Способ определения дифференцированной смачиваемости минералов, входящих в состав пород-коллекторов



Способ определения дифференцированной смачиваемости минералов, входящих в состав пород-коллекторов
Способ определения дифференцированной смачиваемости минералов, входящих в состав пород-коллекторов

 


Владельцы патента RU 2490614:

Учреждение Российской академии наук Институт проблем нефти и газа РАН (RU)

Изобретение относится к петрофизическим методам определения свойств пород и может быть использовано в нефтяной геологии для определения смачиваемости пород-коллекторов нефти и газа. В способе для оценки смачиваемости реализуется принцип самопроизвольного формирования капель жидкости на поверхности образца породы в результате конденсации паров. Для этого охлажденный до температуры ниже точки росы образец породы помещают в среду с парами жидкости и измеряют краевой угол смачиваемости капель, образовавшихся в результате конденсации. Техническим результатом изобретения является повышение точности оценки смачивающих свойств пористых пород, возможность дифференцированной оценки смачиваемости породообразующих минералов породы, а также устранение перечисленных недостатков вышеприведенных способов. 1 з.п. ф-лы, 2 ил.

 

Способ определения дифференцированной смачиваемости минералов, входящих в состав пород-коллекторов относиться к области нефтяной геологии и может использоваться для определения гидрофильных свойств нефтенасыщенных пород. Как известно смачиваемость поверхности порового пространства, образованной породообразующими минералами, существенно влияет на относительную фазовую проницаемость и капиллярное давление, то есть на значение углеводородосодержания пластов, поэтому при разработке углеводородных месторождений необходимо ее учитывать.

Существуют различные методы оценки смачиваемых свойств пород. Например, метод определения смачиваемости пород согласно ОСТ 39-180-85, который предусматривает определение параметра, выражающего интегральную характеристику смачиваемости пород по данным капиллярного впитывания в образец воды и керосина при атмосферных условиях и в поле центробежных сил при центрифугировании. Сущность метода заключается в определении смачиваемости по данным капиллярного вытеснения смачивающей жидкости не смачивающей, а затем капиллярного вытеснения не смачивающей жидкости смачивающей. Эксперимент проводится в два этапа: 1 - капиллярная пропитка, 2 - центрифугирование

Недостатком метода является не учет фактора геометрических особенностей порового пространства влияющих на капиллярное впитывание и вытеснение, не возможность дифференцированной оценки смачиваемости породообразующих минеральных частиц и значительная сложность экспериментов.

Существует так же «Способ определения параметра смачиваемости поровых каналов пород-коллекторов» Автор: Кочкин О.В., патент 2097743 от 12.03.1996 г. (опубликован 27.11.1997 г.) заявитель ОАО "ПермНИПИнефть" Сущность этого метода определения смачиваемости заключается в том, что подготавливают образец для исследования, определяют его проницаемость, далее образец центрифугируют при различных режимах вращения центрифуги. Определяют при этом зависимость капиллярного давления дренирования эффективного порового пространства образца от водонасыщенности и зависимость капиллярного давления впитывания динамического порового пространства образца от водонасыщенности. Затем по полученным зависимостям строят нормированные дифференциальные кривые зависимости частоты встречаемости радиусов поровых каналов от размера для динамического и эффективного порового пространства и, используя эти кривые, определяют параметр смачиваемости для конкретного радиуса пор или их диапазона. В данном способе также имеет место значительная сложность определения смачиваемости на основе не бесспорных теоретических представлений. Способ не учитывает ряд факторов, что может приводить к неоднозначности, например связанных с определением проницаемости, которая зависит от ориентации порового пространства.

