Устройство для определения нарушений целостности изоляции проводов


 


Владельцы патента RU 2490654:

Общество с ограниченной ответственностью "Рубин" (RU)

Изобретение относится к измерительной технике. Сущность: устройство содержит два испытательных электрода в виде колец и измерительную схему. Первый электрод соединен с первым выводом катушки индуктивности колебательного контура. Второй электрод соединен со вторым выводом катушки индуктивности колебательного контура. Электроды помещены в жидкую среду, предпочтительно дистиллированную воду или этиловый спирт. Колебательный контур является гальванически развязанным от измерительной схемы. Технический результат: повышение точности, чувствительности и процента выхода годных изделий. 1 з.п. ф-лы, 1 ил.

 

Область техники

Изобретение относится к измерительной технике и может быть использовано для определения нарушений целостности изоляции проводов, например, воздушных прослоек внутри изоляции провода (или между изоляцией и проводом при неплотном их прилегании) или отсутствия изоляции в отдельных местах на поверхности провода.

Предшествующий уровень техники Известно устройство для испытания изоляции эмалированного провода (см. описание в заявке на изобретение Российской Федерации №1250996, МПК G01R 31/14), которое содержит источник испытательного напряжения, подключенный между контактным узлом и металлическим цилиндром, при этом контактный узел выполнен в виде изолированных друг от друга двух контактных штырей, частично огибаемых испытуемым проводом. При этом два штыря связаны между собой индикатором контроля целостности цепи, выполненным в виде подсоединенной между двумя штырями индикаторной лампы, питаемой от трансформатора. Указанные штыри выполнены ступенчатыми и закреплены в изоляционной стойке.

На консольные цилиндрические участки ступенчатых штырей надета общая изоляционная планка, прижимаемая к контактным штырям винтом, ось которого смещена от общей касательной плоскости цилиндрических участков штырей на величину, большую половины наружного диаметра пружины, надетой на болт.

При проведении испытаний испытуемым проводом частично огибают металлические ступенчатые штыри. Затем вращением винта перемещают изоляционную пластину, которая, прижимая провод к ступенчатым штырям, продавливает его изоляцию.

Винт вращают до тех пор, пока не появится контакт токопроводящей жилы провода с торцом одного из ступенчатых штырей. О наличии такого контакта сигнализирует индикаторная лампа, подключенная к вторичной обмотке трансформатора. Далее испытуемым проводом огибают металлический цилиндр и на свободный конец его подвешивают нагрузку. Затем от источника испытательное напряжение плавно повышают до пробоя изоляции микропровода. Таким образом производится испытание изоляции микропроводов на пробивное напряжение.

В указанном устройстве испытание изоляции эмалированного провода производят путем ее пробоя повышенным напряжением, что снижает процент выхода годных изделий. При этом в процессе испытания необходимо нарушение целостности изоляции эмалированного провода, что также снижает процент выхода годных изделий.

Наиболее близким аналогом - прототипом предлагаемого устройства для определения нарушений целостности изоляции проводов является устройство для сухого испытания изоляции кабеля (см. описание в заявке на изобретение Российской Федерации №661432, МПК G01R 31/14), которое содержит генератор импульсов, высоковольтный импульсный трансформатор с двумя обмотками и блок фиксации, включающий в себя конденсатор, диод, индикатор, пороговый элемент, испытательный электрод.

В состав генератора импульсов входят трансформатор с трехсекционной вторичной обмоткой, фазорегулятор, два тиристора, конденсатор, диод, дроссель.

Устройство работает следующим образом.

При подаче питания на обмотке высоковольтного импульсного трансформатора и на емкости, образованной испытательным электродом и жилой испытуемого кабеля, возникают затухающие импульсы синусоидального напряжения. При разорванной цепи с диодом емкость между испытательным электродом и жилой испытуемого кабеля и емкость конденсатора составляют емкостный делитель, при этом напряжение, снимаемое с трансформатора, распределяется на обеих емкостях обратно пропорционально их величинам. Если активные потери на их емкостях незначительны, то при наличии цепи из диода и входного сопротивления порогового элемента, подключенного параллельно конденсатору, условия перезаряда конденсатора под действием переменного напряжения с трансформатора неодинаковы в разные полупериоды (цепь с диодом шунтирует конденсатор в проводящий полупериод). В результате на конденсаторе создается постоянное напряжение, запирающее диод, так что на входе порогового элемента сигнал близок к нулю.

