дроссельные устройства обеспечивают гидравлическое сопротивление при движении потока и соответственно определяют перепад давления между пластом и сборной трубой. Таким образом, подбором гидравлических характеристик дроссельных устройств настраивают всю систему оканчивания скважины в целом.

Известен (RU, патент 95026) кольцевой ограничитель потока жидкости, газа или газожидкостной смеси в скважине. Известный кольцевой ограничитель содержит, по меньшей мере, один фрагмент ограничения потока, входная часть которого содержит, по меньшей мере, один входной канал, выходной участок ограничительного фрагмента выполнен с дискретно увеличивающейся площадью проходного сечения и содержит, по меньшей мере, одну ступень с двумя выходами, между входным и выходным участками расположена горловина ограничительного фрагмента.

Недостатком известного устройства применительно к решаемой задаче следует признать невозможность выбора и подключения нужного количества фрагментов ограничения непосредственно перед спуском оборудования в скважину.

Известно (RU, патент 92905) устройство для управления потоком жидкости, поступающим в добывающую или инжекционную колонну скважины. Известное устройство содержит корпус со средствами ввода и вывода потока жидкости, подключенными к сети каналов для протока жидкости, при этом сеть каналов выполнена с обеспечением возможности большого гидравлического сопротивления движущемуся потоку. В корпусе расположен, по меньшей мере, один сегмент, в состав которого входит, по меньшей мере, одна секция дроссельных гребешков, причем к сегменту поток подводят с торца по каналам сбоку.

Недостатком известного устройства применительно к решаемой задаче следует признать сложность настройки оборудования непосредственно перед его спуском в скважину.

Указанный источник использован в качестве ближайшего аналога разработанного устройства.

Техническая задача, решаемая посредством разработанного устройства, состоит в создании оптимальных условий добычи жидких полезных ископаемых, в частности, нефти.

Технический результат, получаемый при реализации разработанной конструкции, состоит в повышении нефтеотдачи пласта.

Для достижения указанного технического результата предложено использовать разработанную адаптивную дроссельно-ограничительную камеру фильтра системы оканчивания скважины. Указанная адаптивная дроссельно-ограничительная камера фильтра системы оканчивания скважины содержит круглый корпус, в котором расположен, по крайней мере, один сегмент, в состав которого входит, по меньшей мере, одна секция дроссельных гребешков, при этом подвод потока к сегменту осуществлен с торца по каналам сбоку, при этом она дополнительно содержит в каждом сегменте, по меньшей мере, одну секцию ограничителя с гребешками, канавками и проточками одного типа размера но высоте и ширине, причем каждый узел входа выполнен с возможностью перекрытия цилиндрическим затвором заглушки с резьбой, вводимым через корпус камеры.

В предпочтительном варианте реализации камера содержит от 1 до 5 указанных сегментов. Каждый сегмент может содержать от 1 до 10 секций дроссельных гребешков для тонкой настройки перепада давления между пластом и сборной трубой. Преимущественно, но не обязательно, высота и ширина дроссельных гребешков, канавок и проточек составляет от 1 до 10 мм. В большинстве вариантов реализации каждая секция сегмента содержит по два узла входа.

Обычно в камере выполнено но два продольных канала подвода потока для каждого сегмента. В некоторых вариантах реализации каждый сегмент камеры содержит до десяти дроссельных и одну ограничительную секцию с гребешками, канавками и проточками одного типа размера по высоте и ширине. Количество гребешков и прорезей между гребешками по рядам дроссельной секции может быть как одинаковым, так и различным. Преимущественно ограничительная секция содержит, по меньшей мере, один и более параллельных фрагментов. В ограничительной секции, по меньшей мере, один из фрагментов не содержит узла входа и напрямую соединяется с дроссельной секцией. Последующие фрагменты содержат узлы входа для более тонкой настройки гидравлических характеристик ограничительной секции. Эти последующие параллельные фрагменты индивидуально могут содержать один и более узлов входа потока.

Также подвод потока к дроссельной и ограничительной секции может быть осуществлен через отверстие резьбового соединения в корпусе камеры путем выкручивания заглушки с цилиндрическим затвором.

