Твердоэлектролитный датчик для потенциометрического измерения концентрации водорода в газовых смесях



Твердоэлектролитный датчик для потенциометрического измерения концентрации водорода в газовых смесях

 


Владельцы патента RU 2490623:

Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук (RU)

Изобретение относится к аналитической технике, в частности к датчикам для анализа газовых сред. Твердоэлектролитный датчик для потенциометрического измерения концентрации водорода в газовых смесях содержит мембрану из протонпроводящего твердого электролита, эталонный и измерительный электроды, нанесенные на противоположные поверхности мембраны. Датчик согласно изобретению снабжен второй твердоэлектролитной мембраной из того же электролита, что и первая, на противоположные поверхности второй мембраны нанесены два электрода, при этом мембраны герметично соединены между собой с образованием полости между их внутренними поверхностями. Технический результат заключается в достижении высокой точности измерения концентрации водорода в более широком диапазоне, в упрощении конструкции датчика, технологии его изготовления и использования. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к аналитической технике, в частности к датчикам для анализа газовых сред, и может быть использовано для измерения концентрации водорода в газовых смесях различного состава.

Известны потенциометрические датчики для измерения концентрации водорода в газовых смесях, изготовленные с использованием твердых электролитов, обладающих протонной проводимостью. Так, известен датчик для измерения концентрации водорода в газовых средах, разработанный на основе протонпроводящих твердых электролитов (.А. Левченко, Л. Леонова, Ю. Добровольский «Твердотельные электрохимические сенсоры активных газов» // ЭЛЕКТРОНИКА: Наука, Технология, Бизнес. 1/2008, с.66-69) [1]. Датчик имеет герметичный корпус с установленным внутри керамическим изолятором. Корпус датчика закрыт в верхней своей части титановой пробкой и открыт в нижней части. Под пробкой размещена таблетка из протонпроводящего твердого электролита, например, на основе гетерополисоединений, в частности - аммониевой соли фосфорно-вольфрамовой кислоты. На поверхность таблетки, обращенной к верхней части датчика, нанесен опорный электрод, например, из диоксида свинца, а на противоположной поверхности, омываемой анализируемым газом, нанесен рабочий электрод из платины. К достоинствам известного датчика относится то, что изменение температуры анализируемого газа не влияет на точность измерения концентрации водорода.

Однако известный датчик характеризуется низкой стойкостью материала твердого электролита - гетерополисоединений при повышенных, более 100°С температурах. Известный датчик может работать при комнатной температуре, но требует поддержания постоянной влажности анализируемого газа. Измерение концентрации водорода в газовых смесях, осуществляемое посредством известного датчика, требует расчета содержания водорода по измеренной величине ЭДС датчика по уравнению:

E = E o + k ln [ H 2 ] ; ( 1 )

где Eo - стандартный потенциал редокс-системы; [Н2] - концентрация водорода в анализируемом газе, k - константа, подбираемая эмпирически, ее подбор требует индивидуальной калибровки каждого сенсора.

Известен датчик для детектирования водорода (RU 2371713, публ. 27.10.2009 г.) [2]. Датчик представляет собой твердоэлектролитную электрохимическую ячейку, содержащую суперпротонную мембрану, состоящую из двух слоев - слоя аммонийной соли фосфор-вольфрамовой гетеро-поликислоты и второго слоя - из кремний-вольфрамовой кислоты со стороны электрода сравнения. Электрод сравнения выполнен на основе полупроводникового оксида свинца со структурой рутила. Рабочий электрод датчика выполнен на основе войлока, полученного при прессовании платинированных нанотрубок диоксида титана. Известный датчик [2] характеризуется сложностью изготовления, как материала мембраны, так и рабочего электрода, а также узким диапазоном измерения концентраций водорода (от 0,01 до 5%). Кроме того, датчик [2] также характеризуется низкой стойкостью материала твердого электролита - гетерополисоединений при повышенных, более 100°С температурах и необходимостью индивидуальной калибровки для каждого датчика.

Задача настоящего изобретения заключается в создании более технологичного датчика при повышении его эксплутационных характеристик.