При наличии сопротивления, шунтирующего емкость испытательный электрод - жила кабеля, что свидетельствует об ухудшении качества изоляции, конденсатор разряжается на это шунтирующее сопротивление. При этом уровень постоянного напряжения, запирающего диод, снижается и на входе порогового элемента появляется сигнал запуска, тем больший, чем меньше величина шунтирующего сопротивления. Величина сигнала запуска имеет четкую зависимость от шунтирующего сопротивления.

Низкая точность измерения и чувствительность устройства для сухого испытания изоляции кабеля определяется наличием зазора между испытательным электродом и изоляцией кабеля. При этом величина указанного зазора в отдельных местах между испытательным электродом и изоляцией кабеля в процессе испытания изоляции кабеля может изменяться.

В указанном устройстве испытание изоляции кабеля происходит при повышенном напряжении, что снижает процент выхода годных изделий.

Раскрытие изобретения

Задачей создания изобретения является повышение точности измерения, чувствительности и процента выхода годных изделий. Поставленная задача решается с помощью признаков, указанных в 1-м пункте формулы изобретения общих с прототипом, таких как, устройство для определения нарушений целостности изоляции проводов, содержащее испытательный электрод в виде кольца, соединенный с первым выводом катушки индуктивности и измерительную схему и отличительных существенных признаков, таких как, устройство снабжено дополнительным испытательным электродом в виде кольца, который соединен со вторым выводом однослойной катушки индуктивности колебательного контура, испытательный электрод и дополнительный испытательный электрод помещены в жидкую среду, при этом колебательный контур является гальванически развязанным от измерительной схемы.

В пункте 2 формулы нашел отражение вид жидкой среды, а именно жидкая среда предпочтительно является дистиллированной водой или этиловым спиртом.

Помещение испытательного электрода и дополнительного испытательного электрода в жидкую среду повышает точность измерения и чувствительность устройства для определения нарушений целостности изоляции проводов. При этом жидкая среда с большей диэлектрической проницаемостью стремится «разгрузиться» и «переложить» часть электрического напряжения на изоляцию провода с меньшей диэлектрической проницаемостью (см. кн. под редакцией Ю.В. Корицкого. Справочник по электротехническим материалам: В 3 т. Т.1 - М.: Энергоатомиздат, 1986, с 24).

Наличие гальванической развязки между колебательным контуром и измерительной схемой, а также намотка в один слой катушки индуктивности колебательного контура повышает чувствительность предлагаемого устройства.

В предлагаемом устройстве определение нарушений целостности изоляции проводов происходит при пониженном напряжении по изменению частоты резонансных колебаний электромагнитного поля колебательного контура, что позволяет повысить процент выхода годных изделий.

Вышеперечисленная совокупность существенных признаков позволяет получить следующий технический результат - повышение точности измерения и чувствительности, а также процента выхода годных изделий.

Краткое описание чертежа

На чертеже изображена структурная схема устройства для определения нарушений целостности изоляции проводов.

Осуществление изобретения

Устройство для определения нарушений целостности изоляции проводов, содержит колебательный контур 6 (см. чертеж) и измерительную схему 3.

Колебательный контур 6 содержит катушку индуктивности 2, измерительный электрод 1 и дополнительный измерительный электрод 4. Первый и второй выводы катушки индуктивности 2 соединены соответственно с измерительным электродом 1 в виде кольца и дополнительным измерительным электродом 4 в виде кольца. Измерительный электрод 1 и дополнительный измерительный электрод 4 выполняют функцию обкладок конденсатора.

Измерительный электрод 1, дополнительный измерительный электрод 4 и изолированный провод 7 помещают в жидкую среду 5 (на чертеже обозначена штрихпунктирной линией), которая является дистиллированной водой или этиловым спиртом. При этом измерительный электрод 1 и дополнительный измерительный электрод 4 охватывают изолированный провод 7.

Измерительная схема 3 содержит катушку индуктивности 8 подкачки энергии в колебательный контур 6, катушку индуктивности 9 считывания частоты резонансных колебаний колебательного контура 6, элемент ИЛИ 10, транзистор 11, компаратор 12 и вычислительное устройство (на чертеже не показано).

