Способ сравнительной оценки надежности полупроводниковых изделий



Способ сравнительной оценки надежности полупроводниковых изделий
Способ сравнительной оценки надежности полупроводниковых изделий
Способ сравнительной оценки надежности полупроводниковых изделий
Способ сравнительной оценки надежности полупроводниковых изделий

 


Владельцы патента RU 2490655:

Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" (RU)

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности полупроводниковых изделий (ПИИ), и может быть использовано для сравнительной оценки надежности партий НИИ как на этапе производства, так и на входном контроле на предприятиях - изготовителях радиоэлектронной аппаратуры. Сущность изобретения заключается в том, что на одинаковых выборках из сравниваемых партий НИИ одного типа проводят измерения значения квадрата напряжения шумов U ¯ ш 2 на частотах 160 и 1000 Гц до и после воздействия электростатическими разрядами напряжением, допустимым по техническим условиям на половине выборки, а на второй половине ЭСР, равным половине допустимого значения. Для каждого изделия определяется параметр γ до воздействия ЭСР и после воздействия по следующей формуле:

γ = L g ( U ¯ 2 ш 160 U ¯ 2 ш 1000 ) L g ( 1000 160 )

где U ¯ ш 160 2 и U2ш1000 - значения низкочастотного шума на частотах 160 Гц и 1000 Гц соответственно, по значениям γ проводят сравнение партии изделий по надежности. Технический результат - повышение функциональных возможностей способа. 2 табл.

 

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности полупроводниковых изделий ПЛИ (диодов, транзисторов и интегральных схем), и может быть использовано для сравнительной оценки надежности партий ПЛИ как на этапе производства, так и на входном контроле на предприятиях - изготовителях радиоэлектронной аппаратуры.

Известен способ сравнительной оценки надежности партий транзисторов [1], в соответствии с которым проводят выборочные испытания партий транзисторов воздействием электростатических разрядов. На каждый транзистор выборки подают электростатические разряды потенциалом вдвое большим, чем допустимый по техническим условиям, каждый раз повышая его на 20-30 В до появления параметрического или катастрофического отказа.

Недостаток данного способа - испытание является разрушающим. Представленное изобретение направлено на устранение этого недостатка и повышение функциональных возможностей способа.

Достоинством предложенного способа является то, что сравнительная оценка партий ПЛИ основывается на измерении среднего значения квадрата напряжения низкочастотного шумов U ¯ ш 2 до и после воздействия электростатическим разрядом ЭСР. Значение U ¯ ш 2 измеряется на частотах 160 Гц и 1000 Гц. Напряжение ЭСР равно допустимому значению по техническим условиям (подается на половину выборки), а половина допустимого значения на другую половину выборки.

Способ осуществляется следующим образом: от каждой партии одного типа (количество партий неограниченно) методом случайной выборки отбирают одинаковое количество изделий не менее 20 штук. У каждого из отобранных изделий проверяют значение U ¯ ш 2 на частотах 160 Гц и 1000 Гц. Затем на половину отобранных изделий воздействуют ЭСР величиной, равной половине допустимой по техническим условиям, а на вторую половину - ЭСР величиной, равной допустимому значению. После воздействия ЭСР вновь проверяют значение U ¯ ш 2 на частотах 160 и 1000 Гц. Для каждого изделия определяется параметр-показатель формы спектра γ до воздействия ЭСР и после по следующей формуле [2]:

γ = L g ( U ¯ 2 ш 160 U ¯ 2 ш 1000 ) L g ( 1000 160 ) ,

где U ¯ ш 160 2 и U ¯ ш 1000 2 - значения низкочастотного шума на частотах 160 и 1000 Гц соответственно. Из техники известно [2], чем меньше значение показателя γ, тем выше надежность изделий.