Наиболее близким к заявленному способу по технической сущности и достигаемому результату является классический способ определения смачиваемости пород основанный на замере краевого угла смачиваемости капли жидкости (воды) на плоской поверхности образца породы, так называемый метод лежащей капли. В данном методе капля жидкости с известным поверхностным натяжением помещается на гладкую твердую поверхность. Форма капли зависит от поверхностных свойств изучаемой поверхности и является критерием оценки смачиваемости. Метод базируется на следующих теоретических представлениях. При нанесении капли жидкости на поверхность твердого тела соотношение сил межфазного и поверхностного натяжения в точке контакта трех фаз описываться известным уравнением Юнга. (Сумм, Б.Д. Гистерезис смачивания // Соросовский образовательный журнал. - 1999. - №7. - С.98-102.). Нанесенная на поверхность твердого тела капля жидкости либо растекается по ней, либо приобретает линзовидную форму в зависимости от действия молекулярных сил. На рисунке фиг.1 показаны векторы действия сил поверхностного натяжения.

Из условия равновесия следует, что σт-гт-жж-гcosθ.

Где: σт-г - поверхностное натяжение на границе твердое теле-газ

σт-ж - поверхностное натяжение на границе твердое теле-жидкость

σж-г - поверхностное натяжение на границе жидкость-газ

θ - краевой угол смачивания

Отсюда следует уравнение Юнга:

cosθ=(σт-гт-ж)/σж-г.

Степень смачивания оценивается по краевому углу смачивания, который образуется касательными плоскостями к межфазным поверхностям, ограничивающим смачивающую жидкость, а вершина угла лежит на линии раздела трех фаз. Угол всегда отсчитывают от касательной в сторону жидкости. Для жидкости, смачивающей поверхность твердого тела, краевой угол θ острый (θ<π/2); чем лучше смачивание, тем меньше θ. Для полного смачивания θ=0. Для не смачивающих жидкостей краевой угол изменяется в пределах π/2<θ<π; при полном не смачивании θ=π. Метод поясняется рисунком, приведенным на фиг.2. на котором показана капля воды на твердой поверхности и краевой угол смачиваемости θ, образованный между касательной 1 и поверхностью твердого тела 2.

Традиционная методика лежащей капли и оптического измерения угла смачивания по замеру угла мениска, образованного на поверхности образца детально описаны в работе (Волков З.В. Смачиваемость твердых тел как характеристика молекулярной природы их поверхности и новый метод ее измерения. - «Физическая химия», 1939, т.XIII, вып.2, с.225-238.).

Измерение угла смачиваемости по капли на поверхности образца породы легко выполняются современными оптическими средствами. Однако способ не получил широкого распространения для определения смачиваемости пород из-за сложности и трудоемкости нанесения механическим способом большого числа соизмеримых по размеру капель. Кроме этого для пористых пород-коллекторов этот метод не пригоден, так как нанесенные капли быстро впитываются в породу.

Целю настоящего изобретения является повышение точности оценки смачивающих свойств пористых пород, возможность дифференцированной оценки смачиваемости породообразующих минералов породы, а также устранение перечисленных недостатков вышеприведенных способов.

Эта цель достигается за счет того, что в предлагаемом способе формирование необходимых по размеру капель (до 2 мм) на поверхности образца породы происходит самопроизвольно, за счет конденсации жидкости на поверхности приготовленного образца. Для этого образец породы пришлифовывается или приготавливается поверхность скола, далее образец охлаждают до температуры ниже точки росы воды (или используемой для определения смачиваемости жидкости) и помещается во влажную (или с парами соответствующей жидкости) камеру. При таком способе капли самопроизвольно формируются за счет конденсации паров на поверхности породообразующих минеральных зерен и кристаллов. Впитывание жидкости в поры не происходит, так как на начальном этапе размер капель меньше пор и породообразующих зерен. Путем контроля температуры образца, имеется возможность стабилизировать рост капель и регулировать их размер. Для этого регулируют температуру образца с помощью соответствующих технических средств. После формирования капель, с помощью цифровой оптической техники измеряют краевой угол смачивания. Поскольку конденсация происходит на поверхности породообразующих зерен и площадь капель не захватывает поровые каналы, впитывание жидкости не происходит. В отличие от всех существующих методов, предложенный способ позволяет определять под микроскопом смачиваемость отдельных минеральных зерен, так как самопроизвольно сформированные за счет конденсации паров жидкости капли могут иметь необходимый размер. При оценке интегральной смачиваемости рассчитывают среднее значение замеренных углов на разных каплях.