Второй 13 вход элемента ИЛИ 10 является входом запуска непрерывных незатухающих резонансных колебаний

электромагнитного поля колебательного контура 6. Выход элемента ИЛИ 10 соединен с базой транзистора 11, эмиттер которого соединен с выводом «Общий» питания.

Первый и второй выводы катушки индуктивности 8 подкачки энергии в колебательный контур 6 соединены соответственно с коллектором транзистора 11 и плюсовым выводом 14 источника питания постоянного тока (на чертеже не показан) измерительной схемы 3.

Первый и второй выводы катушки индуктивности 9 считывания частоты резонансных колебаний колебательного контура 6 соединены соответственно с выводом «Общий» питания и прямым входом компаратора 12, на инверсный вход которого подают опорное напряжение. Выход компаратора 12 соединен с первым входом элемента ИЛИ 10 и вычислительным устройством.

Катушка индуктивности 2 колебательного контура 6, катушка индуктивности 8 подкачки энергии в колебательный контур 6 и катушка индуктивности 9 считывания частоты резонансных колебаний колебательного контура 6 могут быть выполнены проводом путем его намотки на диэлектрический каркас.

На чертеже стрелкой показано направление перемещения изолированного провода 7.

Устройство для определения нарушений целостности изоляции проводов работает следующим образом.

После включения питания из параллельного канала вычислительного устройства на второй 13 вход элемента ИЛИ 10 подают единичный положительный импульс. Вследствие этого на базу транзистора 11 поступает положительный импульс, который открывает транзистор 11, и через катушку индуктивности 8 подкачки энергии в колебательный контур 6 начинает протекать ток, который наводит ЭДС - электродвижущую силу индукции в колебательном контуре 6, в котором возникают резонансные колебания электромагнитного поля.

Частоту резонансных колебаний электромагнитного поля колебательного контура 6 измеряют путем снятия частоты с катушки индуктивности 9 считывания частоты резонансных колебаний колебательного контура 6, которая затем поступает на прямой вход компаратора 12, на инверсный вход которого подают опорное напряжение. С выхода компаратора 12 положительные сигналы прямоугольной формы поступают на первый вход элемента ИЛИ 10 (на второй 13 вход элемента ИЛИ 10 в это время подают уровень логического нуля) и в вычислительное устройство.

С выхода элемента ИЛИ 10 прямоугольные импульсы поступают на базу транзистора 11, при открывании которого через катушку индуктивности 8 подкачки энергии в колебательный контур 6 течет ток, при изменении которого в колебательном контуре 6 возникает ЭДС индукции, под действием которой в колебательном контуре 6 возникают токи, согласные с направлением тока в колебательном контуре 6 в каждый полупериод колебаний колебательного контура 6.

Причем в положительный полупериод колебаний в колебательном контуре 6 происходит подкачка энергии во время увеличения тока в катушке индуктивности 8 подкачки энергии в колебательный контур 6, а в отрицательный полупериод колебаний подкачка энергии происходит во время уменьшения тока в катушке индуктивности 8 подкачки энергии в колебательный контур 6, так как передача энергии происходит в моменты изменения тока в катушке индуктивности 8 подкачки энергии в колебательный контур 6.

Таким образом в колебательном контуре 6 возбуждают непрерывные незатухающие резонансные колебания электромагнитного поля с подкачкой энергии в определенные моменты времени, увеличивают в эти моменты амплитуду колебаний и преобразуют эти колебания в положительные сигналы прямоугольной формы.

Перемещают изолированный провод 7 относительно измерительного электрода 1 и дополнительного измерительный электрод 4, а нарушение целостности изоляции изолированного провода 7 определяют за счет изменения частоты резонансных колебаний электромагнитного поля колебательного контура 6.

Функцию емкости конденсатора колебательного контура выполняют две последовательно соединенные емкости, каждая из которых является емкостью цилиндрического конденсатора.