Способ был опробован на выборках по 20 шт. из двух партий ИС типа КТ209 (кремниевые маломощные, n-p-n-типа). После измерения U ¯ ш 2 на частотах 160 Гц и 1 кГц подавалось по пять импульсов ЭСР на выводы: коллектор «+», эмиттер «-», по модели «тела человека» [3]. Типовые значения и изменение значения квадрата напряжения шума U ¯ ш 2 до и после воздействия ЭСР представлено в таблице 1. Расчет значения коэффициента γ представлены в таблице 2.

Если по таблице 1 нельзя сказать о тенденциях по надежности партий, то по таблице 2 четко определяется, что партия 2 является более надежной.

Источники информации

1. Горлов М.И., Ануфриев Л.И., Достанко А.И., Смирнов Д.Ю. Диагностика твердотельных полупроводниковых структур по параметрам низкочастотного шума. - Минск, Интегралполиграф, 2006. 112 с.

2. Патент РФ N2226698, G01R 31/26, опуб. 10.04.2004, бюл. №10.

3. Горлов М.И., Емельянов А.В., Плебанович В.И. Электрические заряды в электронике. - Мн.: Бел.наука, 2006. - 295 с.

Таблица 1
Изменение значения квадрата напряжения шума U ¯ м 2 до и после воздействия ЭСР
Номер партии Значение U ¯ м 2 , мВ2, на частоте Значение ЭСР, В
160 Гц 1000 Гц
до воздействия ЭСР после воздействия ЭСР до воздействия ЭСР после воздействия ЭСР
1 85 87 49 53 500
97 98 55 57 1000
2 93 93 68 72 500
104 106 69 72 1000
Таблица 2
Расчет значения коэффициента γ
Номер партии Значение γ Значение ЭСР, В
до воздействия ЭСР после воздействия ЭСР
1 0,3 0,27 500
0,31 0,3 1000
2 0,17 0,14 500
0,23 0,21 1000

Способ сравнительной оценки надежности партий полупроводниковых
изделий, в соответствии с которым на произвольных одинаковых выборках из партий проводят измерения значений квадрата напряжения шумов U ¯ ш 2 до и после воздействия электростатическим разрядом, отличающийся тем, что отбирают выборки не менее 20 изделий от партии, измерение U ¯ ш 2 проводят на частотах 160 и 1000 Гц до и после воздействия электростатическим разрядом напряжением, равным половине допустимого по техническим условиям на половине выборки, а на второй половине электростатическим разрядом, равным допустимому значению, при этом для каждого изделия вычисляется значение коэффициента γ до воздействия и после воздействия электростатическим разрядом по следующей формуле
γ = L g ( U ¯ 2 ш 160 U ¯ 2 ш 1000 ) L g ( 1000 160 ) ,
где U ¯ ш 160 2 и U ¯ ш 1000 2 - значение низкочастотного шума на частотах 160 и 1000 Гц соответственно, и проводят сравнение партий полупроводниковых изделий по значениям коэффициента γ.



 

Похожие патенты:

Изобретение относится к микроэлектронике, а именно к способам обеспечения надежности полупроводниковых изделий (ППИ) (транзисторов и интегральных схем), и может быть использовано для обеспечения повышенной надежности партий изделий как на этапе производства, так и на входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры.

Изобретение относится к контрольно-испытательному оборудованию изделий электронной техники. .

Изобретение относится к радиационной испытательной технике и предназначено для использования в системах испытаний на радиационную стойкость радиоэлектронной аппаратуры.

Изобретение относится к технологии изготовления и способам тестирования матричных или линейных МОП мультиплексоров. .

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности полупроводниковых изделий (диодов, транзисторов и интегральных схем), и может быть использовано для разбраковки по критерию потенциальной надежности как в процессе производства, так и на входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры.

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности интегральных схем (ИС), и может быть использовано для сравнительной оценки надежности партий ИС как на этапе производства, так и на входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры.

Изобретение относится к микроэлектронике, в частности к обеспечению надежности транзисторов. .