Для решения поставленной задачи твердоэлектролитный датчик содержит мембрану из протонпроводящего твердого электролита, эталонный и измерительный электроды, нанесенные на противоположные поверхности мембраны. Датчик отличается тем, что снабжен второй твердоэлектро-литной мембраной из того же электролита, что и первая, на противоположные поверхности второй мембраны нанесены два электрода, при этом мембраны герметично соединены между собой с образованием полости между их внутренними поверхностями. Твердоэлектролитные мембраны могут быть выполнены из твердого электролита состава CaZrO3 или La0.95Sr0.05YO3-x или CaTi0.95Sr0.05O3. Все электрода датчика выполнены из одного и того же каталитически неактивного электронопроводящего материала.

Конструкция датчика, содержащего две мембраны из протонпрово-дящего твердого электролита с нанесенными на противоположные поверхности мембран эталонным и измерительным электродами, притом, что мембраны герметично соединены между собой с образованием полости между их внутренними поверхностями, приводит к образованию двух изолированных друг от друга электрохимических цепей. Одна электрохимическая цепь, состоящая из двух электродов и твердоэлектролитной мембраны между ними, работает в режиме водородного насоса, а вторая электрохимическая цепь, состоящая из двух электродов и твердоэлектролитной мембраны, - в потенциометрическом режиме. Иными словами, одна из мембран с электродами, нанесенными на ее поверхности, работает в режиме водородного насоса, а вторая - в режиме собственно потенциометрического датчика. В результате на электронном электроде потенциометрического датчика создается атмосфера чистого водорода, гарантирующая высокую точность измерения в диапазоне от нескольких ppm до 100%.

Заявляемый датчик не требует поддержания постоянной влажности анализируемого газа, т.к. при потенциометрическом методе измерения влажность не влияет на результат измерения. Применение датчика не требует индивидуальной калибровки каждого сенсора, т.к. все сенсоры имеют шкалу соответствующую уравнению Нернста. Используемый в датчике материал твердого электролита обладает повышенной стойкостью при повышенных температурах, т.к. твердооксидные электролиты состава CaZrO3 или La0.95Sr0.05YO3-x или CaTi0.95Sc0.05 стабильны при высоких температурах до 1000°С и выше. То, что обе мембраны выполнены из твердого электролита одинакового состава, то есть с одинаковым коэффициентом термического расширения, значительно упрощает подбор герметизирующего материала для их газоплотного соединения и технологию склеивания твер-доэлектролитных мембран.

Новый технический результат, достигаемый заявленным изобретением, заключается в достижении высокой точности измерения концентрации водорода в более широком диапазоне, а также в упрощении конструкции датчика, технологии его изготовления и использования.

Изобретение иллюстрируется рисунком, на котором изображен предлагаемый твердоэлектролитный датчик. Датчик содержит электрод 1, выполненную в виде таблетки, мембрану 2 из протонпроводящего твердого электролита, второй электрод 3, вторую мембрану 4 из протонпроводящего твердого электролита, также выполненную в виде таблетки. В качестве твердого электролита для изготовления мембран 2 и 4 использовались протонные проводники, например CaZrO3 или La0.95Sr0.05YO3-x или Са-Ti0.95Sc0.05O3 Обе мембраны имели одинаковый химсостав. На наружной поверхности мембраны 4, омываемой анализируемым газом, нанесен измерительный электрод 5, а на ее внутреннюю поверхность нанесен эталонный электрод 6. Обе мембраны соединены между собой газоплотным стеклом - стеклом-герметиком 7 таким образом, что между ними остается полость 8, а сам датчик термостатирован при рабочей температуре 500-550°С. Все электроды датчика выполнены из некаталитического материала - серебра, что снижает вероятность каталитического горения водорода в кислороде анализируемого газа.

На электроды 1 и 3 мембраны 2, работающие в режиме водородного насоса, от источника напряжения ИН подается напряжение постоянного тока. Положительный потенциал подается на наружный электрод 1, отрицательный - на электрод 3. Величина тока в цепи контролируется измерителем тока ИТ. Датчик находится в равномерном температурном поле, которое создается нагревателем 9. В режиме измерения, под действием напряжения, приложенного от внешнего источника питания ИН к электродам 1 и 3, водород из объема анализируемого газа начинает перекачиваться во внутреннюю полость 8 датчика. При превышении давления водорода во внутренней полости датчика над давлением анализируемого газа избыточный водород за счет неидеальной поверхности мембран и высокой проницаемости водорода будет стравливаться в анализируемый газ. Таким образом, во внутренней полости 8 всегда будет находиться чистый водород, который и будет определять величину потенциала эталонного электрода 6. Потенциал измерительного электрода 5 будет определяться парциальным давлением водорода в анализируемом газе. Разность потенциалов между измерительным и эталонным электродами, которая и определяется парциальным давлением водорода в анализируемой газовой смеси, измеряется потенциометром ПТ.