Емкость цилиндрического конденсатора измеряют по формуле (см. кн. под редакцией В. Г. Герасимова. Электротехнический справочник: В 3 т. Т.1 - М.: Энергоатомиздат, 1985, с 146, 147):

С=2·π·ε0·ι/[(1/εr1)·ln(R1/R0)+(1/εr2)·ln(R2/R1)],

где π=3,14…;

ε0 - диэлектрическая постоянная, Ф/м;

εr1 - относительная диэлектрическая проницаемость изоляции провода;

εr2 - относительная диэлектрическая проницаемость жидкой среды;

R0 - радиус металлического провода, м;

R1 - радиус изоляции, м;

R2 - внутренний радиус измерительного или дополнительного измерительного электрода, м;

ι - длина измерительного или дополнительного

измерительного электрода, м.

При наличии воздушных прослоек внутри изоляции провода (или между изоляцией и металлическим проводом при неплотном их прилегании) происходит увеличение частоты резонансных колебаний электромагнитного поля колебательного контура, а при отсутствия изоляции в отдельных местах на поверхности провода происходит уменьшение указанной частоты относительно частоты резонансных колебаний электромагнитного поля колебательного контура, при которой нет дефектов изоляции провода.

Промышленная применимость

Устройство для определения нарушений целостности изоляции проводов может быть изготовлено из доступных элементов и материалов в условиях радиотехнического производства. Предлагаемое устройство найдет широкое применение в устройствах применения настоящего изобретения, специалистам будут очевидны и другие частные автоматизации измерения расхода.

Данное описание и примеры рассматриваются как материал, иллюстрирующий изобретение, сущность которого и объем патентных притязаний определены в нижеследующей формуле изобретения, совокупностью существенных признаков и их эквивалентами.

Предлагаемое устройство может быть использовано для определения воздушных прослоек внутри изоляции провода (или между изоляцией и проводом при неплотном их прилегании) или отсутствия изоляции в отдельных местах на поверхности провода.

1. Устройство для определения нарушений целостности изоляции проводов, содержащее испытательный электрод в виде кольца, соединенный с первым выводом катушки индуктивности, и измерительную схему, отличающееся тем, что устройство снабжено дополнительным испытательным электродом в виде кольца, который соединен со вторым выводом однослойной катушки индуктивности колебательного контура, испытательный электрод и дополнительный испытательный электрод помещены в жидкую среду, при этом колебательный контур является гальванически развязанным от измерительной схемы.

2. Устройство по п.1, отличающееся тем, что жидкая среда предпочтительно является дистиллированной водой или этиловым спиртом.



 

Похожие патенты:

Изобретение относится к управляемому отсекающему беспроводному соединению для системы испытаний импульсами высокого напряжения, предпочтительно для гарантирования качества силовых трансформаторов.

Изобретение относится к контрольно-измерительной технике и предназначено для непрерывного контроля изоляции, диагностики и защиты высоковольтных вводов силовых трансформаторов, автотрансформаторов и реакторов.

Изобретение относится к области электроэнергетики, а именно к устройствам, позволяющим проводить диагностику и испытания кабелей с синтетической изоляцией повышенным напряжением без ее разрушения.

Изобретение относится к контрольно-измерительной технике в области электрооборудования высокого напряжения и предназначено для непрерывного контроля изоляции, диагностики и защиты высоковольтных вводов силовых трансформаторов и автотрансформаторов.

Изобретение относится к электроизмерительной технике. .

Изобретение относится к контрольно-измерительной технике и может быть использовано для испытаний электрической прочности изоляции жидких диэлектрических материалов.

Изобретение относится к контрольно-измерительной технике и может быть использовано для испытания изоляции локальных низковольтных электрических систем. .

Изобретение относится к области измерительной техники и может быть использовано для испытания электрических сетей. .

Изобретение относится к электротехнике, в частности к способам диагностики изоляции обмоток электродвигателей. .