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности полупроводниковых изделий (диодов, транзисторов и интегральных схем), и может быть использовано для сравнительной оценки надежности партий полупроводниковых приборов как на этапе производства, так и на входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры.

Изобретение относится к микроэлектронике, а именно к способам обеспечения надежности транзисторов, и может быть использовано для разделения транзисторов по надежности в процессе производства, а также на входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности интегральных схем (ИС), и может быть использовано для сравнительной оценки надежности партий ИС как на этапе производства, так и на входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры

Изобретение относится к измерительной технике. Сущность: устройство содержит измерительную интегральную схему с элементами с перестраиваемыми параметрами, вход которой соединен с генератором шума отрезка линии передачи, выход которого соединен с входом измеряемого четырехполюсника, измеритель коэффициента шума. Измерительная интегральная схема дополнительно содержит второй отрезок линии передачи на выходе, две емкости, резистор, индуктивность, две контактные площадки для подачи питания к измеряемому четырехполюснику. Элементы с перестраиваемыми параметрами выполнены в виде полевых транзисторов с барьером Шотки. На затвор полевого транзистора подают управляющее напряжение от соответствующего источника. Величина сопротивления резистора на порядок больше величины волнового сопротивления отрезка линии передачи на входе, величины индуктивности и емкости определяются из математических формул. Технический результат: расширение рабочей полосы частот, повышение точности измерений, упрощение устройства. 1 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике. Сущность: устройство содержит измерительную интегральную схему с перестраиваемыми параметрами, вход которой соединен с генератором шума посредством центрального проводника в виде отрезка линии передачи, выход которого соединен с входом измеряемого четырехполюсника, измеритель коэффициента шума. Измерительная интегральная схема содержит второй центральный проводник в виде отрезка линии передачи, две емкости, резистор, индуктивность, элемент с перестраиваемыми параметрами в виде полевого транзистора с барьером Шотки и две контактные площадки для подачи питания к измеряемому четырехполюснику. Величина сопротивления резистора на порядок больше величины волнового сопротивления отрезка линии передачи на входе, величины индуктивности и емкости определяются из математических формул. Технический результат: расширение рабочей полосы частот, повышение точности измерений, упрощение устройства. 1 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике, в частности к способам тестирования параметров планарных полупроводниковых светодиодных гетероструктур (ППСГ) на основе GaN. Способ включает облучение светоизлучающей полупроводниковой гетероструктуры пучком электронов и возбуждение катодолюминесценции, причем возбуждение катодолюминесценции осуществляют облучением в импульсном режиме с длительностью импульса от 10 нс до 400 нс. Энергию электронов обеспечивают преимущественно 18 кэВ и выше. Технический результат заключается в уменьшении влияния неоднородности ионизационных потерь и в устранении деградации активных слоев ППСГ при измерениях. 2 ил.

Изобретение относится к микроэлектронике, а именно к обеспечению качества и надежности полупроводниковых изделий (ПЛИ), в частности транзисторов, и может быть использовано как на этапе производства, так и на этапе применения. Способ разделения транзисторов по надежности включает измерение низкочастотного шума, при этом измерение напряжения низкочастотного шума перехода эмиттер-база проводят до и после воздействия рентгеновским излучением дважды: после облучения половины дозы и полной дозы допустимой по техническим условиям, и по поведению параметра низкочастотного шума разделяют транзисторы на надежные и потенциально ненадежные. Технический результат - повышение достоверности способа без превышения допустимых воздействующих факторов. 1 ил.

Изобретение относится к технике измерения теплофизических параметров полупроводниковых диодов. Способ измерения теплового импеданса полупроводниковых диодов, заключающийся в том, что через полупроводниковый диод пропускают последовательность импульсов греющего тока, период следования которых постоянный, в паузах между ними измеряют температурочувствительный параметр - прямое падение напряжения на полупроводниковом диоде при малом измерительном токе - и определяют изменение температуры р-n-перехода. При этом модуляцию длительности импульсов греющего тока осуществляют по полигармоническому закону с заданным набором частот модуляции, вычисляют с помощью Фурье-преобразования мнимые и вещественные трансформанты температуры, по ним вычисляют значения амплитуд и фаз всех гармоник температуры, после чего определяют модули и фазы теплового импеданса на всех заданных частотах модуляции. Технический результат заключается в сокращении времени процесса измерения зависимости теплового импеданса от частоты модуляции греющей мощности и повышении оперативности контроля теплофизических параметров полупроводниковых диодов. 2 ил.