Предпочтительно перед и/или после дроссельной и ограничительной секции может быть установлен клапан. При этом получается адаптивная камера, которая способна подстраиваться под изменяющиеся со временем характеристики притока жидкой и/или газообразной фазы. Клапаны можно подобрать под необходимые характеристики камеры в целом. Это достигается за счет изменения проходного сечения седла клапана и механической жесткости исполнительного элемента затвора, что обеспечивает нужный перепад давления срабатывания клапана на его открытие или закрытие для необходимого расхода потока. Преимуществом данной адаптивной камеры является гарантированное нахождение клапанов в известном положении.

На чертеже приведена развертка камеры по наружному диаметру. При этом использованы следующие обозначения: входные каналы 1, узел входа 2 или место установки заглушки с цилиндрическим затвором и резьбой, секции дросселя 3, секция ограничителя 4, фрагмент ограничителя 5 и выходные отверстия в сборную трубу 6.

Разработанное устройство работает следующим образом. С торца камеры по входным каналам 1 поток подходит к узлам входа 2. Пройдя узлы входа, поток попадает в дроссельную секцию 3. Открытием узлов входа дроссельных секций в разных сегментах добиваются нужной настройки гидравлических характеристик камеры в целом. Поток, пройдя дроссельные секции, поступает в ограничительную секцию сегмента 4. Здесь также в зависимости от количества открытых для прохода потока фрагментов 5 задается гидравлическая характеристика по ограничению газообразной фазы камеры в целом. После секции ограничителя поток через выходные отверстия 6 попадает в сборную трубу. Узлы входа камеры открывают путем замены на заглушку с меньшим диаметром цилиндрического затвора. 'Также узлы входа потока в конструкции фильтра без проволочной навивки могут открываться и путем выкручивания заглушки. В этом случае поток будет поступать через отверстие резьбового соединения в корпусе.

Работа адаптивной камеры происходит следующим образом. При спуске все клапаны открыты. Поток жидкости и/или газа проходит через дроссельную секцию, открытый клапан и попадает в сборную трубу. В случае превышения заданного значения расхода через клапан или увеличения перепада давления последний закрывается. При этом изменяется тракт течения потока через камеру, и поток направляется в следующую дроссельную секцию. Гидравлическое сопротивление камеры возрастает и, как следствие, общий расход падает. Если расход опять превысит необходимую величину, то закроется следующий клапан и т.д. Открытие всех клапанов в камере можно обеспечить повышением давления в сборной трубе или стволе скважины. После чего происходит перенастройка всех клапанов под изменившиеся условия добычи выше описанным способом.

Также возможно закрытие всех клапанов путем повышения депрессии. При этом исключается самопроизвольное открытие клапанов без подачи внешнего давления открытия.

Использование разработанного устройства позволяет повысить нефтеотдачу пласта до 20%.

1. Адаптивная дроссельно-ограничительная камера фильтра системы оканчивания скважины, содержащая круглый корпус, в котором расположен, по меньшей мере, один сегмент, в состав которого входит, по меньшей мере, одна секция дроссельных гребешков, при этом подвод потока к сегменту осуществлен с торца по каналам сбоку, отличающаяся тем, что она дополнительно содержит в сегменте, по меньшей мере, одну секцию ограничителя с гребешками, канавками и проточками одного типа размера по высоте и ширине, причем каждый узел входа выполнен с возможностью перекрытия цилиндрическим затвором заглушки с резьбой, вводимым через корпус камеры.

2. Камера по п.1, отличающаяся тем, что она содержит от 1 до 5 сегментов.

3. Камера по п.1, отличающаяся тем, что каждый сегмент содержит, по меньшей мере, один канал для подвода потока к дроссельной и ограничительной секции.

4. Камера по п.1, отличающаяся тем, что каждая дроссельная и ограничительная секция содержит, по меньшей мере, один узел входа.

5. Камера по п.5, отличающаяся тем, что высота и ширина гребешков, канавок и проточек составляет от 1 до 10 мм.

6. Камера по п.1, отличающаяся тем, что каждый сегмент может содержать от 1 до 10 дроссельных секций.

7. Камера по п.7, отличающаяся тем, что количество гребешков и проточек между ними по рядам дроссельной секции одинаково или различно.

8. Камера по п.1, отличающаяся тем, что ограничительная секция содержит, по меньшей мере, один и более параллельных фрагментов.

9. Камера по п.9, отличающаяся тем, что в ограничительной секции, по меньшей мере, один фрагмент не содержит узлов входа потока.