Разность потенциалов между электродами 5 и 6 будет определять, в соответствии с уравнением Нернста, концентрацию водорода в анализируемом газе:

E = ( R T / n F ) * ln ( [ H 2 ] ( э т а л о н . э л д ) / [ H 2 ] ( и з м е р и т . э л д ) ) ; ( 2 )

где E - разность потенциалов между электродами 7 и 8 (МВ);

n - валентность кислорода, равная 2;

F - постоянная Фарадея (96496 К);

Т - температура расплава в градусах Кельвина;

R - газовая постоянная (1,9873 кал/град*моль);

2] (эталон.эл-д) - концентрация водорода на эталонном электроде;

2] (измерит.эл-д) - концентрация водорода в анализируемом газе.

Таким образом, измерив разность потенциалов между эталонным и измерительным электродами, можно однозначно определить содержание водорода в анализируемой газовой смеси. При этом заявленный датчик имеет упрощенную конструкцию, более прост в эксплуатации, обеспечивает высокую точность измерения.

1. Твердоэлектролитный датчик для потенциометрического измерения концентрации водорода в газовых смесях, содержащий мембрану из протонпроводящего твердого электролита, эталонный и измерительный электроды, нанесенные на противоположные поверхности мембраны, отличающийся тем, что датчик снабжен второй твердоэлектролитной мембраной из того же электролита, что и первая, на противоположные поверхности второй мембраны нанесены два электрода, при этом мембраны герметично соединены между собой с образованием полости между их внутренними поверхностями.

2. Датчик по п.1, отличающийся тем, что твердоэлектролитные мембраны выполнены из твердого электролита состава CaZrO3 или La0.95Sr0.05YO3-x или CaTi0.95Sc0.05O3.

3. Датчик по п.1, отличающийся тем, что все электроды датчика выполнены из одного и того же каталитически неактивного электронопроводящего материала.



 

Похожие патенты:

Изобретение относится к газовым датчикам, используемым во многих областях техники для удовлетворения растущих требований по экологии и безопасности. .

Изобретение относится к аналитической технике, в частности к твердоэлектролитным датчикам для анализа газовых сред. .

Изобретение относится к аналитической технике, в частности к твердо-электролитным датчикам для анализа газовых сред. .

Изобретение относится к технике газового контроля и может быть использовано для калибровки газоанализаторов фтористого водорода. .

Изобретение относится к устройствам для непрерывного измерения молекулярного кислорода в потоках газа технологической цепочки. .

Изобретение относится к области сенсорных элементов, а точнее к датчикам газового состава атмосферы. .

Изобретение относится к измерительной технике и может быть использовано для изготовления датчиков измерения концентрации кислорода в различных газах и в широкой области давлений парциального давления кислорода - от 5 до 100 кПа.

Изобретение относится к электроизмерительной технике, в частности к датчикам измерения состава окружающей среды, и может быть использовано для определения содержания водорода в воздухе и в других газовых средах.
Изобретение относится к аналитической химии и приборостроению и может быть использовано как в лабораторной практике, так и в различных отраслях промышленности, в частности, в водородной энергетике: в системах получения, хранения и транспортировки водорода, топливных элементах и других объектах.

Использование: для контроля заполнения сорбентом кулонометрических чувствительных элементов после их изготовления или регенерации. Сущность: заключается в том, что с целью улучшения качества контроля заполнения сорбентом чувствительного элемента после его изготовления или регенерации количество сорбента определяют периодом времени активного поглощения влаги этим сорбентом без воздействия на электроды элемента постоянного напряжения. Технический результат: увеличение времени непрерывной работы кулонометрического гигрометра и значительное увеличение периода времени проведения регенерации кулонометрических чувствительных элементов. 1 ил.

Изобретение может быть использовано для измерения концентрации монооксида углерода в воздухе и в инертном газе. Чувствительный элемент электрохимического датчика монооксида углерода в газовых смесях выполнен в виде таблетки из твердого оксидного электролита, на одну из поверхностей таблетки припечен электрод сравнения, на противоположную - измерительный электрод, при этом твердый оксидный электролит выполнен на основе оксида церия состава Ce0.8(Sm0.8Ca0.2)0.2O2, электрод сравнения выполнен из манганита лантана-стронция состава La0.6Sr0.4MnO3, а измерительный электрод - из оксида цинка ZnO. Изобретение обеспечивает повышение точности измерения монооксида углерода, повышение стабильности показаний, упрощение технологии изготовления чувствительного элемента. 1 з.п. ф-лы, 4 ил.