1. Способ определения дифференцированной смачиваемости минералов, входящих в состав пород-коллекторов, включающий приготовление поверхности образца породы, нанесение на поверхность образца капель жидкости и измерение краевого угла смачиваемости, при этом образец породы после приготовления его поверхности помещают во влажную среду и охлаждают его ниже точки росы.

2. Способ по п.1, отличающийся тем, что образец охлаждают ниже точки росы непосредственно во влажной среде.



 

Похожие патенты:

Изобретение относится к контролю качества бетонов, растворов и цементного камня. .

Изобретение относится к области исследования образцов неконсолидированных пористых сред и может быть использовано для изучения открытой или закрытой пористости, распределения пор по размерам, удельной поверхности, пространственного распределения и концентрации ледяных и/или газогидратных включений в поровом пространстве образцов, определения размера включений и т.д.

Изобретение относится к области исследования строительных материалов и контрольно-измерительной технике, и может быть использовано для определения пористости керамических и силикатных материалов.

Изобретение относится к области исследования образцов мерзлых пород и может быть использовано для изучения пространственного распределения и концентрации ледяных и/или газогидратных включений в поровом пространстве образцов, определения размера включений, открытой или закрытой пористости и т.п.

Изобретение относится к технологиям нефтедобычи, а именно к способам гидродинамического моделирования залежей и проектирования на их основе разработки месторождений.

Изобретение относится к неразрушающим методам контроля, в частности к области газовой дефектоскопии, может применяться при контроле сплошности покрытий с низкой водородопроницаемостью, наносимых на поверхность крупногабаритных металлических изделий сложной конфигурации.

Изобретение относится к области нефтяной геологии и является петрофизической основой объемного моделирования нефтенасыщенности, подсчета балансовых и извлекаемых запасов залежи дифференцированно, с учетом предельно нефтенасыщенной и переходной зон, для прогнозирования результатов опробования и анализа разработки.

Изобретение относится к теоретической теплотехнике и может быть использовано для определения коэффициента диффузии жидкости в материалах, имеющих капиллярно-пористую структуру.

Изобретение относится к нефтегазовой промышленности. .
Изобретение относится к области исследований параметров грунтов, а конкретней к способам определения коэффициента фильтрации плывунного грунта. .

Изобретение относится к области исследования структуры порового пространства горных пород и предназначено для определения латеральной анизотропии фильтрационных свойств терригенного коллектора по результатам исследования его керна