10. Камера по п.9, отличающаяся тем, что в ограничительной секции, состоящей из двух и более параллельных фрагментов, последние содержат один и более узлов входа для настройки гидравлических характеристик ограничительной секции.

11. Камера по п.1, отличающаяся тем, что подвод потока к дроссельной и ограничительной секции осуществлен через отверстие резьбового соединения в корпусе камеры.

12. Камера по п.1, отличающаяся тем, что перед и/или после дроссельной и ограничительной секции установлен клапан.



 

Похожие патенты:

Изобретение относится к нефтегазодобывающей промышленности, а именно к разработке и эксплуатации нефтяных пластов с зонами различной проницаемости, в том числе с помощью боковых и боковых горизонтальных стволов из эксплуатационных колонн.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при разработке месторождений с применением газлифтных способов эксплуатации скважин.

Изобретение относится к системам регулирования дебита скважины и может быть применено для одновременно-раздельной эксплуатации пластов одной скважиной. .

Изобретение относится к газодобывающей промышленности, в частности к глушению газовых скважин при проведении капитальных ремонтов в условиях катастрофических поглощений.

Изобретение относится к нефтегазодобывающей промышленности, в частности к конструкции пологих и горизонтальных скважин. .

Изобретение относится к нефтяной промышленности и может найти применение при разработке месторождения высоковязкой и битумной нефти. .
Изобретение относится к области добычи природного газа и может быть использовано в процессе освоения метаноугольных скважин. .

Изобретение относится к нефтяной промышленности и, в частности, к эксплуатации нефтедобывающей скважины с разделением пластовой продукции в скважине или эксплуатации водозаборной скважины, в добываемой пластовой жидкости которой имеется нефть

Изобретение относится к нефтегазодобывающей промышленности. Предложен способ оптимизации добычи в скважине, в котором управляют системой искусственного подъема в стволе скважины, отслеживают множество параметров добычи на поверхности и в стволе скважины. Строят модель скважины с вычисленными параметрами данных. Затем сравнивают измеренные данные на забое и поверхности скважины с данными модели и проверяют достоверность измеренных данных. Далее диагностируют расхождение между измеренными данными и смоделированными, по результатам которого осуществляют регулировку работы механизма искусственного подъема. Способ направлен на обеспечение расширения объема анализа скважины и компонентов системы добычи для эффективной оптимизации добычи в целом. 2 н. и 5 з.п. ф-лы, 16 ил.