Чувствительный элемент электрохимического датчика водорода в газовых смесях. Может быть использован для измерения концентрации водорода в воздухе и в инертном газе. Чувствительный элемент электрохимического датчика водорода в газовых смесях, выполненный в виде таблетки из твердого электролита, на одну из поверхностей таблетки припечен электрод сравнения из серебра, на противоположную - рабочий электрод, при этом рабочий электрод выполнен из смеси оксидного соединения с высокой электронной проводимостью и серебра при его содержании в смеси 8-15 масс.%. Новый технический результат - повышение точности измерения водорода, стабильности показаний, увеличение температурного диапазона измерений и упрощение технологии изготовления чувствительного элемента. 3 з.п. ф-лы, 3 табл., 7 ил.

Изобретение может быть использовано в энергетике, металлургии, химической промышленности для определения концентрации водорода в жидких и газовых средах в широком интервале температур и давлений. Твердоэлектролитный датчик водорода в газовых средах содержит селективную мембрану (12), керамический чувствительный элемент (7) с эталонным электродом (15), измерительный электрод (6), герметичную камеру, состоящую из соединенных между собой рабочей полости и вспомогательной полости, корпус (8), соединительный материал (13), пробку с отверстием (11), гермоввод (3), потенциалосъемник (10), втулку (1). Керамический чувствительный элемент (7) выполнен в виде сопряженных между собой цилиндрического элемента и части сферы, расположенной в нижней части цилиндрического элемента. Верхняя часть наружной цилиндрической поверхности керамического чувствительного элемента (7) герметично соединена с внутренней боковой поверхностью корпуса (7) посредством соединительного материала (13). Эталонный электрод (15) расположен в полости, образованной внутренней поверхностью керамического чувствительного элемента (7) и поверхностью пробки (11). На наружную сферическую часть керамического чувствительного элемента (7) нанесен топкий слой токопроводящего покрытия из благородного металла, являющегося измерительным электродом (6). Потенциалосъемник (10) выведен через отверстие в пробке (11) в объем эталонного электрода (15). Втулка (1) соединена с нижней частью корпуса (8). Нижний конец втулки (1) имеет дно с центральным отверстием, к которому прикреплена селективная мембрана (12). Нижний свободный конец селективной мембраны (12) герметично закрыт заглушкой (5). Керамический чувствительный элемент (7) и селективная мембрана (12) снабжены общим нагревателем с системой стабилизации температуры. Вспомогательная и рабочая полости объединены в одном объеме, ограниченном внешней поверхностью керамического чувствительного элемента (7), соединительного материала (13) и внутренней поверхностью нижней части корпуса (8), втулки (1), селективной мембраны (12) и заглушки (5). Вспомогательная полость выведена из зоны действия основного нагревателя с образованием во вспомогательной полости области насыщенной парами воды, причем вспомогательная полость оборудована термоэлектрическим преобразователем (14) и дополнительным нагревателем (4). Изобретение обеспечивает уменьшение инерционности, увеличение точности, чувствительности и стабильности показаний датчика. 8 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике. Твердоэлектролитный датчик концентрации кислорода в газовых средах содержит керамический чувствительный элемент (3), герметично размещенный в металлическом корпусе (4), электрод сравнения (8), потенциалосъемный вывод (5), измерительный электрод (2), нанесенный на внешнюю часть керамического чувствительного элемента (3). Измерительный электрод (2) представляет собой двухслойное токопроводящее покрытие, первый слой состоит из смеси порошка благородного металла и диоксида циркония, второй состоит из порошка благородного металла. Керамический чувствительный элемент (3) выполнен из твердого электролита в виде сопряженных между собой цилиндрического элемента и части сферы. Верхняя наружная цилиндрическая поверхность керамического чувствительного элемента (3) соединена с внутренней боковой поверхностью корпуса (4) посредством соединительного материала (7). Керамический чувствительный элемент (3) дополнительно снабжен пробкой (6) из оксида металла с отверстием, перекрывающей поперечное сечение полости керамического чувствительного элемента (3). Электрод сравнения (8) расположен в полости, образованной внутренней поверхностью керамического чувствительного элемента (3) и поверхностью пробки (6), занимает ее часть и контактирует с внутренней частью сферы и, по меньшей мере, с частью внутренней цилиндрической поверхности керамического чувствительного элемента (3). Электрод сравнения (8) состоит из нижнего и, по меньшей мере, одного последующего слоя, обращенный в сторону части сферы свободный конец потенциалосъемного вывода (5) выведен в объем электрода сравнения (8) через отверстие в пробке (6), при этом обеспечен электрический контакт между потенциалосъемным выводом (5) и нижним слоем электрода сравнения (8). Обращенный в сторону части сферы свободный конец потенциалосъемного вывода (5) выведен в объем электрода сравнения (8) через отверстие в пробке (6). При этом обеспечен электрический контакт между потенциалосъемным выводом (5) и нижним слоем электрода сравнения (8). По меньшей мере, часть сферы керамического чувствительного элемента (3) выступает за пределы корпуса (4). Материалы корпуса (4), керамического чувствительного элемента (3) и соединительного материала (7) имеют близкий коэффициент температурного расширения. Свободная часть корпуса (4) соединена с гермовыводом полезного сигнала (1) с помощью сварки, полость, образованная керамическим чувствительным элементом (3), корпусом (4) и гермовыводом полезного сигнала (1), является герметичной по отношению к внешней среде. Изобретение обеспечивает возможность расширения области применения и уменьшения стоимости датчика. 8 з.п. ф-лы, 1 ил.