Изобретение может быть использовано при разработке месторождений углеводородов. Устройство для оценки динамики процесса прямоточной капиллярной пропитки образцов пород относится к области петрофизических исследований. Устройство предназначено для определения динамики изменения веса образца породы в процессе капиллярной прямоточной пропитки и расчета на основе полученных данных некоторых петрофизических параметров, в частности количества защемленного газа. В устройстве реализовано автоматическое сохранение уровня контактирующей с образцом жидкости без жесткой или упругой связи с буферной емкостью, подпитывающей водой образцовую камеру. Это позволяет проводить, практически без погрешности, постоянное взвешивание образцовой камеры с образцом, который в процессе впитывания воды за счет капиллярного насыщения постоянно увеличивает свой вес. Данные изменения веса во времени, зафиксированные электронными весами, обрабатываются с помощью компьютера. Техническим результатом является повышение точности оценки динамики насыщения породы за счет гидродинамической связи образцовой камеры и буферной емкости. 1 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов влагопроводности ортотропных капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности. Способ определения коэффициента влагопроводности листовых ортотропных капиллярно-пористых материалов включает создание в исследуемом образце равномерного начального влагосодержания, импульсное соприкосновение исследуемого образца с источником влаги, измерение изменения во времени сигнала гальванического преобразователя, определение времени достижения максимума на кривой изменения ЭДС гальванического преобразователя и расчет коэффициента влагопроводности. При этом импульсное увлажнение исследуемого изделия осуществляют по прямой линии движущимся источником влаги постоянной производительности в заданном направлении ортотропного материала, выполняют электроды гальванического преобразователя в виде прямолинейных отрезков и располагают их с обеих сторон линии импульсного увлажнения на прямых, параллельных линии импульсного увлажнения, расположенных на одинаковом заданном расстоянии от нее. Затем рассчитывают искомый коэффициент по формуле: D = x 0 2 / ( 2 τ max ) , где τmax - время достижения максимума на кривой изменения ЭДС гальванического преобразователя; х0 - расстояние между линией импульсного увлажнения и расстоянием до линий расположения электродов гальванического преобразователя. Техническим результатом изобретения является повышение точности контроля и обеспечение возможности определения коэффициентов влагопроводности в различных направлениях ортотропного листового материала.
Изобретение относится к области экологии и сельского хозяйства и предназначено для определения коэффициента фильтрации плывунного грунта в зоне распространения подзолистых почв. Через образец грунта пропускают поток воды. На поверхности образца грунта размещают грузик. Фиксируют начало погружения грузика. Измеряют параметры образца и потока воды. Рассчитывают по измеренным показателям коэффициент фильтрации грунта. Фиксируют величину концентрации фульвокислоты в потоке воды, прошедшем через образец грунта. При снижении величины концентрации на 10% от начального значения вводят в поток воды, направляемый в образец грунта, раствор фульвокислоты, восстанавливая величину концентрации фульвокислоты в потоке воды, прошедшем через образец грунта, до начального значения. Использование заявленного способа расширяет функциональные возможности определения коэффициента фильтрации грунта, позволяет быстро и точно определить коэффициент фильтрации грунта, подверженного воздействию фульвокислоты, в зоне распространения подзолистых почв. 1 табл., 1 пр.

Изобретение относится к области технологического контроля пористости хлебобулочных изделий в процессе их производства и может быть использовано при отработке оптимального режима технологии получения заданной пористости в цеховых лабораторных условиях. В способе измерения пористости хлебобулочного изделия и устройства для его осуществления, включающем выемку пористого куска мякиша, при выемке пористый кусок мякиша представляет собой всю плоскость разреза хлебобулочного изделия. Когерентное излучение от источника поступает в коллиматор, на выходе которого формируется пучок параллельных световых лучей. Далее световой пучок освещает поверхность пористого куска мякиша хлебобулочного изделия, находящегося в рабочей зоне, образуя некоторый угол «θ» с нормалью к поверхности. Отраженные от пористой поверхности рассеянные световые лучи собирают и строят изображение структуры пористого куска мякиша в плоскости наблюдения, где и измеряют размеры пор куска мякиша хлебобулочного изделия, при этом пористость определяют по формуле: I ¨ = S ¯ I ¨ S I ˙ ⋅ 100 , где S ¯ I ¨ - суммарная усредненная площадь пор куска мякиша; S I ˙ - площадь пористого куска мякиша. Причем рабочей зоне устанавливают всю поверхность разреза хлебобулочного изделия.Технический результат - повышение точности измерения за счет количественного измерения пористости хлебобулочного изделия. 2 н.п.ф-лы, 1 ил.