Изобретение относится к растворам для глушения скважин. Способ обработки подземного пласта включает: закачивание в обсаженный, перфорированный ствол скважины, который рассекает пласт, раствора обращенной эмульсии для глушения скважины, содержащего: маслянистую непрерывную фазу, немаслянистую дисперсную фазу, эмульгирующий агент, по меньшей мере один разлагаемый материал и по меньшей мере один закупоривающий агент; контакт пласта с раствором для глушения скважины и предоставление возможности разлагаемому материалу, по меньшей мере, частично разложиться. Способ включает: получение раствора обращенной эмульсии для глушения скважины, содержащего: маслянистую непрерывную фазу, немаслянистую дисперсную фазу, эмульгирующий агент, по меньшей мере один разлагаемый материал и по меньшей мере один закупоривающий агент; закачивание этого раствора в обсаженный, перфорированный ствол скважины; формирование фильтрационной корки; и разрушение фильтрационной корки, позволяя разлагаемому материалу разрушаться. Способ включает: получение раствора обращенной эмульсии для глушения скважины, содержащего: маслянистую непрерывную фазу, немаслянистую дисперсную фазу, эмульгирующий агент, по меньшей мере один разлагаемый материал и по меньшей мере один закупоривающий агент; помещение раствора для глушения скважины в обсаженный, перфорированный ствол скважины; формирование фильтрационной корки; и разрушение фильтрационной корки, в котором гидролиз разлагаемого материала разрушает фильтрационную корку. Технический результат - снижение эффективности поступления и истечения флюидов между пластом и стволом скважины и минимизация повреждения пласта. 3 н. и 22 з.п. ф-лы, 2 табл., 5 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано при разработке нефтяных залежей, представленных слоисто-неоднородными коллекторами, в том числе пластами с высокой расчлененностью и аномально низким пластовым давлением. Обеспечивает повышение нефтеизвлечения из пластов с высокой расчлененностью и аномально низким пластовым давлением за счет увеличения зоны дренирования пласта и активизации стока пластовой жидкости путем усиления сил, способствующих вытеснению пластовой жидкости. Сущность изобретения: способ предусматривает отбор пластовой жидкости с помощью глубинного насоса из вертикальных добывающих скважин, пробуренных с образованием зумпфа. В каждой вертикальной добывающей скважине создают каверну в нижней части продуктивного пласта, заполняют каверну наполнителем. Бурят дополнительно пологонаправленные добывающие скважины, соединяя забой каждой пологонаправленной скважины с каверной соответствующей добывающей вертикальной скважиной, а устья пологонаправленных добывающих скважин сообщают с атмосферой. Диаметр вертикальных добывающих скважин больше диаметра пологонаправленных скважин. Устья пологонаправленных скважин располагают, например, вблизи устьев соседних вертикальных добывающих скважин. Создание каверны осуществляют, например, путем гидромониторного размыва породы с помощью специального переводника с боковой гидромониторной насадкой, а заполнение каверны наполнителем осуществляют, например, намывом гравия. 3 з.п. ф-лы, 3 табл., 1 пр., 3 ил.
Изобретение предназначено для использования при газлифтной эксплуатации скважин. Обеспечивает повышение эффективности работы газлифтной скважины путем снижения вязкости водонефтяной эмульсии, получения не застывающего потока как в скважине, так и в подводном трубопроводе за счет использования высокой температуры на забое и рационального применения реагентов в зависимости от температуры на забое. Сущность изобретения: способ включает использование деэмульгатора и депрессорной присадки. Согласно изобретению при температуре на забое скважины до 80°С оба реагента подают совместно в нагнетательный рабочий агент - газ. При температуре на забое скважины выше 80°С депрессорную присадку подают в нагнетательный рабочий агент, а деэмульгатор вводят в продукцию на устье скважины. При этом для обводненной продукции до 40% используют водорастворимый деэмульгатор, а при обводненности продукции свыше 60% используют нефтерастворимый деэмульгатор. В интервале обводненности 40-60% используют любой из названных типов реагентов. 2 пр.

Изобретение относится к нефтяной промышленности и может быть использовано при разработке обводненной нефтяной залежи. Обеспечивает расширение области применения за счет использования в качестве водозаборных скважин как бывших добывающих, так и действующих обводненных добывающих скважин, и повышение эффективности за счет исключения остановок насосной установки для ее перевода в режим вытеснения нефти и на время проведения ремонтных работ на водопроводе. Сущность изобретения: способ включает установку пакера выше пласта добывающей скважины, отбор водонефтяной смеси из подпакерного пространства насосом, спускаемым на колонне труб, разделение ее на нефть и воду в скважинных условиях, отбор нефти из верхней части надпакерного межтрубного пространства в нефтепровод, отбор пластовой воды и ее закачку по водопроводу через нагнетательные скважины в нефтяной пласт с невыработанными запасами нефти. Обеспечивают работу насоса в постоянном режиме, подачу водонефтяной смеси осуществляют через радиальные отверстия в колонне труб в надпакерное межтрубное пространство, где производят разделение водонефтяной смеси. Воду отбирают из надпакерного межтрубного пространства по дополнительной трубе, вход которой размещают ниже уровня водонефтяного контакта, а выход сообщен с водопроводом, оснащенным расходомером. Отбор нефти дополнительно ведут из колонны труб в нефтепровод, который оснащен регулятором расхода и сообщен с дополнительной трубой байпасной линией, соединенной с нефтепроводом после регулятора расхода для сброса в него воды при ремонтных работах на водопроводе. 1 ил., 1 пр.