Изобретение относится к измерительной технике на СВЧ. Устройство для измерения полного сопротивления и шумовых параметров двухполюсника на СВЧ, содержащее измеритель частотных характеристик и интегральную схему в составе центральной линии передачи, отрезка линии передачи, соединенного с центральной линией передачи, электрических ключей - полупроводниковых приборов, управляемых постоянными напряжениями, измеритель частотных характеристик соединен с одним концом центральной линии передачи, другой ее конец - с измеряемым двухполюсником. В котором в качестве измерителя частотных характеристик используют измеритель спектральной плотности мощности шума, интегральная схема выполнена в виде монолитной интегральной схемы на полупроводниковой подложке, при этом отрезок линии передачи выполнен равным одной восьмой длины волны в линии передачи, в качестве электрических ключей используют полевые транзисторы с барьером Шотки и, по меньшей мере, в виде одной пары, при этом в каждой упомянутой паре исток одного полевого транзистора с барьером Шотки соединен с центральной линией передачи на расстоянии одной восьмой длины волны в линии передачи от места соединения измеряемого двухполюсника и между парами, его сток с одним концом отрезка линии передачи, другой конец которого соединен со стоком другого полевого транзистора с барьером Шотки, его исток заземлен, постоянные управляющие напряжения подают на затворы каждого полевого транзистора с барьером Шотки от соответствующего источника постоянного управляющего напряжения. Технический результат заключается в расширении рабочей полосы частот, в повышении точности измерения путем снижения погрешности измерения и в упрощении устройства при сохранении возможности автоматизации. 4 ил.

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности полупроводниковых изделий ППИ (транзисторов, интегральных схем (ИС) и т.д.) и может быть использовано для сравнительной оценки надежности партий ППИ как в процессе производства, так и при входном контроле на предприятии-изготовителе радиоэлектронной аппаратуры. Сущность изобретения заключается в том, что на произвольных одинаковых выборках из партий полупроводниковых изделий (не менее 25 штук от каждой партии) проводят измерение электрического информативного параметра до и после воздействия пятью импульсами ЭСР обеих полярностей, потенциалом, допустимым по техническим условиям, затем для последнего измерения вычисляют коэффициент конструктивно-технологического запаса для верхней и нижней норм параметра, далее находят среднее значение изменения величины информативного параметра. По значениям коэффициентов запаса и средних значений величин изменения информативного параметра оценивают сравнительную надежность двух партий. Технический результат: повышение функциональных возможностей способа.

Изобретение относится к микроэлектронике, а именно к способам обеспечения надежности полупроводниковых изделий (ППИ) (транзисторов и интегральных схем), и может быть использовано для обеспечения повышенной надежности партий изделий как на этапе производства, так и на входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры. Сущность изобретения заключается в том, что проводят измерения информативного электрического параметра или параметров при нормальной температуре, после 100 ч электротермотренировки в режиме проведения испытаний на безотказность по техническим условиям, после проведения воздействия электростатическим разрядом допустимым напряжением, указанным в технических условиях, по пяти разрядам в обоих направлениях и затем проведение температурного отжига при максимально допустимой температуре по ТУ в течение 2-4 ч. По результатам испытаний и измерений определяют для каждого изделия коэффициент К, по которому определяется изделие пониженной надежности. Технический результат: повышение достоверности и расширение функциональных возможностей способа отбраковки полупроводниковых изделий пониженного уровня надежности качества из партии изделий повышенной надежности.
Наверх