Изобретение относится к методам неразрушающего контроля горных пород, а именно к способам установления детальной характеристики структуры трещинно-порового пространства кристаллических пород, определения скрытых неоднородностей, флюидопроницаемости. Способ определения неоднородностей упругих и фильтрационных свойств горных пород заключается в том, что выбуренные из горного массива цилиндрические образцы керна различной длины просвечивают ультразвуковыми продольными P-волнами по регулярной сетке во множестве направлений как угловых, так и вдоль оси образца керна. Затем определяют скорости упругих продольных волн в высушенных образцах и в насыщенных жидкостью. Получают массив данных скоростей упругих продольных волн для обоих состояний, который обрабатывают для получения данных о двумерном распределении скоростей и их отклонений от среднего значения для высушенных образцов и насыщенных жидкостью, представляемом в виде цветной или монохромной топографической карты с изолиниями с заполнением между ними или без него с координатами двугранный угол наблюдения - высота наблюдения датчика. Далее сравнивают полученные результаты измерений скоростей в высушенных образцах и в насыщенных жидкостью. Затем сравнивают результаты измерения скоростей упругих волн для образцов, насыщенных жидкостью, и для образцов в обоих состояниях, далее делают вывод о неоднородностях упругих и фильтрационных свойств горных пород, о степени насыщенности жидкостью горной породы и судят о том, какие нарушения имеются в естественном залегании массива пород. Техническим результатом является повышение эффективности и упрощение прогноза неоднородностей массива горных пород, невидимых трещин, внутренних контактов пород. 3 з.п. ф-лы, 9 ил., 1 табл.

Изобретение относится к области тестирования на герметичность и может быть использовано для тестирования на герметичность фильтрованного устройства (2) для сепарации аэрозолей и пылей из объемного потока газа. Сущность: посредством загрузочного устройства (16) тестовый аэрозоль подают, если смотреть в направлении потока, до фильтрующего элемента (9) в поток неочищенного газа. Осуществляют замер числа частиц и/или определяют концентрацию частиц, если смотреть в направлении потока, в очищенном потоке газа после фильтрующего элемента (9). При этом в загрузочное устройство (16) подают первый смешанный объемный поток из тестового аэрозоля и сжатого воздуха, который формирует аэрозольный генератор (37). Произведенный при помощи аэрозольного генератора (37) первый смешанный объемный поток смешивают с объемным потоком воздуха для получения второго, более разреженного смешанного объемного потока. Подают второй, более разреженный смешанный объемный поток на загрузочное устройство (16). Технический результат: минимизация расхода сжатого воздуха. 2 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к способу испытания бумажных фильтрующих элементов для очистки жидкостей, нефтепродуктов. Способ контроля ресурса фильтроэлемента включает прокачку жидкости, смешанной с искусственным загрязнителем, и фиксацию перепада давления на фильтроэлементе через равные величины его прироста. Определяют исходную величину поверхностного натяжения и плотность используемой жидкости с учетом фактической температуры, задают величину поверхностного натяжения изопропанола, вертикально закрепляют полностью погруженный в жидкость фильтроэлемент, осуществляют прокачку загрязненной жидкости снаружи-внутрь фильтроэлемента, замеряя текущее значение перепада давления на фильтроэлементе. После каждого прироста перепада давления на величину, равную 10% предельно допустимого значения, прокачку прекращают и подают под давлением воздух изнутри-наружу фильтроэлемента до момента появления первого пузырька воздуха на его поверхности, фиксируют величину давления воздуха в этот момент и замеряют расстояние от точки появления первого пузырька до уровня жидкости над фильтроэлементом, после чего рассчитывают показатель герметичности фильтроэлемента. При значении показателя герметичности не менее заданной величины продолжают прокачку жидкости и при увеличении перепада давления на фильтроэлементе еще на 10% прокачку прекращают и подают под давлением воздух изнутри-наружу фильтроэлемента до момента появления первого пузырька воздуха на его поверхности, фиксируют величину давления воздуха в этот момент и замеряют расстояние от точки появления первого пузырька до уровня жидкости над фильтроэлементом, после чего рассчитывают показатель герметичности. При значении показателя герметичности менее заданной величины судят о выработке ресурса фильтроэлемента, а величину перепада давления на фильтроэлементе, зафиксированную на предыдущем приросте давления на 10%, принимают за критическое значение. Технический результат: повышение точности определения ресурса фильтроэлемента. 1 ил., 1 пр.