Изобретение относится к области нефтедобывающей промышленности, в частности к средствам подъема жидкости из скважины. Обеспечивает возможность регулирования объемов отбора нефти и воды при изменении уровня водонефтяного контакта в скважине в процессе работы, получения на поверхности скважины продукции, не требующей последующей сепарации на отдельные фазы, и снижения вероятности образования водонефтяных эмульсий и отложения парафина на внутренней поверхности труб. Сущность изобретения: устройство содержит насос, спущенный в обсадную колонну скважины на колонне труб с хвостовиком снизу, связанным с соединительной трубкой, а также размещенные в скважине два подводящих канала, причем один канал - для подвода нефти, а другой канал - для подвода воды, имеющих возможность поступления в скважину из пласта. Входы каналов расположены на разных уровнях, а выходы направлены к приему насоса. Хвостовик колонны труб снабжен снаружи пакером, установленным в обсадной колонне скважины на уровне водонефтяного контакта, и радиальными отверстиями выше пакера. Причем в хвостовик ниже радиальных отверстий жестко установлена полая заглушка, в которую герметично с возможностью осевого перемещения и фиксации установлена соединительная трубка. При этом фиксация соединительной трубки относительно хвостовика осуществлена с помощью разрезного стопорного кольца круглого сечения, установленного во внутренней проточке полой заглушки и фиксирующего соединительную трубку в полукруглых насечках, выполненных на наружной поверхности соединительной трубки. При этом канал для подвода нефти образован внутренним пространством обсадной колонны выше пакера, радиальными отверстиями хвостовика и пространством между хвостовиком и соединительной трубкой. Канал для подвода воды образован внутренним пространством обсадной колонной ниже пакера и внутренним пространством соединительной трубки. Входы обоих каналов расположены напротив перфорационных отверстий в водоносной и нефтеносной частях пласта, а выходы направлены к приему насоса. Также предлагаемое устройство из-за регулирования объемов отбора воды и нефти позволяет предотвратить их смешивание в процессе подъема по колонне труб и получить на поверхности скважины продукцию, не требующую последующей сепарации на отдельные фазы, а также позволяет снизить вероятности образования водонефтяных эмульсий и отложения парафина из-за быстрого перехода от отбора воды к отбору нефти. 3 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано при добыче нефти с повышенным газосодержанием. Обеспечивает возможность увеличения КПД насоса при работе на газосодержащей смеси при увеличении допустимого газосодержания смеси на входе в насос, а также возможность периодического откачивания скопления газа при малых и даже нулевых количествах жидкой фазы. Сущность изобретения: устройство включает корпус, электродвигатель, погружной насос с напорной частью и входным устройством и эжектор. Согласно изобретению устройство снабжено кожухом, образующим с корпусом кольцевой канал ниже напорной части погружного насоса и выше эжектора. Эжектор расположен во входном устройстве и выполнен в виде кольцевой щели. При этом приемный патрубок эжектора соединен с напорной частью погружного насоса через кольцевой канал для частичного возврата перекачанной нефти. На выходе эжектора перед первой ступенью насоса размещена камера смешения, обеспечивающая возможность диспергирования газовой фазы и увеличения давления. 2 з.п. ф-лы, 2 ил.

Группа изобретений относится к системам и способам для управления многочисленными скважинными инструментами. Многочисленные скважинные инструменты можно приводить в действие между рабочими положениями. Скважинные инструменты соединяют с множеством многоотводных модулей, при этом каждый многоотводный модуль обычно соединяют с одним или двумя скважинными инструментами. Линии управления соединяют с многоотводными модулями, а многоотводные модули обладают способностью управлять скважинными инструментами в большем количестве, чем количество линий управления. Каждый скважинный инструмент можно приводить в действие индивидуально, создавая подачи давления по одной или нескольким линиям управления. Техническим результатом является облегчение управления многочисленными скважинными инструментами. 4 н. и 19 з.п. ф-лы, 25 ил.

Группа изобретений относится к мониторингу показателей скважин с забойным и устьевым оборудованием. Более конкретно, настоящие изобретения раскрывают систему и способ по определению и вычислению расходов в скважинах, которые создают электропогружные насосы. Обеспечивается повышение эффективности мониторинга. Сущность: способ определения расхода через электропогружной насос содержит этапы, на которых: подводят электроэнергию к электропогружному насосу с наземного распределительного устройства; принимают с помощью процессора давление на приеме с первого манометра внизу по стволу скважины относительно электропогружного насоса и давление на выходе со второго манометра; принимают с помощью процессора напряжение и ток; принимают с помощью процессора по меньшей мере одно статическое значение; вычисляют с помощью процессора расход через электропогружной насос, в соответствии с чем: вычисляют отношение коэффициента полезного действия к расходу, вводя принимаемые напряжения и токи в уравнение равновесия мощностей; получают безразмерный расход, вводя вычисляемое отношение коэффициента полезного действия к расходу в статические данные; вычисляют расход на основании безразмерного расхода; и образуют диаграмму вычисляемых расходов. 3 н. и 17 з.п. ф-лы, 8 ил.
Наверх