Изобретение направлено на возможность измерения горючего газа в смеси с азотом или другим инертным газом. Способ заключается в том, что в поток анализируемого горючего газа помещают электрохимическую ячейку с полостью, образованной герметично соединенными между собой двумя дисками из твердого электролита, на противоположных поверхностях одного из которых расположена пара электродов, к электродам подают напряжение, необходимое для получения предельного тока, протекающего через ячейку, по величине которого определяют концентрацию горючего газа в анализируемой газовой смеси. При этом используют ячейку с полостью, образованной дисками из кислородпроводящего твердого электролита с электродами из каталитического материала, для получения предельного тока к электродам подают напряжение постоянного тока в пределах 300-500 мВ с подачей положительного полюса на электрод, находящийся внутри ячейки, и по величине возникающего при этом предельного тока определяют концентрацию горючего газа в анализируемой газовой смеси. Изобретение обеспечивает возможность достаточно просто и надежно измерить содержание различных горючих газов в смеси с азотом. 1 з.п. ф-лы, 5 ил.

Изобретение относится к электрохимическим устройствам с твердым оксидным электролитом и может быть использовано в качестве кислородного электрода в электрохимических датчиках кислорода, работающих в окислительных средах в интервале температур 700-1000°C. Согласно изобретению, материал содержит оксид иттрия, оксид кальция, оксид хрома и оксид кобальта при следующих соотношениях по формуле: Y1-xCaxCr1-yCoyO3, где x=0,1; y=0,4. Максимальная электропроводность материала достигается при температуре от 700°C до 1000°C. Повышение электропроводности материала указанного состава, является техническим результатом изобретения. 2 табл.

Изобретение относится к датчикам выхлопных газов. Датчик (100, 200) выхлопных газов сконфигурирован для определения концентрации кислорода или соотношения компонентов в воздушно-топливной смеси в составе выхлопных газов. Датчик выхлопных газов содержит чувствительный элемент (10) и реакционный слой (20) для марганца. Чувствительный элемент определяет концентрацию кислорода или соотношение компонентов в воздушно-топливной смеси. Реакционный слой для марганца нанесен, по меньшей мере, на часть чувствительного элемента и образован веществом, содержащим элемент, который образует сложный оксид, содержащий марганец, в ходе реакции с оксидом марганца в составе выхлопных газов. Датчик выхлопных газов сконфигурирован для определения концентрации кислорода или соотношения компонентов в воздушно-топливной смеси выхлопных газов двигателя внутреннего сгорания, который работает на топливе с содержанием Mn выше 20 ppm. Техническим результатом является обеспечение возможности эффективно предотвращать задержку сигнала датчика, а следовательно, повышение точности определения концентрации кислорода. 7 з.п. ф-лы, 15 ил., 2 табл.
Наверх