Изобретение относится к машиностроению и может быть использовано при измерении проницаемости пористых пластически деформируемых материалов для жидкости. Способ заключается в том, что образец помещают в замкнутую цилиндрическую полость между поршнем, создающим давление, и проницаемым для жидкости дном. Задают исследуемые уровни давления, для каждого из которых создают циклическое силовое нагружение образца давлением. Используя выбранное давление для выключения нагружения и давление, равное 0,85-0,95 выбранного давления, для включения нагружения, регистрируют во времени изменение длины образца и временной промежуток снижения давления на цикле разгрузки, а также объем отжатой жидкости. Затем вычисляют коэффициент проницаемости на цикле по формуле K ф i = B i ⋅ m о б i ⋅ ( l i − l i − 1 ) ρ ж ⋅ S n ⋅ ( P − P 1 ) , на каждом цикле определяют остаточное массовое содержание жидкости в образце по формуле C i = C 0 m о б 0 − m i m о б 0 − m i ; где B i = 1 t k i − t 0 i ⋅ ln ( P P 1 ) , mобi=mоб0-mi, uжi=Sn·(li-l1), mi=ρж·uжi Р - исследуемый уровень давления, P1=0,85Р÷0,95Р - минимальное давление, Sn - площадь поршня, l1 - длина образца в начале 1-го цикла, li-1 - длина образца в начале i-го цикла, li - длина образца в конце i-го цикла, t0i - время начала снижения давления на i-ом цикле, tki - время конца i-го цикла, mоб0 - начальная масса образца, mобi - масса образца на i-ом цикле, ρж - плотность отфильтрованной жидкости, uжi - суммарный объем отфильтрованной жидкости до i-го цикла, mi - масса отжатой жидкости до i-го цикла, С0 - исходное массовое содержание жидкости, Сi - текущее массовое содержание жидкости на i-ом цикле, i - изменяется от 1 до k, k - номер цикла, на котором выполняется условие (Kф(k-1)-Kфk)/Kфk≤0,01. Затем по полученным значениям коэффициента проницаемости и массового содержания жидкости на всех выбранных уровнях давления определяют зависимость коэффициента проницаемости как функцию от массового содержания жидкости и уровня давления. Техническим результатом является возможность получения характеристик для пластически деформируемого пористого материала в широком диапазоне давлений при изменении массового содержания жидкости, в частности в процессе отжима жидкости из материала, повышение точности измерения. 3 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для прогнозирования изменения характеристик призабойной зоны нефтегазосодержащих пластов. Техническим результатом является повышение точности и снижение трудоемкости прогнозирования изменения характеристик призабойной зоны пластов за счет комбинирования математического моделирования и лабораторных экспериментов. Сущность способа основывается на определении реологических свойств бурового раствора, фильтрата бурового раствора и пластового флюида, измерении свойств внешней фильтрационной корки, а также пористости и проницаемости образца керна. При этом создают математическую модель внешней фильтрационной корки. Прокачивают буровой раствор через образец керна и регистрируют динамику перепада давления на образце и расхода истекающей из образца жидкости. С помощью микротомографии определяют профиль концентрации проникших в образец твердых частиц бурового раствора. Создают математическую модель внутренней фильтрационной корки для описания динамики изменения концентрации частиц бурового раствора в поровом пространстве образца керна и сопутствующего изменения проницаемости образца керна. Создают сцепленную математическую модель внешней и внутренней фильтрационных корок, на основе которой с учетом свойств внешней фильтрационной корки определяют параметры математической модели внутренней фильтрационной корки, при которых одновременно воспроизводятся данные эксперимента по прокачке бурового раствора через образец керна и профиль концентрации проникших частиц бурового раствора. 12 з.п. ф-лы, 8 ил.
Наверх