Изобретение относится к технике электрических испытаний и может быть использовано для контроля качества изоляции проводов. Новым является то, что в датчик для непрерывного контроля изоляции проводов, содержащий корпус, внутри которого расположен проводящий рабочий элемент, дополнительно введены колпак, греющий источник с плавно изменяющейся мощностью, термодатчик, труба кожуха, схема регулирования мощностью греющего источника, стойка с платформой, и подвижная стойка. В качестве рабочего элемента взят галлий. Корпус и колпак датчика выполнены из теплопроводящего материала (меди) в виде перевернутых в вертикальной плоскости на 180° по отношению друг к другу прямоугольных сосудов. По периметру в верхней торцевой части корпуса и в нижней части колпака выполнены одинаковые по конфигурации фланцы. Причем внешние размеры фланцев одинаковы. Внутренний же размер фланца колпака меньше внутреннего размера фланца корпуса. Во фланце корпуса выточена проточка, в которую вставлен уплотнитель. Корпус и колпак идентичны по конфигурации, но объем внутренней полости колпака V1 больше объема V2 внутренней полости корпуса. При этом объем V1 полностью заполнен галлием. Фланцы корпуса и колпака присоединены друг к другу крепежными деталями. В стенках корпуса просверлены сквозные соосные отверстия, вокруг которых с внешней стороны корпуса выполнены проточки, в которые вставлены уплотняющие манжеты. С противоположных внешних сторон корпуса датчика прикреплены две трубчатые оси имеющие фланцы. Фланцы прикреплены крепежными деталями к корпусу. Уплотняющие манжеты находятся между корпусом и фланцами трубчатых осей. Внутренний диаметр трубчатых осей соответствует диаметру просверленных в корпусе отверстий, а наружный диаметр этих осей соответствует отверстиям в стойке с платформой и в подвижной стойке. Одна трубчатая ось входит в отверстие стойки с платформой. Другая трубчатая ось входит в отверстие подвижной стойки. Отверстие в стойке с платформой соосно отверстию в подвижной стойке. Нижний конец подвижной стойки расположен в пазу платформы стойки с платформой, и может перемещаться в продольном направлении по расположенным внутри паза направляющим. К верхней части стойки платформы закреплена труба, выполненная из меди. Внутри трубы по ее центральной оси прикреплен к стойке с платформой патрон, в который вкручен греющий источник с плавно изменяющейся мощностью. К внешней стороне колпака одним из торцов прикреплена труба кожуха, внутренний диаметр которой соответствуют внешнему диаметру трубы, прикрепленной к верхней части стойки с платформой, а оси вращения упомянутых туб совпадают. С противоположной стороны корпуса от трубы кожуха расположено гнездо, в которое вставлен термодатчик, выход которого соединен с входом схемы регулирования мощностью греющего источника, выход которой соединен с входом греющего источника с плавно изменяющейся мощностью. Заявляемый датчик имеет более чем в 3 раза более высокую чувствительность, чем датчик-прототип, и более чем на порядок более высокий срок службы, и, соответственно, надежность.

Изобретение относится к устройству для компонентов высоковольтной импульсной системы испытания, предпочтительно для контроля качества мощных трансформаторов. Сущность: в устройстве для компонентов высоковольтной импульсной системы испытания, содержащей генератор импульсов и вспомогательные компоненты, а именно ограничительный разрядный промежуток (2), делитель (3) напряжения и компенсатор (4) перенапряжений, по меньшей мере два из вспомогательных компонентов установлены на общей основной раме с одним единственным головным электродом (11) для вспомогательных компонентов. Технический результат: сокращение пространственной протяженности и числа гальванических соединений. 5 з.п. ф-лы, 2 ил.

Изобретение относится к контролю высоковольтной изоляции. Сущность: датчик (11) частичных разрядов для устройства (11; 13) оперативного контроля высоковольтной изоляции содержит корпус (15) и находящиеся в корпусе (15) измерительную схему (17) для измерения частичных разрядов в тестируемой высоковольтной системе (3; 5) и конденсатор (19) связи, имеющий один электрод (19В), соединенный с измерительной схемой (17), и другой электрод (19А; 41), соединенный с первым высоковольтным проводником (21; 43), соединяемым с высоковольтной линией (5) тестируемой системы. Датчик дополнительно содержит калибровочную схему (23), находящуюся в корпусе (15) и содержащую калибровочный конденсатор (25), имеющий один электрод (25В), соединенный с калибровочной схемой (23), и другой электрод (25А; 41), соединенный с упомянутым первым высоковольтным проводником (21; 43) или вторым высоковольтным проводником (27), соединяемым с высоковольтной линией (5). Технический результат: возможность калибровки датчика в режиме эксплуатации, отсутствие необходимости изменения высоковольтной геометрии применительно к высоковольтной цепи генерирования энергии. 14 з.п. ф-лы, 8 ил.
Наверх